N-Queens Combinatorial Problem

Polyglot FP for Fun and Profit — Haskell and Scala

See how feeding FP workhorses map and filter with monadic steroids turns them into the intriguing mapM and filterM

Graduate to foldM by learning how it behaves with the help of three simple yet instructive examples of its usage

Use the powers of foldM to generate all permutations of a collection with a simple one-liner

Exploit what you learned about foldM to solve the N-Queens Combinatorial Problem with an iterative approach rather than a recursive one

‘ond Edition

Graham Hutton
u @haskellhutt

Part 4
PS mapM
’ monadic mapping, filtering, folding - filterM
Cats fOIdM
Permutations (11,11,2,3])
.@@ choose chopse 2 choose 3
" 10O (111,12,3) (21,11,3) (131,[,2)
@ ‘ @ chMﬂse 3 choosmose 3 choose 1l choose 2
@@ || cus Gy @Ay G2m) @) (0
@ . @ ch+se 3 cho)use 2 Ch0,0SE 3 ChE{OSG 1 ch+se 2 cho}:se 1
@@ || B2un @3un GLAn @20 (2130 (1230

WHaskell 3Scala

Learn You a
Haskell for
Great Good!

A Beginner’s Guide

Miran Lipovaca

slides by . u@philip_schwarz (ee) slideshare https://www.slideshare.net/pjschwarz

Miran Lipovaca

https://www.slideshare.net/pjschwarz/natural-transformations

The plan for Part 4 of this series is to first take a quick look at the\
Haskell equivalent of the Scala intersperse and intercalate functions
we used in Part 3, and then to come up with an alternative way of
solving the N-Queens problem using the foldM function.

If on a first reading you want to get straight to the meat of this slide
deck then consider skipping the first seven slides. /

Here are the Scala intersperse and intercalate functions that we used in Part 3.

def intersperse[B >: A](sep: B): Iterator[B]

Inserts a separator value between each element.

scala.collection.decorators

IlteratorDecorator

final class IteratorDecorator[A] extends AnyVal

Enriches Iterator with additional methods.

Iterator(l, 2, 3).intersperse(@) === Iterator(1, 0, 2, 0, 3)
Lierator('a"; 'Bb'; "&").linhtersperse(’;") === Ttefator("@"s; """ "' %' &%)
Iterator('a').intersperse(',') === Iterator('a')
Iterator().intersperse(',') === Iterator()
! Sca Ia The === operator in this pseudo code stands for 'is equivalent to'; both sides of the === give the same result.
sep the separator value.
returns The resulting iterator contains all elements from the source iterator, separated by the sep value.
Note Reuse: After calling this method, one should discard the iterator it was called on, and use
only the iterator that was returned. Using the old iterator is undefined, subject to change,
and may result in changes to the new iterator as well.

def 1intercalate[A] (fa: F[A], a: A)(implicit A: Monoid[A]): A

< Cc

@ typelevel.org/cats/api/cats/Foldable.html

! w Cats Intercalate/insert an element between the existing elements while folding.
scala> import cats.implicits._
_F-' scala> Foldable[List].intercalate(List("a","b","c"), "-")
w—‘@ res@: String = a-b-c
31 -'-‘Eia-Fl"f scala> Foldable[List].intercalate(List("a"), "-")
|+ i o resl: String = a
& scala> Foldable[List].intercalate(List.empty[String], "-")
w—"r" ! res2: String = "
scala> Foldable[Vector].intercalate(Vector(1,2,3), 1)

res3: Int = 8

u @philip_schwarz

In the next slide we see how Miran Lipovaca introduces
intersperse and intercalate functions that operate on lists.

> import Data.List

> :type intersperse
intersperse :: a -> [a] -> [a]

> :type intercalate
intercalate :: [a] -> [[a]] -> [a]

I

Data.List

The Data.List module is all about lists, obviously. It provides some very useful functions for dealing with them.

