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See how feeding FP workhorses map and filter with monadic steroids turns them into the intriguing mapM and filterM

Graduate to foldM by learning how it behaves with the help of three simple yet instructive examples of its usage

Use the powers of foldM to generate all permutations of a collection with a simple one-liner

Exploit what you learned about foldM to solve the N-Queens Combinatorial Problem with an iterative approach rather than a recursive one
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The plan for Part 4 of this series is to first take a quick look at the
Haskell equivalent of the Scala intersperse and intercalate functions
we used in Part 3, and then to come up with an alternative way of
solving the N-Queens problem using the foldM function.

If on a first reading you want to get straight to the meat of this slide
deck then consider skipping the first seven slides.



Here are the Scala intersperse and intercalate functions that we used in Part 3.

Cats



In the next slide we see how Miran Lipovača introduces
intersperse and intercalate functions that operate on lists.

> import Data.List

> :type intersperse
intersperse :: a -> [a] -> [a]

> :type intercalate
intercalate :: [a] -> [[a]] -> [a]

@philip_schwarz



Data.List

The Data.List module is all about lists, obviously. It provides some very useful functions for dealing with them.

We've already met some of its functions (like map and filter) because the Prelude module exports some functions
from Data.List for convenience.

You don't have to import Data.List via a qualified import because it doesn't clash with any Prelude names except for those
that Prelude already steals from Data.List. Let's take a look at some of the functions that we haven't met before.

intersperse takes an element and a list and then puts that element in between each pair of elements in the list. Here's a
demonstration:

ghci> intersperse '.' "MONKEY"
"M.O.N.K.E.Y"

ghci> intersperse 0 [1,2,3,4,5,6]
[1,0,2,0,3,0,4,0,5,0,6]

intercalate takes a list of lists and a list. It then inserts that list in between all those lists and then flattens the result.

ghci> intercalate " " ["hey","there","guys"]
"hey there guys"

ghci> intercalate [0,0,0] [[1,2,3],[4,5,6],[7,8,9]]
[1,2,3,0,0,0,4,5,6,0,0,0,7,8,9]

Miran Lipovača



So the intersperse function that we saw on the
previous slide will do as the Haskell analogue.

type Grid[A] = List[List[A]]

import scala.collection.decorators._ 
def insertPadding(images: Grid[Image]): Grid[Image] =
images map (_ intersperse paddingImage) intersperse List(paddingImage)

As for the Scala Cats intercalate function that we used in Part 3, although we used it on
lists, it was much more generic in that it operated on a Foldable and so rather than simply
concatenating the lists contained in a list, it folded a Foldable using a Monoid.

def combineWithPadding(images: Grid[Image], paddingImage: Image): Image =
import cats.implicits._
images.map(row => row.intercalate(paddingImage)(beside))

.intercalate(paddingImage)(above)

When we used the Scala intersperse
function in Part 3, we used it with lists.

Where can we find the Haskell equivalent of this more generic version of intercalate?

import cats.Monoid
val beside = Monoid.instance[Image](Image.empty, _ beside _)
val above = Monoid.instance[Image](Image.empty, _ above _)



In Programming in Haskell, Foldable is said to be located in Data.Foldable.

If I search Hoogle for intercalate, Data.Foldable does not show
up. In Hoogle, the versions of intercalate that do show up,
either don’t involve both Foldable and Monoid, or are in what
appear to me to be ‘not-so-mainstream’ modules.

In Haskell Programming, I see
an intercalate in use, but it is
the one that operates on lists.



We can find an intercalate function based on Monoid and Foldable in monoid’s Data.Monoids.

Is monoid’s Data.Monoids a sensible library (the most sensible, even?) to depend on for intercalate?

Are there more sensible places where to find intercalate?

Why does monoid’s Data.Monoids not show up in Hoogle?

What is the status of monoid’s Data.Monoids? Is it not mainstream/recognized/official in some way?



When Chris Martin (coauthor of Finding Success and Failure -
The Joy of Haskell Series) replied to my questions, I realised
that intersperse can be used to implement intercalate

So here is an example of doing just that (using the Tree data structure
provided by https://hackage.haskell.org/package/containers-0.6.5.1)

> import Data.Foldable
> import Data.List
> import Data.Tree

> :type toList
toList :: Foldable t => t a -> [a]

> :type fold
fold :: (Foldable t, Monoid m) => t m -> m

> :type intersperse
intersperse :: a -> [a] -> [a]

> fold (intersperse "-" (toList (Node "a" [Node "b" [], Node "c" [], Node "d" []])))
"a-b-c-d"

> import Data.Monoids
> import Data.Tree
> :type intercalate
intercalate :: (Mempty a, Semigroup a, Foldable f) => a -> f a -> a

> intercalate "-" (Node "a" [Node "b" [], Node "c" [], Node "d" []])
"a-b-c-d"

And here on the right we do the same thing, but
using the intercalate function provided by
monoid’s Data.Monoids.



After that quick look at the Haskell equivalent of the intersperse and intercalate
functions, let’s now turn to the task of finding out how the N-Queens
combinatorial problem can be solved using the foldM function.

Before we start looking at the solution, we need to make sure that we fully
understand how the foldM function works.

To prepare for that, we are first going to get an understanding (or remind
ourselves) of how the mapM and filterM functions work.

On the next slide we look at how Graham Hutton explains the mapM function in
his Haskell book.

@philip_schwarz



Generic functions

An important benefit of abstracting out the concept of monads is the ability to define generic functions that can be
used with any monad. A number of such functions are provided in the library Control.Monad. For example, a monadic
version of the map function on list can be defined as follows:

mapM :: Monad m => (a -> m b) -> [a] -> m [b] 
mapM f []     = return [] 
mapM f (x:xs) = do y  <- f x 

ys <- mapM f xs 
return (y:ys)

Note that mapM has the same type as map, except that the argument function and the function itself now have
monadic return types. To illustrate how it might be used, consider a function that converts a digit character to its
numeric value, provided that the character is indeed a digit:

conv :: Char -> Maybe Int
conv c | isDigit c = Just (digitToInt c)

| otherwise = Nothing

(The functions isDigit and digitToInt are provided in Data.Char.) Then applying mapM to the conv function gives a means 
of converting a string of digits into the corresponding list of numeric values, which succeeds if every character in the 
string is a digit, and fails otherwise:

> mapM conv "1234" 
Just [1,2,3,4]

> mapM conv "123a" 
Nothing

Graham Hutton
@haskellhutt

map :: (a -> b) -> [a] -> [b]



If you are not familiar with the traverse
function, then just skip the next slide.



Let’s do the same in Scala. Except that I can’t find mapM in Cats or Scalaz! It turns out, however, that the signature of the mapM function
that we have just seen is just a specialization of the traverse function.

Here is the mapM function again

mapM :: Monad m => (a -> m b) -> [a] -> m [b] 
mapM f []     = return []
mapM f (x:xs) = do y  <- f x 

ys <- mapM f xs 
return (y:ys)

And here is how a more generic version is defined in terms of traverse:

. class (Functor t, Foldable t) => Traversable t where

traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
…

. mapM :: Monad m => (a -> m b) -> t a -> m (t b)

. mapM = traverse

So here is the Haskell mapM example again, and next to it the Scala equivalent (using Cats)

conv :: Char -> Maybe Int def conv(c: Char): Option[Int] = c match
conv c | isDigit c = Just (digitToInt c) case _ if c.isDigit => Some(c.asDigit)

| otherwise = Nothing case _ => None

> mapM conv "1234" assert( "1234".toList.traverse(conv)
Just [1,2,3,4] == Some(List(1,2,3,4))) 

> mapM conv "123a” assert( "1234a".toList.traverse(conv)
Nothing == None)

specialised for lists

generalized for any
traversable

Every monad is
also an applicative

def conv(c: Char): Option[Int] =   
Option.when(c.isDigit)(c.asDigit)

alternatively

Cats



That was mapM.

