That new function is called the forward composition of the two functions f and g. In Scala, this operation is written as f andThen g ...

The forward composition is denoted by § (pronounced “before”) and can be defined as
fi8 = (x=g(f(x)))

The symbol £, means “is defined as”.

We could write the forward composition as a fully parametric function,
def andThen[X, VY, Z](f: X => Y)(g: Y => Z): X => Z = { x => g(f(x)) }

The type signature of this curried function is

andThen: (X =2Y) =Y =22)=2X=>Z

name: Forward Composition

/38

pronunciation: f before g
in Scala: ¥ andThen g

name: Backward Composition

fog

pronunciation: f after g
in Scala: ¥ compose g

The Science of
Functional
Programming

A tutorial, with examples in Scala

|

This type signature requires the types of the function arguments to match in a certain way, or else the composition is undefined.

The backward composition of two functions f and g works in the opposite order: first g is applied and
then f is applied to the result. Using the symbol o (pronounced “after”) for this operation, we can write

fog=(x= f(g(x))

In Scala, the backward composition is called compose and used as f compose g. This method may be

Implemented as a fully parametric function
def compose[X, Y, Z](f: Y => X)(g: Z => Y): Z => X = { z => f(g(z)) }

The type signature of this curried function is

compose: (Y =X)=~Z=Y)=72=X

Sergei Winitzki

m sergei-winitzki-11a6431



