
That new function is called the forward composition of the two functions f and g. In Scala, this operation is written as f andThen g …
…
The forward composition is denoted by (pronounced “before”) and can be defined as

The symbol , means “is defined as”.

We could write the forward composition as a fully parametric function,

 def andThen[X, Y, Z](f: X => Y)(g: Y => Z): X => Z = { x => g(f(x)) }

The type signature of this curried function is

This type signature requires the types of the function arguments to match in a certain way, or else the composition is undefined.

The backward composition of two functions f and g works in the opposite order: first g is applied and
then f is applied to the result. Using the symbol (pronounced “after”) for this operation, we can write

In Scala, the backward composition is called compose and used as f compose g. This method may be
Implemented as a fully parametric function

 def compose[X, Y, Z](f: Y => X)(g: Z => Y): Z => X = { z => f(g(z)) }

The type signature of this curried function is Sergei Winitzki
sergei-winitzki-11a6431