Now let’s move on to filterM.

In the next slide we look at how Miran Lipovača
explains the filterM function in his Haskell book.



filterM

The filter function is pretty much the bread of Haskell programming (map being the butter). It takes a predicate and a list to
filter out and then returns a new list where only the elements that satisfy the predicate are kept. Its type is this:

filter :: (a -> Bool) -> [a] -> [a]

The predicate takes an element of the list and returns a Bool value. Now, what if the Bool value that it returned was actually
a monadic value? Whoa! That is, what if it came with a context? Could that work?

For instance, what if every True or a False value that the predicate produced also had an accompanying monoid value,
like ["Accepted the number 5"] or ["3 is too small"]? That sounds like it could work. If that were the case, we'd expect the
resulting list to also come with a log of all the log values that were produced along the way. So if the Bool that the
predicate returned came with a context, we'd expect the final resulting list to have some context attached as well,
otherwise the context that each Bool came with would be lost.

The filterM function from Control.Monad does just what we want! Its type is this:

filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]

The predicate returns a monadic value whose result is a Bool, but because it's a monadic value, its context can be anything
from a possible failure to non-determinism and more! To ensure that the context is reflected in the final result, the result is
also a monadic value.

Let's take a list and only keep those values that are smaller than 4. To start, we'll just use the regular filter function:

ghci> filter (\x -> x < 4) [9,1,5,2,10,3]
[1,2,3]

That's pretty easy.
Miran Lipovača



While the next five slides provide a useful example of using
the filterM function, the example involves the Writer monad,
so if you are not familiar with that monad you may want to
skip the slides for now.

If you could do with an introduction to the Writer monad,
then you might want to check out the slide deck on the right.

Whether you go through the next five slides or skip them, the
two slides after that provide a nice and simple example of
using the filterM function on the List monad.

@philip_schwarz



Now, let's make a predicate that, aside from presenting a True or False result, also provides a log of what it did. Of course, we'll
be using the Writer monad for this:

keepSmall :: Int -> Writer [String] Bool
keepSmall x

| x < 4 = do
tell ["Keeping " ++ show x]
return True

| otherwise = do
tell [show x ++ " is too large, throwing it away"]
return False

Instead of just returning a Bool, this function returns a Writer [String] Bool. It's a monadic predicate. Sounds fancy, doesn't it? 
If the number is smaller than 4 we report that we're keeping it and then return True. Now, let's give it to filterM along with a 
list. Because the predicate returns a Writer value, the resulting list will also be a Writer value.

ghci> fst $ runWriter $ filterM keepSmall [9,1,5,2,10,3]
[1,2,3]

Examining the result of the resulting Writer value, we see that everything is in order. Now, let's print the log and see what we got:

ghci> mapM_ putStrLn $ snd $ runWriter $ filterM keepSmall [9,1,5,2,10,3]
9 is too large, throwing it away
Keeping 1
5 is too large, throwing it away
Keeping 2
10 is too large, throwing it away
Keeping 3

Miran Lipovača

Awesome. So just by providing a monadic predicate to filterM, we
were able to filter a list while taking advantage of the monadic
context that we used.

filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]

Here is the signature of
filterM again, for reference.

mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
Map each element of a structure to a monadic action, evaluate these actions from left
to right, and ignore the results. For a version that doesn't ignore the results see mapM.

mapM_ is a variant of
the mapM function
that we saw earlier.



The next slide shows the Scala
equivalent of the keepSmall function,
together with some tests.



def keepSmall(x: Int): Writer[[String],Boolean] =
if x < 4
then

for
_ <- Writer.tell(List("Keeping " + x))

yield true
else

for
_ <- Writer.tell(List(x + " is too large, throwing it away"))

yield false

keepSmall :: Int -> Writer [String] Bool
keepSmall x  

| x < 4 = do
tell ["Keeping " ++ show x]  
return True

| otherwise = do
tell [show x ++ " is too large, throwing it away"]  
return False

(assertEqual "keepSmall test 1" 
(keepSmall 2) 
(writer (True, ["Keeping 2"])))

(assertEqual "keepSmall test 2" 
(keepSmall 5) 
(writer (False, ["5 is too large, throwing it away"])))

(assertEqual "keepSmall test 3" 
(runWriter (keepSmall 2)) 
(True, ["Keeping 2"]))

(assertEqual "keepSmall test 4" 
(runWriter (keepSmall 5)) 
(False, ["5 is too large, throwing it away"]))

(assertEqual "keepSmall test 5" 
(fst (runWriter (keepSmall 2)))
True)

assert(keepSmall(2)
== 
Writer(List("Keeping 2"),true))

assert(keepSmall(5) 
== 
Writer(List("5 is too large, throwing it away"),false))

assert(keepSmall(2).run
== 
(List("Keeping 2"),true))

assert(keepSmall(5).run
== 
(List("5 is too large, throwing it away"),false))

assert(keepSmall(2).value
== 
true)

import Control.Monad.Writer
import cats.data.Writer
import cats.instances._ Cats



Now let’s look at the Scala equivalent of passing the keepSmall function to filterM.

While the Scala Cats library doesn’t provide filterM, which operates on monads, it
provides filterA, which operates on applicatives, and is a generalization of filterM.

filterA :: Applicative f => (a -> f Bool) -> t a -> f (t a)
rename

filterA :: Applicative g => (a -> g Bool) -> f a -> g (f a)

Applicative G g

function parameter A ⇒ G[Boolean] a -> g Bool
list-like parameter F[A] f a

result G[F[A]] g (f a) 
See the slide after next for more on the bottom example.

Cats



assert(
List(9,1,5,2,10,3).filterA(keepSmall).value
== 
List(1,2,3))

assertEqual 
"keepSmall test 6" 
(fst (runWriter (filterM keepSmall [9,1,5,2,10,3]))) 
[1,2,3])

assertEqual 
"keepSmall test 7" 
(fst (runWriter (listen (filterM keepSmall [9,1,5,2,10,3])))) 
([1,2,3],["9 is too large, throwing it away",

"Keeping 1",
"5 is too large, throwing it away",
"Keeping 2",
"10 is too large, throwing it away",
"Keeping 3"])

assert(
List(9,1,5,2,10,3).filterA(keepSmall).listen.value
==
(List(1,2,3),List("9 is too large, throwing it away",

"Keeping 1",
"5 is too large, throwing it away",
"Keeping 2",
"10 is too large, throwing it away",
"Keeping 3")))

filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]

def filterA[G[_], A](fa: F[A])(f: (A) ⇒ G[Boolean])(implicit G: Applicative[G]): G[F[A]]

assert( Vector(9,1,5,2,10,3).filterA(keepSmall).value == List(1,2,3))

assert( Vector(9,1,5,2,10,3).filterA(keepSmall).listen.value ==
(Vector(1,2,3),List("9 is too large, throwing it away",
"Keeping 1",
"5 is too large, throwing it away",
"Keeping 2",
"10 is too large, throwing it away",
"Keeping 3")))

assert( Option(3).filterA(keepSmall).listen.value ==
(Option(3),List("Keeping 3")))

assert( Option(9).filterA(keepSmall).listen.value ==
(None,List("9 is too large, throwing it away")))

F = Vector
F = Option

F = List

Note that while filterM operates on a
list, filterA operates on any list-like F.

Cats

Cats

Cats
Cats

F = List



As promised, the next two slides show a
nice and simple example of using the
filterM function on the List monad.