We've already met some of its functions (like map and filter) because the Prelude module exports some functions
from Data.List for convenience.

You don't have to import Data.List via a qualified import because it doesn't clash with any Prelude names except for those
that Prelude already steals from Data.List. Let's take a look at some of the functions that we haven't met before.

intersperse takes an element and a list and then puts that element in between each pair of elements in the list. Here's a
demonstration:

ghci> intersperse '.' "MONKEY"
"M.O.N.K.E.Y"

ghci> intersperse 0 [1,2,3,4,5,6]
[1,0,2,0,3,0,4,0,5,0,6]

intercalate takes a list of lists and a list. It then inserts that list in between all those lists and then flattens the result.

ghci> intercalate ["hey","there","guys"]

"hey there guys"

ghci> intercalate [0,0,0] [[1,2,3],[4,5,6],[7,8,9]]
[1,2,3,0,9,0,4,5,6,0,0,0,7,8,9]

Learn You a
Haskell for
Great Good!

A Beginner’s Guide

Miran Lipovaca

Miran Lipovaca

’ /When we used the Scala intersperse]

X function in Part 3, we used it with lists.

type Grid[A] = List[List[A]]

import scala.collection.decorators._
def insertPadding(images: Grid[Image]): Grid[Image] =
images map (_ intersperse paddingImage) intersperse List(paddingImage)

-
So the intersperse function that we saw on the

Z\ previous slide will do as the Haskell analogue.

As for the Scala Cats intercalate function that we used in Part 3, although we used it on
lists, it was much more generic in that it operated on a Foldable and so rather than simply
concatenating the lists contained in a list, it folded a Foldable using a Monoid.

import cats.Monoid
val beside = Monoid.instance[Image](Image.empty, _ beside _)
val above = Monoid.instance[Image](Image.empty, _ above _)

def combineWithPadding(images: Grid[Image], paddingImage: Image): Image

import cats.implicits._
images.map(row => row.intercalate(paddingImage) (beside))

.intercalate(paddingImage) (above)

ﬁ Where can we find the Haskell equivalent of this more generic version of intercalate?

{ In Programming in Haskell, Foldable is said to be located in Data.Foldable.

If | search Hoogle for intercalate, Data.Foldable does not show\

up. In Hoogle, the versions of intercalate that do show up,
either don’t involve both Foldable and Monoid, or are in what
appear to me to be ‘not-so-mainstream’ modules. y

| | set:stackage

HcogAe lintercalate v

intercalate :: (MonoFoldable mono, Monoid (Element mono)) => Element mono -> mono -> Element mono

mono-traversable Data.MonoTraversable.Unprefixed
#) Synonym for ointercalate

Z

intercalate :: Monoid w =>w -> [w] ->w

basic-prelude BasicPrelude
)

intercalate = mconcat .: intersperse

intercalate :: (Sequential ¢, Monoid (ltem c)) => Element ¢ -> ¢ -> Element c

foundation Foundation Foundation.Collection
intercalate xs xss is equivalentto (mconcat (intersperse xs xss)). Itinserts the list xs in between the lists in xss and concatenates the result.

intercalate :: Monoid a=>a->[a] > a

clay Clay.Property

In Haskell Programming, | see
an intercalate in use, but it is
the one that operates on lists.

B.17 Foldables

The declarations below are provided in the library Data.Fold-
able, which can be loaded by entering the following in GHCi or

at the start of a script:
import Data.Foldable

Class declaration:

class Foldable t where

foldMap :: Monoid b => (a -> b) ->
foldr :: (a=>Db=>D) =>b=>%t
fold :: Monoid a => t a -> a
foldl :: (a=>b->a)->a=>t
foldrli :: (a->a->a) ->ta-=->
foldlli :: (a->a->a) ->ta
toList : t a=-> [a)

null :: t a -> Bool

length : ta->1Int

elem :: Ega=>a->ta->Bool
maximum :: Ord a => t a -> a
minimum :: Ord a => t a -> a

sum :: Num a => t a -> a
product :: Num a => t a -> a

t
a

P

a->b
->b

=-> a

base-4.15.0.0: Basic libraries

Data.List

XHaskell

Programming

from first principles

Christopher Allen
Julie Moronuki

Pure functional programming

intercalate :: (Foldable f, Monoid m) =>m ->fm->m

without fear or frustration

bytestring-tree-builder ByteString.TreeBuilder

intercalate :: [a] -> [[a]] -> [a]

