Year when lambda functions were introduced in various languages

1994 2014
Python 1.0 Java 8
Swift
1940 1973 1985 1991 1998 2005 2011
typed A-calculus StandardML OCaml 0Oz Lua 3.1 F# C++ 11
19I30I - ZIL9I35I - ZII.9:40I - ZII.9I45I - I19I50I - ZII.9I55I | ZII.9I60I - ZII.9I65I - I19I70I - ZIL9I75I - ZII.9I80I - ZII.9I85I o I90I | ZII.9I95I - IZOIOOI | I20I05I B I20I10I B 20I15I - I20I20
A-calculus LISP Scheme Haskell R Scala Kotlin
1936 1958 1975 1990 1993 2003 Go
2012
Ruby Clojure Rust
Mercury C#3.0 2015
JavaScript 2007
1995

data source: Sergei Winitzki’s book: The Science of Functional Programming: A tutorial, with examples in Scala

slide by u @philip_schwarz

1.7.7 Nameless functions: historical perspective

Nameless functions were first used in 1936 in a theoretical programming language called “A-calculus”.

In that language,’ all functions are nameless and have a single argument. The letter A is a syntax
separator denoting function arguments in nameless functions. For example, the nameless function
x = x +1 could be written as Ax.add x 1 in A-calculus, if it had a function add for adding integers
(which it does not).

In most programming languages that were in use until around 1990, all functions required names.
But by 2015, most languages added support for nameless functions, because programming in the
map/reduce style (which invites frequent use of nameless functions) turned out to be immensely
productive. Table 1.2 shows the year when nameless functions were introduced in each language.

What this book calls a “nameless function” is also called anonymous function, function expres-
sion, function literal, closure, lambda function, lambda expression, or just a “lambda”. I use the term
“nameless function” in this book because it is the most descriptive and unambiguous both in speech
and in writing.

4

Language Year Code fork — k +1
A-calculus 1936 Ak. add k 1
typed A-calculus | 1940 Ak :int.add k 1
LISP 1958 (lambda (k) (+ k 1))
Standard ML 1973 fn (k:int) => k + 1
Scheme 1975 (lambda (k) (+ k 1))
OCaml 1985 fun k -> k + 1
Haskell 1990 \k ->k+1
Oz 1991 fun {$ K} K + 1
R 1993 function(k) k + 1
Python 1.0 1994 lambda k: k + 1
JavaScript 1995 function(k) { return k + 1; }
Mercury 1995 func(K) = K + 1
Ruby 1995 lambda { |k| k + 1 }
Lua 3.1 1998 function(k) return k + 1 end
Scala 2003 (k:Int) => k + 1
F# 2005 fun (k:int) -> k + 1
C#3.0 2007 | delegate(int k) { return k + 1; }
C++11 2011 [] (int k) { return k + 1; }
Go 2012 func(k int) { return k + 1 }
Kotlin 2012 { k:Int > k + 1}
Swift 2014 | { (x:int) -> int in return k + 1 }
Java 8 2014 (int X) -> k + 1
Rust 2015 |k:i32] k + 1

Table 1.2: Nameless functions in various programming languages.

The Science of
Functional
Programming

A tutorial, with examples in Scala

Sergei Winitzki
m sergei-winitzki-11a6431

	Slide 1
	Slide 2