@philip_schwarz



A very cool Haskell trick is using filterM to get the powerset of a list (if we think of them as sets for now). The powerset of
some set is a set of all subsets of that set. So if we have a set like [1,2,3], its powerset would include the following sets:

[1,2,3]
[1,2]
[1,3]
[1]
[2,3]
[2]
[3]
[]

In other words, getting a powerset is like getting all the combinations of keeping and throwing out elements from a
set. [2,3] is like the original set, only we excluded the number 1. To make a function that returns a powerset of some list,
we're going to rely on non-determinism. We take the list [1,2,3] and then look at the first element, which is 1 and we ask
ourselves: should we keep it or drop it? Well, we'd like to do both actually. So we are going to filter a list and we'll use a
predicate that non-deterministically both keeps and drops every element from the list. Here's our powerset function:

powerset :: [a] -> [[a]]
powerset xs = filterM (\x -> [True, False]) xs

Wait, that's it? Yup. We choose to drop and keep every element, regardless of what that element is. We have a non-
deterministic predicate, so the resulting list will also be a non-deterministic value and will thus be a list of lists. Let's give
this a go:

ghci> powerset [1,2,3]
[[1,2,3],[1,2],[1,3],[1],[2,3],[2],[3],[]]

This takes a bit of thinking to wrap your head around, but if you just consider lists as non-deterministic values that don't
know what to be so they just decide to be everything at once, it's a bit easier.

Miran Lipovača



A monadic version of the filter function on lists is defined by generalizing its type and
definition in a similar manner to mapM:

filterM :: Monad m => (a -> m Bool) -> [a] -> m [a] 
filterM p []     = return [] 
filterM p (x:xs) = do b  <- p x 

ys <- filterM p xs 
return (if b then x:ys else ys)

For example, in the case of the list monad, using filterM provides a particularly concise
means of computing the powerset of a list, which is given by all possible ways of
including or excluding each element of the list:

> filterM (\x -> [True,False]) [1,2,3]
[[1,2,3],[1,2],[1,3],[1],[2,3],[2],[3],[]]

Graham Hutton
@haskellhutt

mapM :: Monad m => (a -> m b) -> [a] -> m [b] 
mapM f []     = return [] 
mapM f (x:xs) = do y  <- f x 

ys <- mapM f xs 
return (y:ys)



After familiarising (or reacquainting)
ourselves with mapM and filterM, it is
finally time to look at foldM.



If you could do with an
introduction to (or refresher
on) folding, then maybe have
a look at one or more of the
first three decks in this series.



foldM

The monadic counterpart to foldl is foldM. If you remember your folds from the folds section, you know that foldl takes a
binary function, a starting accumulator and a list to fold up and then folds it from the left into a single value by using the
binary function. foldM does the same thing, except it takes a binary function that produces a monadic value and folds the
list up with that. Unsurprisingly, the resulting value is also monadic. The type of foldl is this:

foldl :: (a -> b -> a) -> a -> [b] -> a

Whereas foldM has the following type:

foldM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a

The value that the binary function returns is monadic and so the result of the whole fold is monadic as well. Let's sum a list 
of numbers with a fold:

ghci> foldl (\acc x -> acc + x) 0 [2,8,3,1]
14

The starting accumulator is 0 and then 2 gets added to the accumulator, resulting in a new accumulator that has a value
of 2. 8 gets added to this accumulator resulting in an accumulator of 10 and so on and when we reach the end, the final
accumulator is the result.

Now what if we wanted to sum a list of numbers but with the added condition that if any number is greater than 9 in the
list, the whole thing fails? It would make sense to use a binary function that checks if the current number is greater
than 9 and if it is, fails, and if it isn't, continues on its merry way. Because of this added possibility of failure, let's make our
binary function return a Maybe accumulator instead of a normal one.

Miran Lipovača



Here's the binary function:

binSmalls :: Int -> Int -> Maybe Int
binSmalls acc x

| x > 9 = Nothing
| otherwise = Just (acc + x)

Because our binary function is now a monadic function, we can't use it with the normal foldl, but we have to use foldM. 
Here goes:

ghci> foldM binSmalls 0 [2,8,3,1]
Just 14

ghci> foldM binSmalls 0 [2,11,3,1]
Nothing

Excellent! Because one number in the list was greater than 9, the whole thing resulted in a Nothing. Folding with a binary
function that returns a Writer value is cool as well because then you log whatever you want as your fold goes along its way.

import cats.syntax.foldable._
assert(  List(2,8,3,1).foldM(0)(binSmalls) == Some(14) )
assert( List(2,11,3,1).foldM(0)(binSmalls) == None )

def binSmalls(acc: Int, x: Int): Option[Int] = x match
case n if n > 9 => None
case otherwise  => Some(acc + x)

def binSmalls(acc: Int, x: Int): Option[Int] = 
Option.unless(x > 9)(acc + x)

alternatively

Here is the Scala equivalent of
the above example using Cats. Cats



While that example of using foldM with a binary function that returns an optional value is useful,
things get a bit harder to understand when the binary function returns a list of values.

Since the way that we are going to solve the N-Queens combinatorial problem using foldM is by
passing the latter a binary function returning a list of values, in upcoming slides we are going to look at
a number of examples that do just that, in order to strengthen our understanding of the foldM function.

Before we do that though, let’s take another look at the definition of foldM.

@philip_schwarz



If we look back at Martin Lipovača’s definition of the foldM function, we see that it doesn’t explain much. Rather, it is his
example that helps a bit to understand how foldM works.

The nice thing about the official definition of foldM (on the next slide) is that while on the one hand it explains even less, on
the other hand, it is accompanied by a very helpful equivalence that gives us a very concrete way of understanding what
foldM does. We’ll be reminding ourselves of this equivalence a few times in upcoming slides.

By the way: while the signature of the foldM function explained by Martin Lipovača operates exclusively on lists

foldM :: (Monad m) => (b -> a -> m b) -> b -> [a] -> m b

the definition of foldM on the next slide is more generic and operates on any Foldable:

foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b

Miran Lipovača

The monadic counterpart to foldl is foldM…

foldl takes a binary function, a starting accumulator and a
list to fold up and then folds it from the left into a single
value by using the binary function.

foldM does the same thing, except it takes a binary
function that produces a monadic value and folds the list
up with that.

Unsurprisingly, the resulting value is also monadic.

foldM f a1 [x1, x2, ..., xm] 
== 
do

a2 <- f a1 x1
a3 <- f a2 x2
... 
f am xm



https://hackage.haskell.org/package/base-4.15.0.0/docs/Control-Monad.html

https://hackage.haskell.org/package/base-4.15.0.0/docs/Control-Monad.html


As planned, we now turn to examples
of folding a list using foldM with a
binary function that returns a list.



Invocation Result Result length
foldM (\_ -> \_ -> [0,0]) 9 [] [9] 2^0=1
foldM (\_ -> \_ -> [0,0]) 9 [1] [0,0] 2^1=2
foldM (\_ -> \_ -> [0,0]) 9 [1,2] [0,0,0,0] 2^2=4
foldM (\_ -> \_ -> [0,0]) 9 [1,2,3] [0,0,0,0,0,0,0,0] 2^3=8
foldM (\_ -> \_ -> [0,0]) 9 [1,2,3,4] [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 2^4=16 

If foldM is applied to 
• a function returning a list of length m
• an initial accumulator z
• a list of length n

Then foldM returns a list of length m ^ n

e.g. (foldM (\_ -> \_ -> [0,0]) 9 [1,2,3]) ⟹ [0,0,0,0,0,0,0,0]
m=2   z n=3         m^n = 2^3 = 8

If foldM is applied to 
• no matter which function
• an initial accumulator z
• an empty list (i.e. a list with length n=0)

Then foldM returns list [z].
z n=0 z

e.g. (foldM (\_ -> \_ -> [0,0]) 9 []) ⟹ [9]

> 
:{ 

let f = (\_ -> \_ -> [0,0])
[x1,x2,x3] = [1,2,3]
a1 = 9

in do
a2 <- f a1 x1
a3 <- f a2 x2
f a3 x3 

:}
[0,0,0,0,0,0,0,0]

As shown in the example below, the length of the list returned by foldM is a function of the lengths of both
its list parameter and the list returned by its function parameter..