CHAPTER 14. TESTING

where
convertLine line = do
let morse = stringToMorse line
case morse of
(Just str)
=> putStrlLn
(intercalate " " str)
Nothing
-> do
putStrLn $§ "ERROR: "
exitFailure

++ line

Is monoid’s Data.Monoids a sensible library (the most sensible, even?) to depend on for intercalate?

Are there more sensible places where to find intercalate?

Why does monoid’s Data.Monoids not show up in Hoogle?

What is the status of monoid’s Data.Monoids? Is it not mainstream/recognized/official in some way’.y

intercalate :: (Monoid a, Foldable f) => a -> f a -> a

We can find an intercalate function based on Monoid and Foldable in monoid’s Data.Monoids. \)x

& C' @& hackage.haskell.org/package/monoid-0.1.9 [CHR 44 .
ME Hackage :: [Package] Search - Browse - What's new - Upload - Data'MonOIds
Documentation
monoid: Monoid type classes, designed in modular way, distinguish type family Momoids lst :: Constraint where ...

Monoid from Mempty and Semigroup. This design allows mempty
operation don't bring Semigroups related constraints until (<>) is used.

[apache, data, library] [Propose Tags]

Versions (¢ss]feq
0.1.8,0.1.9
Dependencies
Modules base (>=4.9 & & <4.13), containers, lens, mtl [details]
[Index] [Quick Jump] License
Data Apache-2.0

Data.Monoids Copyright

When Chris Martin (coauthor of Finding Success and
The Joy of Haskell Series) replied to my questions, |
that intersperse can be used to implement intercalate

H = Chris Martin
Fallure - % @chris__martin

realised
Replying to @philip_schwarz and @argumatronic

N

So here is an example of doing just that (using the Tree data structure
provided by https://hackage.haskell.org/package/containers-0.6.5.1)

7

\.

It would be really cool if the Data.Foldable had an
intercalate function. | don't know of any library | would

recommend. Instead of (intercalate x xs), | think |
would write the slightly lengthier expression (fold
(intersperse x (toList xs)))

vV V Vv

"a-b-c-d"

import Data.Foldable
import Data.List
import Data.Tree

> :type tolist
toList :: Foldable t => t a -> [a]

> :type fold
fold :: (Foldable t, Monoid m) => t m -> m

> :type intersperse
intersperse ::

a -> [a] -> [a]

> fold (intersperse "-" (toList (Node "a" [Node "b"™ [], Node "c" [], Node "d" []])))

data Tree a

Non-empty, possibly infinite, multi-way trees; also known as rose trees.
Constructors

Node

rootLabel :: a label value

subForest :: [Tree a] zero or more child trees

<{@¥>

The JOy
of HasKell

And here on the right we do the same thing, but
using the intercalate function provided by
monoid’s Data.Monoids.

> import Data.Monoids
> import Data.Tree
> :type intercalate

intercalate :: (Mempty a, Semigroup a, Foldable f) => a -> f a -> a

> intercalate "-" (Node "a" [Node "b" [], Node "c" [], Node "d" []])

lla_b_c_dll

After that quick look at the Haskell equivalent of the intersperse and intercalate
functions, let’'s now turn to the task of finding out how the N-Queens
combinatorial problem can be solved using the foldM function.

Before we start looking at the solution, we need to make sure that we fully
understand how the foldM function works.

Ed @philip_schwarz | 1 prepare for that, we are first going to get an understanding (or remind

ourselves) of how the mapM and filterM functions work.