In this first example, we deliberately use a binary function that ignores both its parameters, to stress the
point that the above property holds regardless of the particular values contained in the lists.



[0,0]

[0,0]

[0,0]

[0,0][0,0]

[0,0]

[0,0][0,0]

[0,0]

[0,0]

[0,0][0,0]

[0,0]

[0,0][0,0]

Invocation Result Result length
foldM (\_ -> \_ -> [0,0]) 9 [] [9] 2^0=1
foldM (\_ -> \_ -> [0,0]) 9 [1] [0,0] 2^1=2
foldM (\_ -> \_ -> [0,0]) 9 [1,2] [0,0,0,0] 2^2=4
foldM (\_ -> \_ -> [0,0]) 9 [1,2,3] [0,0,0,0,0,0,0,0] 2^3=8
foldM (\_ -> \_ -> [0,0]) 9 [1,2,3,4] [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 2^4=16 

Same example as on the previous slide, but with a diagram that helps us
understand how foldM builds its result when its list parameter is non-empty.

[0,0,0,0,0,0,0,0]

[0,0,0,0]

[0,0]

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

@philip_schwarz



Invocation Result                                         Result length
foldM (\acc x -> [acc + x, acc - x]) 0 [] [0]                   2^0=1 
foldM (\acc x -> [acc + x, acc - x]) 0 [1] [1,-1]                2^1=2
foldM (\acc x -> [acc + x, acc - x]) 0 [1,2] [3,-1,1,-3]           2^2=4 
foldM (\acc x -> [acc + x, acc - x]) 0 [1,2,3] [6,0,2,-4,4,-2,0,-6]  2^3=8 

> 
:{ 

let f = \acc x -> [acc + x, acc - x]
[x1,x2,x3] = [1,2,3]
a1 = 0

in do
a2 <- f a1 x1
a3 <- f a2 x2
f a3 x3 

:}
[6,0,2,-4,4,-2,0,-6]

0

1 -1

+1 -1

-13 -31

06 -42 -24 -60

+2 -2 +2 -2

+3 -3 +3 -3 +3 -3+3 -3

[6,0,2,-4,4,-2,0,-6]

[3,-1,1,-3]

[1,-1]

[0]

In this second example we change the binary function that we pass to foldM so that rather than ignoring its two parameters (the accumulator acc
and the current list element x) and always returning the same two-element list [0,0], the function now returns a two-element list containing (a)
the result of adding the current element to the accumulator and (b) the result of subtracting the current element from the accumulator.



Invocation Result Result length
foldM (\acc x -> [x:acc,acc]) [] []       [[]] 2^0=1
foldM (\acc x -> [x:acc,acc]) [] [1]      [[1],[]] 2^1=2
foldM (\acc x -> [x:acc,acc]) [] [1,2]    [[2,1],[1],[2],[]] 2^2=4
foldM (\acc x -> [x:acc,acc]) [] [1,2,3]  [[3,2,1],[2,1],[3,1],[1],[3,2],[2],[3],[]] 2^3=8 

> 
:{ 

let f = \acc x -> [x:acc,acc]
[x1,x2,x3] = [1,2,3]
a1 = []

in do
a2 <- f a1 x1
a3 <- f a2 x2
f a3 x3 

:}
[[3,2,1],[2,1],[3,1],[1],[3,2],[2],[3],[]]

[]

[1] []

[2,1] [1] [2] []

[3,2,1] [2,1] [3,1] [1] [3,2] [2] [3] []

3: 3: 3: 3:

2: 2:

1:
[[]]

[[1],[]]

[[2,1],[1],[2],[]]

[[3,2,1],[2,1],[3,1],[1],[3,2],[2],[3],[]]

In this third example we change the binary function that we pass to foldM so that rather than
returning a two-element list containing (a) the result of adding the current element x to the
accumulator and (b) the result of subtracting x from the accumulator, it returns a two element list
containing (a) the result of adding x to the front of the accumulator list and (b) the accumulator list.

As a result, foldM computes the powerset of its list parameter.

powerset :: [a] -> [[a]]
powerset xs = filterM (\x -> [True,False]) xs

> powerset [1,2,3] 
[[1,2,3],[1,2],[1,3],[1],[2,3],[2],[3],[]]

By the way, here on
the right is a reminder
of how we computed a
powerset earlier on.



assert(
List(1,2,3,4).foldM(9)((_,_) => List(0, 0))
==
List(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

assert(
List(1,2,3).foldM(0)((acc,x) => List(acc+x, acc-x))
==
List(6,0,2,-4,4,-2,0,-6))

assert(
List(1,2,3).foldM(List.empty)((acc,x) => List(x::acc,acc))
==
List(List(3,2,1),List(2,1),List(3,1),List(1),List(3,2),List(2),List(3),List()))

assertEqual
"foldM test 1" 
(foldM (\_ _ -> [0,0]) 9 [1,2,3,4])
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

assertEqual
"foldM test 2" 
(foldM (\acc x -> [acc+x,acc-x]) 0 [1,2,3]) 
[6,0,2,-4,4,-2,0,-6]

assertEqual
"foldM test 3" 
(foldM (\acc x -> [x:acc,acc])[] [1,2,3])
[[3,2,1],[2,1],[3,1],[1],[3,2],[2],[3],[]]

import cats.syntax.foldable._import Control.Monad

Here are some tests for the three foldM
examples that we have just gone through.

Cats

In the rest of this deck we’ll refer to the function passed to foldM as an updater function. The idea
comes from Sergei Winitzki, who gives that name to the function passed to foldLeft. See the next
slide for more details (if you are in a hurry then just see its first three lines and its last two lines).



@tailrec def leftFold[A, B](s: Seq[A], b: B, g: (B, A) => B): B =
if (s.isEmpty) b
else leftFold(s.tail, g(b, s.head), g)

We call this function a “left fold” because it aggregates (or “folds”) the sequence starting from the leftmost
element.

In this way, we have defined a general method of computing any inductively defined aggregation function on
a sequence.

The function leftFold implements the logic of aggregation defined via mathematical induction.

Using leftFold, we can write concise implementations of methods such as .sum, .max, and many other
aggregation functions.

The method leftFold already contains all the code necessary to set up the base case and the inductive step.

The programmer just needs to specify the expressions for the initial value b and for the updater function g.

Sergei Winitzki
sergei-winitzki-11a6431



Now that we have gained some familiarity with the foldM function, let’s begin to see
how it can be used to solve the N-Queens combinatorial problem.

Let’s refer to the solution that uses foldM as the folding queens solution.

The folding queens solution needs to generate the permutations of a list of integers.

Permutations

List

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

Permutations

1 2 3

List

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

Permutations

1 2 3

List

The number of permutations of a list of
length n is n!, the factorial of n.

e.g. the number of permutations of a list
of three elements is

3!		=		3	*	2	*	1		=		6
@philip_schwarz



update :: Eq a => ([a], [a]) -> p -> [([a], [a])]
update (permutation,choices) _ = [(choice:permutation, delete choice choices) | choice <- choices]

# Invocation Result
1 foldM (\_ _ -> [0,0])                 9 [1,2,3] [0,0,0,0,0,0,0,0]
2 foldM (\acc x -> [acc + x, acc - x])  0 [1,2,3] [6,0,2,-4,4,-2,0,-6]
3 foldM (\acc x -> [x:acc,acc])        [] [1,2,3] [[3,2,1],[2,1],[3,1],[1],[3,2],[2],[3],[]]

Invocation Result
foldM update ([],[1,2,3]) [1,2,3] [([3,2,1],[]),([2,3,1],[]),([3,1,2],[]),([1,3,2],[]),([2,1,3],[]),([1,2,3],[])]

Let’s take a look at the
updater functions that we
have seen so far in our
foldM usage examples.

Here are some of the characteristics of the above updater functions:
• The first updater function ignores both its parameters. It doesn’t really manage an accumulator and doesn’t care about the particular

elements that are in the input list. The role of the input list is purely to control the number of iterations, so the only thing that matters is it
length.

• The second and third updater functions use both of their parameters. They do manage the accumulator and they do care about the
particular elements that are in the input list, as they affect the final result.

• In all three updater functions, the accumulator is a single value, i.e. a number or a list.
• Since all three updater functions return a two-element list, the length of the list returned by folding an input list of length n is is 2^n.

• While this updater function does not ignore its first parameter, it does ignore its second one. While it does manage an accumulator, it
doesn’t care about the particular elements that are in the input list. The role of the input list is purely to control the number of iterations, so
the only thing that matters is it length.

• This updater function also has a more complex accumulator parameter which consists of a pair of values. The first accumulator value is a
partial permutation. The second accumulator value is a list of the input list elements that have not yet been chosen (picked) in the creation
of the partial permutation. Each remaining (not yet chosen) input list elements is chosen in turn to grow the partial permutation into a new,
more complete partial permutation by prefixing it with the chosen element, which is removed from the available choices.

• See below for a sample invocation of the updater function. See the next slide for more examples and a diagram clarifying how things work.

Now let’s take a look at an updater function that can be used to generate the permutations of a list.



(           ,   )(           ,   )(           ,   )(           ,   )(           ,   )(           ,   )

(        ,     )(        ,     )(        ,     )(        ,     )(        ,     )(        ,     )

[1,2,3][2,1,3][1,3,2][3,1,2][2,3,1]

[2,3][1,3][3,2][1,2][3,1][2,1] [3]

[1] [2,3] [3] [1,2](     ,        )(     ,        )

[] [1,2,3](   ,            )

[2] [1,3](     ,        )

[3] [1] [2] [1][2]

[3,2,1] [] [] [] [] [][]

Invocation Result
foldM update ([],[1,2,3]) []      [([],[1,2,3])]
foldM update ([],[1,2,3]) [1] [([1],[2,3]),  ([2],[1,3]),  ([3],[1,2])]
foldM update ([],[1,2,3]) [1,2]   [([2,1],[3]),  ([3,1],[2]),  ([1,2],[3]),  ([3,2],[1]),  ([1,3],[2]),  ([2,3],[1])]
foldM update ([],[1,2,3]) [1,2,3] [([3,2,1],[]), ([2,3,1],[]), ([3,1,2],[]), ([1,3,2],[]), ([2,1,3],[]), ([1,2,3],[])]

choose 1 choose 2 choose 3

choose 2 choose 3 choose 1 choose 3 choose 1 choose 2

choose 3 choose 2 choose 3 choose 1 choose 2 choose 1

update :: Eq a => ([a], [a]) -> p -> [([a], [a])]
update (permutation,choices) _ = [(choice:permutation, delete choice choices) | choice <- choices]

permute :: Eq a => [a] -> [([a], [a])]
permute xs = foldM update ([],xs) xs

permutations :: (Eq a) => [a] -> [[a]]
permutations xs = map fst (permute xs)

The result of foldM is not exactly a list of
permutations, but rather, a list of a pair of a
permutation and the empty list.

Let’s defined a couple of helper functions to
make it more convenient to get hold of the
desired list of permutations.

> permutations []
[[]]

> permutations [1]
[[1]]

> permutations [1,2]
[[2,1],[1,2]]

> permutations [1,2,3]
[[3,2,1],[2,3,1],[3,1,2],[1,3,2],[2,1,3],[1,2,3]]

> permutations [1,2,3,4]
[[4,3,2,1],[3,4,2,1],[4,2,3,1],[2,4,3,1],[3,2,4,1]
,[2,3,4,1],[4,3,1,2],[3,4,1,2],[4,1,3,2],[1,4,3,2]
,[3,1,4,2],[1,3,4,2],[4,2,1,3],[2,4,1,3],[4,1,2,3]
,[1,4,2,3],[2,1,4,3],[1,2,4,3],[3,2,1,4],[2,3,1,4]
,[3,1,2,4],[1,3,2,4],[2,1,3,4],[1,2,3,4]]



update (permutation,choices) _ = [(choice:permutation, delete choice choices) | choice <- choices]

oneMoreQueen (queens, emptyColumns) _ = [(queen:queens, delete queen emptyColumns) | queen <- emptyColumns]

oneMoreQueen (queens, emptyColumns) _ = [(queen:queens, delete queen emptyColumns) | queen <- emptyColumns, safe queen]

We want to use foldM to solve the N-Queens combinatorial problem, so let’s rename the
variables of the update function to reflect the fact that the permutations that we want to
generate are the possible lists of positions (columns) of 𝑛 queens on an 𝑛×𝑛 board.

Not all permutations are valid though: we need to filter out unsafe permutations.

Just like we did in Part 1, the way we are going to determine if a permutation is safe is by using a safe function.

Let’s add to oneMoreQueen a filter that invokes the safe function.

safe queen queens = all safe (zipWithRows queens) where
safe (r,c) = c /= col && not (onDiagonal col row c r)
row = length queens
col = queen

onDiagonal row column otherRow otherColumn =
abs (row - otherRow) == abs (column - otherColumn)

zipWithRows queens = zip rowNumbers queens
where 

rowCount = length queens
rowNumbers = [rowCount-1,rowCount-2..0]safe x = and [x /= c + n && x /= c - n | (n,c) <- zip [1..] queens]

The safe function that we are going to use this time round is much more
concise that the one that we used in Part 1 (reproduced here on the right).

Since the safe function is not the focus of Part 4, and since we have already
defined one such function in Part 1, we are not going to spend any time
explaining it, except for saying that it takes as parameter the candidate queen
position 𝑥 and relies both on queens (the board to which we want to add the
next queen), and on 𝑛, the size of the board.



Earlier we tried out our update function as follows

Invocation Result
foldM update ([],[1,2,3]) [1,2,3] [([3,2,1],[]), ([2,3,1],[]), ([3,1,2],[]), ([1,3,2],[]), ([2,1,3],[]), ([1,2,3],[])]

The queens function that we need to implement is this:

queens :: Int -> [[Int]]
queens n = ???

Given that we have renamed update to oneMoreQueen, here is how we need to call foldM:

foldM oneMoreQueen ([],[1..n]) [1..n]

We saw earlier that in order to extract the list of permutations/queens from the result of
update/oneMoreQueen, we need to map over the result list a function that takes the first
element of each pair in the list.

So here is how we implement queens:

queens :: Int -> [[Int]]
queens n = map fst (foldM oneMoreQueen ([],[1..n]) [1..n])

On the next slide we add oneMoreQueen and safe to queens and see the final result.

@philip_schwarz



queens :: Int -> [[Int]]
queens n = map fst (foldM oneMoreQueen ([],[1..n]) [1..n]) where 
oneMoreQueen (queens, emptyColumns) _ = [(queen:queens, delete queen emptyColumns) | queen <- emptyColumns, safe queen]  where
safe x = and [x /= c + n && x /= c - n | (n,c) <- zip [1..] queens]

> queens 8
[[4,2,7,3,6,8,5,1],[5,2,4,7,3,8,6,1],[3,5,2,8,6,4,7,1],[3,6,4,2,8,5,7,1],[5,7,1,3,8,6,4,2]
,[4,6,8,3,1,7,5,2],[3,6,8,1,4,7,5,2],[5,3,8,4,7,1,6,2],[5,7,4,1,3,8,6,2],[4,1,5,8,6,3,7,2]
,[3,6,4,1,8,5,7,2],[4,7,5,3,1,6,8,2],[6,4,2,8,5,7,1,3],[6,4,7,1,8,2,5,3],[1,7,4,6,8,2,5,3]
,[6,8,2,4,1,7,5,3],[6,2,7,1,4,8,5,3],[4,7,1,8,5,2,6,3],[5,8,4,1,7,2,6,3],[4,8,1,5,7,2,6,3]
,[2,7,5,8,1,4,6,3],[1,7,5,8,2,4,6,3],[2,5,7,4,1,8,6,3],[4,2,7,5,1,8,6,3],[5,7,1,4,2,8,6,3]
,[6,4,1,5,8,2,7,3],[5,1,4,6,8,2,7,3],[5,2,6,1,7,4,8,3],[6,3,7,2,8,5,1,4],[2,7,3,6,8,5,1,4]
,[7,3,1,6,8,5,2,4],[5,1,8,6,3,7,2,4],[1,5,8,6,3,7,2,4],[3,6,8,1,5,7,2,4],[6,3,1,7,5,8,2,4]
,[7,5,3,1,6,8,2,4],[7,3,8,2,5,1,6,4],[5,3,1,7,2,8,6,4],[2,5,7,1,3,8,6,4],[3,6,2,5,8,1,7,4]
,[6,1,5,2,8,3,7,4],[8,3,1,6,2,5,7,4],[2,8,6,1,3,5,7,4],[5,7,2,6,3,1,8,4],[3,6,2,7,5,1,8,4]
,[6,2,7,1,3,5,8,4],[3,7,2,8,6,4,1,5],[6,3,7,2,4,8,1,5],[4,2,7,3,6,8,1,5],[7,1,3,8,6,4,2,5]
,[1,6,8,3,7,4,2,5],[3,8,4,7,1,6,2,5],[6,3,7,4,1,8,2,5],[7,4,2,8,6,1,3,5],[4,6,8,2,7,1,3,5]
,[2,6,1,7,4,8,3,5],[2,4,6,8,3,1,7,5],[3,6,8,2,4,1,7,5],[6,3,1,8,4,2,7,5],[8,4,1,3,6,2,7,5]
,[4,8,1,3,6,2,7,5],[2,6,8,3,1,4,7,5],[7,2,6,3,1,4,8,5],[3,6,2,7,1,4,8,5],[4,7,3,8,2,5,1,6]
,[4,8,5,3,1,7,2,6],[3,5,8,4,1,7,2,6],[4,2,8,5,7,1,3,6],[5,7,2,4,8,1,3,6],[7,4,2,5,8,1,3,6]
,[8,2,4,1,7,5,3,6],[7,2,4,1,8,5,3,6],[5,1,8,4,2,7,3,6],[4,1,5,8,2,7,3,6],[5,2,8,1,4,7,3,6]
,[3,7,2,8,5,1,4,6],[3,1,7,5,8,2,4,6],[8,2,5,3,1,7,4,6],[3,5,2,8,1,7,4,6],[3,5,7,1,4,2,8,6]
,[5,2,4,6,8,3,1,7],[6,3,5,8,1,4,2,7],[5,8,4,1,3,6,2,7],[4,2,5,8,6,1,3,7],[4,6,1,5,2,8,3,7]
,[6,3,1,8,5,2,4,7],[5,3,1,6,8,2,4,7],[4,2,8,6,1,3,5,7],[6,3,5,7,1,4,2,8],[6,4,7,1,3,5,2,8]
,[4,7,5,2,6,1,3,8],[5,7,2,6,3,1,4,8]]

> length (queens 8)
92

Here is the queens function that we have been building up to.

On the next slide we compare
the above function with how it
looks on the Rosetta Code site
where it originates from.



https://rosettacode.org/wiki/N-queens_problem

-- given n, "queens n" solves the n-queens problem, returning a list of all the
-- safe arrangements. each solution is a list of the columns where the queens are
-- located for each row
queens :: Int -> [[Int]]
queens n = map fst $ foldM oneMoreQueen ([],[1..n]) [1..n]  where

-- foldM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a
-- foldM folds (from left to right) in the list monad, which is convenient for 
-- "nondeterminstically" finding "all possible solutions" of something. the 
-- initial value [] corresponds to the only safe arrangement of queens in 0 rows

-- given a safe arrangement y of queens in the first i rows, and a list of 
-- possible choices, "oneMoreQueen y _" returns a list of all the safe 
-- arrangements of queens in the first (i+1) rows along with remaining choices 
oneMoreQueen (y,d) _ = [(x:y, delete x d) | x <- d, safe x]  where

-- "safe x" tests whether a queen at column x is safe from previous queens
safe x = and [x /= c + n && x /= c - n | (n,c) <- zip [1..] y]

Understanding the code on the left is
straightforward now that we have a firm
understanding of how foldM works, although
renaming x, y and d the way we did above
eases comprehension imho.

Note that while the recursive implementation
of queens from Part 1 (shown below), blindly
tries to place the next queen in every column
1..n, the implementation of queens that uses
foldM only tries to place the queen in columns
which are known not to be already occupied.

queens n = placeQueens n where
placeQueens 0 = [[]]
placeQueens k = [queen:queens | queens <- placeQueens(k-1), 

queen <- [1..n], 
safe queen queens]

safe queen queens = all safe (zipWithRows queens) 
where

safe (r,c) = c /= col && not (onDiagonal col row c r)
row = length queens
col = queen

onDiagonal row column otherRow otherColumn =
abs (row - otherRow) 
== 
abs (column - otherColumn)

zipWithRows queens = zip rowNumbers queens 
where 

rowCount = length queens
rowNumbers = [rowCount-1,rowCount-2..0]

queens :: Int -> [[Int]]
queens n = map fst (foldM oneMoreQueen ([],[1..n]) [1..n]) where 

oneMoreQueen (safeQueens,emptyColumns) _ = [(queen:safeQueens, delete queen emptyColumns) | queen <- emptyColumns, safe queen] 
where safe x = and [x /= c + n && x /= c - n | (n,c) <- zip [1..] safeQueens]

Iterative
Solution

Recursive
Solution

https://rosettacode.org/wiki/N-queens_problem


queens :: Int -> [[Int]]
queens n = map fst (foldM oneMoreQueen ([],[1..n]) [1..n]) where 
oneMoreQueen (safeQueens,emptyColumns) _ = [(queen:safeQueens, delete queen emptyColumns) | queen <- emptyColumns, safe queen] 
where safe x = and [x /= c + n && x /= c - n | (n,c) <- zip [1..] safeQueens]

def queens(n: Int): List[List[Int]] =
def oneMoreQueen(acc:(List[Int],List[Int]),x:Int): List[(List[Int],List[Int])] = acc match { case (queens, emptyColumns) =>
def safe(x:Int): Boolean = { for (c,n) <- queens zip (1 to n) yield x != c + n && x != c – n } forall identity
for queen <- emptyColumns if safe(queen) yield (queen::queens, emptyColumns diff List(queen)) }

List.range(1, n + 1).foldM(Nil, List.range(1, n + 1))(oneMoreQueen) map (_.head)

Let’s translate our foldM-based N-Queens program from Haskell to Scala with Cats.

See the next slide for the same code but spread over several lines, to aid comprehension.

import cats.syntax.foldable._ Cats

import Control.Monad



def queens(n: Int): List[List[Int]] =
def oneMoreQueen(acc:(List[Int],List[Int]),x:Int): List[(List[Int],List[Int])] = 

acc match { case (queens, emptyColumns) =>
def safe(x:Int): Boolean = { 

for (c,n) <- queens zip (1 to n) 
yield x != c + n && x != c – n 

} forall identity
for

queen <- emptyColumns 
if safe(queen) 

yield (queen::queens, emptyColumns diff List(queen)) }
List.range(1, n + 1).foldM(Nil, List.range(1, n + 1))(oneMoreQueen) map (_.head)

queens :: Int -> [[Int]]
queens n = map fst (foldM oneMoreQueen ([],[1..n]) [1..n]) where 

oneMoreQueen (safeQueens,emptyColumns) _ = 
[(queen:safeQueens, delete queen emptyColumns) | 

queen <- emptyColumns, 
safe queen] 

where safe x = and [x /= c + n && x /= c - n | 
(n,c) <- zip [1..] safeQueens]

import cats.syntax.foldable._ Cats

import Control.Monad



([],[1,2,3,4])

([1],[2,3,4])

([2],[1,3,4])

([3],[1,2,4])

([4],[1,2,3])

([2,1],[3,4])

([3,1],[2,4])

([4,1],[2,3])

([1,2],[3,4])

([3,2],[1,4])

([4,2],[1,3])

([1,3],[2,4])

([2,3],[1,4])

([4,3],[1,2])

([1,4],[2,3])

([2,4],[1,3])

([3,4],[1,2])

([3,2,1],[4])
([4,2,1],[3])
([2,3,1],[4])
([4,3,1],[2])
([2,4,1],[3])
([3,4,1],[2])
([3,1,2],[4])
([4,1,2],[3])
([1,3,2],[4])
([4,3,2],[1])
([1,4,2],[3])
([3,4,2],[1])

([2,1,3],[4])
([4,1,3],[2])
([1,2,3],[4])
([4,2,3],[1])
([1,4,2],[3])
([3,4,2],[1])
([2,1,4],[3])
([3,1,4],[2])
([1,2,4],[3])
([3,4,2],[1])
([3,2,4],[1])
([2,3,4],[1])

([4,3,2,1],[])
([3,4,2,1],[])
([4,2,3,1],[])
([2,4,3,1],[])
([3,2,4,1],[])
([2,3,4,1],[])
([4,3,1,2],[])
([3,4,1,2],[])
([4,1,3,2],[])
([1,4,3,2],[])
([3,1,4,2],[])
([1,3,4,2],[])

([4,2,1,3],[])
([2,4,1,3],[])
([4,1,2,3],[])
([1,4,2,3],[])
([2,1,4,3],[])
([1,2,4,3],[])
([3,2,1,4],[])
([2,3,1,4],[])
([3,1,2,4],[])
([1,3,2,4],[])
([2,1,3,4],[])
([1,2,3,4],[])

✅

✅

The leafs of the tree on the
right represent all the
possible permutation of 4
queens on a 4 x 4 board.

The only two solutions to
the 4-Queens Problem are
marked by a tick box and
accompanied by an image
of the corresponding board.

The next slide shows the
same tree after greying out
those portions that are not
part of the two success paths.



([],[1,2,3,4])

([1],[2,3,4])

([2],[1,3,4])

([3],[1,2,4])

([4],[1,2,3])

([2,1],[3,4])

([3,1],[2,4])

([4,1],[2,3])

([1,2],[3,4])

([3,2],[1,4])

([4,2],[1,3])

([1,3],[2,4])

([2,3],[1,4])

([4,3],[1,2])

([1,4],[2,3])

([2,4],[1,3])

([3,4],[1,2])

([3,2,1],[4])
([4,2,1],[3])
([2,3,1],[4])
([4,3,1],[2])
([2,4,1],[3])
([3,4,1],[2])
([3,1,2],[4])
([4,1,2],[3])
([1,3,2],[4])
([4,3,2],[1])
([1,4,2],[3])
([3,4,2],[1])

([2,1,3],[4])
([4,1,3],[2])
([1,2,3],[4])
([4,2,3],[1])
([1,4,2],[3])
([3,4,2],[1])
([2,1,4],[3])
([3,1,4],[2])
([1,2,4],[3])
([3,4,2],[1])
([3,2,4],[1])
([2,3,4],[1])

([4,3,2,1],[])
([3,4,2,1],[])
([4,2,3,1],[])
([2,4,3,1],[])
([3,2,4,1],[])
([2,3,4,1],[])
([4,3,1,2],[])
([3,4,1,2],[])
([4,1,3,2],[])
([1,4,3,2],[])
([3,1,4,2],[])
([1,3,4,2],[])

([4,2,1,3],[])
([2,4,1,3],[])
([4,1,2,3],[])
([1,4,2,3],[])
([2,1,4,3],[])
([1,2,4,3],[])
([3,2,1,4],[])
([2,3,1,4],[])
([3,1,2,4],[])
([1,3,2,4],[])
([2,1,3,4],[])
([1,2,3,4],[])

✅

✅



To conclude this slide deck, let’s create a tree which, rather than being greyed out in all
its portions that lead to a failed permutation, it is greyed out only in subtrees whose
root represents the failed attempt to add an unsafe queen to a board.

To help us work out which portions to grey out, we are going to take the accumulator
parameter of the Scala oneMoreQueen function and change its type from

List[Int]

to

Writer[List[String],List[Int]]

so that we can get oneMoreQueen to log events informing us when adding a queen to
a board is safe and when it isn’t.

@philip_schwarz



def queens(n: Int): List[List[Int]] =
def oneMoreQueen(acc:(List[Int],List[Int]),x:Int): List[(List[Int],List[Int])] = 
acc match { case (queens, emptyColumns) =>
def safe(x:Int): Boolean = { 
for (c,n) <- queens zip (1 to n) 
yield x != c + n && x != c – n 

} forall identity
for
queen <- emptyColumns 
if safe(queen) 

yield (queen::queens, emptyColumns diff List(queen)) }
List.range(1, n + 1).foldM(Nil, List.range(1, n + 1))(oneMoreQueen) map (_.head)

def queens(n: Int): List[Writer[List[String],List[Int]]] =
def oneMoreQueen(acc:(Writer[List[String],List[Int]],List[Int]),x:Int): List[(Writer[List[String],List[Int]],List[Int])] = 
acc match { case (queens, emptyColumns) =>

def safe(x:Int): Boolean = { 
for (c,n) <- queens.value zip (1 to n) 
yield x != c + n && x != c – n 

} forall identity
for
queen <- emptyColumns 
newQueens = queens.tell(List(s"\n$queen is ${if safe(queen) then "safe" else "unsafe" } for ${queens.value}"))
if safe(queen)

yield (newQueens map (queen::_), emptyColumns diff List(queen)) }
List.range(1, n + 1).foldM(Writer(List.empty[String],Nil), List.range(1, n + 1))(oneMoreQueen) map (_.head)

List[Int] [Writer[List[String],List[Int]]

Cats



As it stands, the modified oneMoreQueen function is not very useful because queens only returns boards that are solutions, and so the
logged events that accompany the solution boards simply tell us that all the queens added to the solution boards were safe to add.

assert(
queens(4).map(_.value) 
== 
List(
List(3, 1, 4, 2), 
List(2, 4, 1, 3)))

queens(4) map (_.listen.value) foreach println

(List(3, 1, 4, 2),List(
2 is safe for List(), 
4 is safe for List(2), 
1 is safe for List(4, 2), 
3 is safe for List(1, 4, 2)))
(List(2, 4, 1, 3),List(
3 is safe for List(), 
1 is safe for List(3), 
4 is safe for List(1, 3), 
2 is safe for List(4, 1, 3)))

In order to get oneMoreQueens to log information about queens that are unsafe to add to a board, we are going to comment out the guard
(constraint) that causes oneMoreQueens to backtrack whenever an attempt is made to add an unsafe queen.

if safe(queen)

The next slide shows the results that are returned by the queens function after doing that (with some spacing added to aid comprehension).



(List(4, 3, 2, 1),List(
1 is safe for List(), 
2 is unsafe for List(1), 
3 is unsafe for List(2, 1), 
4 is unsafe for List(3, 2, 1)))

(List(3, 4, 2, 1),List(
1 is safe for List(), 
2 is unsafe for List(1), 
4 is safe for List(2, 1), 
3 is unsafe for List(4, 2, 1)))

(List(4, 2, 3, 1),List(
1 is safe for List(), 
3 is safe for List(1), 
2 is unsafe for List(3, 1), 
4 is unsafe for List(2, 3, 1)))

(List(2, 4, 3, 1),List(
1 is safe for List(), 
3 is safe for List(1), 
4 is unsafe for List(3, 1), 
2 is safe for List(4, 3, 1)))

(List(3, 2, 4, 1),List(
1 is safe for List(), 
4 is safe for List(1), 
2 is safe for List(4, 1), 
3 is unsafe for List(2, 4, 1)))

(List(2, 3, 4, 1),List(
1 is safe for List(), 
4 is safe for List(1), 
3 is unsafe for List(4, 1), 
2 is unsafe for List(3, 4, 1)))

(List(4, 3, 1, 2),List(
2 is safe for List(), 
1 is unsafe for List(2), 
3 is safe for List(1, 2), 
4 is unsafe for List(3, 1, 2)))

(List(3, 4, 1, 2),List(
2 is safe for List(), 
1 is unsafe for List(2), 
4 is unsafe for List(1, 2), 
3 is unsafe for List(4, 1, 2)))

(List(4, 1, 3, 2),List(
2 is safe for List(), 
3 is unsafe for List(2), 
1 is safe for List(3, 2), 
4 is safe for List(1, 3, 2)))

(List(1, 4, 3, 2),List(
2 is safe for List(), 
3 is unsafe for List(2), 
4 is unsafe for List(3, 2), 
1 is unsafe for List(4, 3, 2)))

(List(3, 1, 4, 2),List(
2 is safe for List(), 
4 is safe for List(2), 
1 is safe for List(4, 2), 
3 is safe for List(1, 4, 2)))

(List(1, 3, 4, 2),List(
2 is safe for List(), 
4 is safe for List(2), 
3 is unsafe for List(4, 2), 
1 is safe for List(3, 4, 2)))

(List(4, 2, 1, 3),List(
3 is safe for List(), 
1 is safe for List(3), 
2 is unsafe for List(1, 3), 
4 is safe for List(2, 1, 3)))

(List(2, 4, 1, 3),List(
3 is safe for List(), 
1 is safe for List(3), 
4 is safe for List(1, 3), 
2 is safe for List(4, 1, 3)))

(List(4, 1, 2, 3),List(
3 is safe for List(), 
2 is unsafe for List(3), 
1 is unsafe for List(2, 3), 
4 is unsafe for List(1, 2, 3)))

(List(1, 4, 2, 3),List(
3 is safe for List(), 
2 is unsafe for List(3), 
4 is safe for List(2, 3), 
1 is safe for List(4, 2, 3)))

(List(2, 1, 4, 3),List(
3 is safe for List(), 
4 is unsafe for List(3), 
1 is unsafe for List(4, 3), 
2 is unsafe for List(1, 4, 3)))

(List(1, 2, 4, 3),List(
3 is safe for List(), 
4 is unsafe for List(3), 
2 is safe for List(4, 3), 
1 is unsafe for List(2, 4, 3)))

(List(3, 2, 1, 4),List(
4 is safe for List(), 
1 is safe for List(4), 
2 is unsafe for List(1, 4), 
3 is unsafe for List(2, 1, 4)))

(List(2, 3, 1, 4),List(
4 is safe for List(), 
1 is safe for List(4), 
3 is safe for List(1, 4), 
2 is unsafe for List(3, 1, 4)))

(List(3, 1, 2, 4),List(
4 is safe for List(), 
2 is safe for List(4), 
1 is unsafe for List(2, 4), 
3 is safe for List(1, 2, 4)))

(List(1, 3, 2, 4),List(
4 is safe for List(), 
2 is safe for List(4), 
3 is unsafe for List(2, 4), 
1 is unsafe for List(3, 2, 4)))

(List(2, 1, 3, 4),List(
4 is safe for List(), 
3 is unsafe for List(4), 
1 is safe for List(3, 4), 
2 is unsafe for List(1, 3, 4)))

(List(1, 2, 3, 4),List(
4 is safe for List(), 
3 is unsafe for List(4), 
2 is unsafe for List(3, 4), 
1 is unsafe for List(2, 3, 4)))

✅

✅



([],[1,2,3,4])

([1],[2,3,4])

([2],[1,3,4])

([3],[1,2,4])

([4],[1,2,3])

([2,1],[3,4])

([3,1],[2,4])

([4,1],[2,3])

([1,2],[3,4])

([3,2],[1,4])

([4,2],[1,3])

([1,3],[2,4])

([2,3],[1,4])

([4,3],[1,2])

([1,4],[2,3])

([2,4],[1,3])

([3,4],[1,2])

([3,2,1],[4])
([4,2,1],[3])
([2,3,1],[4])
([4,3,1],[2])
([2,4,1],[3])
([3,4,1],[2])
([3,1,2],[4])
([4,1,2],[3])
([1,3,2],[4])
([4,3,2],[1])
([1,4,2],[3])
([3,4,2],[1])

([2,1,3],[4])
([4,1,3],[2])
([1,2,3],[4])
([4,2,3],[1])
([1,4,2],[3])
([3,4,2],[1])
([2,1,4],[3])
([3,1,4],[2])
([1,2,4],[3])
([3,4,2],[1])
([3,2,4],[1])
([2,3,4],[1])

([4,3,2,1],[])
([3,4,2,1],[])
([4,2,3,1],[])
([2,4,3,1],[])
([3,2,4,1],[])
([2,3,4,1],[])
([4,3,1,2],[])
([3,4,1,2],[])
([4,1,3,2],[])
([1,4,3,2],[])
([3,1,4,2],[])
([1,3,4,2],[])

([4,2,1,3],[])
([2,4,1,3],[])
([4,1,2,3],[])
([1,4,2,3],[])
([2,1,4,3],[])
([1,2,4,3],[])
([3,2,1,4],[])
([2,3,1,4],[])
([3,1,2,4],[])
([1,3,2,4],[])
([2,1,3,4],[])
([1,2,3,4],[])

✅

✅

Armed with the information in
those logging events, we are now
able to update our tree so that
unsafe queens are highlighted in
red and the unfruitful paths
associated with to those unsafe
queen additions (paths normally
ignored by the queens function)
are greyed out.

@philip_schwarz



That’s all for Part 4.

I hope you found it useful.

See you in Part 5.