On the next slide we look at how Graham Hutton explains the mapM function in

w Haskell book. /

Graham Hutton
u @haskellhutt

cond Edition

Generic functions

An important benefit of abstracting out the concept of monads is the ability to define generic functions that can be
used with any monad. A number of such functions are provided in the library Control.Monad. For example, a monadic
version of the map function on list can be defined as follows:

mapM :: Monad m => (a -> m b) -> [a] -> m [b] map :: (a -> b) -> [a] -> [b]
mapM f [] = return []
mapM f (x:xs) =doy <- f x
ys <- mapM f xs
return (y:ys)

Note that mapM has the same type as map, except that the argument function and the function itself now have
monadic return types. To illustrate how it might be used, consider a function that converts a digit character to its
numeric value, provided that the character is indeed a digit:

conv :: Char -> Maybe Int
conv ¢ | isDigit ¢ = Just (digitToInt c)
| otherwise = Nothing

(The functions isDigit and digitTolnt are provided in Data.Char.) Then applying mapM to the conv function gives a means
of converting a string of digits into the corresponding list of numeric values, which succeeds if every character in the
string is a digit, and fails otherwise:

> mapM conv "1234"
Just [1,2,3,4]

> mapM conv "123a"
Nothing

If you are not familiar with the traverse
function, then just skip the next slide.

that we have just seen is just a specialization of the traverse function.

Here is the mapM function again

mapM :: Monad m => (a -> m b) -> [a] -> m [b] e

Let’s do the same in Scala. Except that | can’t find mapM in Cats or Scalaz! It turns out, however, that the signature of the mapM function

mapM f [] =
mapM f (x:xs)

return []

doy <- f x
ys <- mapM f xs
return (y:ys)

And here is how a more generic version is defined in terms of traverse:

class (Functor t, Foldable t) => Traversable t where

traverse :: Applicative f => (a -> fb) -> t a -> f (t b)o—1

mapM :: Monad m => (a ->mb) ->t a ->m (t b) g

specialised for lists

Every monad is
also an applicative generalized for any

traversable

———e mapM = traverse

So here is the Haskell mapM example again, and next to it the Scala equivalent (using Cats)

conv :: Char -> Maybe Int

conv ¢ | isDigit ¢ = Just (digitToInt c) case _
| otherwise = Nothing case _ => None
> mapM conv "1234" assert(
Just [1,2,3,4]
> mapM conv "1233a”)x= assert(

Nothing == None)

def conv(c: Char): Option[Int] =
if c.isDigit => Some(c.asDigit)

"1234a".tolList.traverse(conv)

def conv(c: Char): Option[Int] =
Option.when(c.isDigit)(c.asDigit)

| alternatively

c match

"1234".tolList.traverse(conv)
== Some(List(1,2,3,4)))

! Cats

~

That was mapM.

Now let’s move on to filterM.

In the next slide we look at how Miran Lipovaca
explains the filterM function in his Haskell book)

filterM

The filter function is pretty much the bread of Haskell programming (map being the butter). It takes a predicate and a list to
filter out and then returns a new list where only the elements that satisfy the predicate are kept. Its type is this:

filter :: (a -> Bool) -> [a] -> [a]

The predicate takes an element of the list and returns a Bool value. Now, what if the Bool value that it returned was actually
a monadic value? Whoa! That is, what if it came with a context? Could that work?

For instance, what if every True or a False value that the predicate produced also had an accompanying monoid value,
like ["Accepted the number 5"] or ["3 is too small"]? That sounds like it could work. If that were the case, we'd expect the
resulting list to also come with a log of all the log values that were produced along the way. So if the Bool that the
predicate returned came with a context, we'd expect the final resulting list to have some context attached as well,
otherwise the context that each Bool came with would be lost.

The filterM function from Control.Monad does just what we want! Its type is this:

filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]
The predicate returns a monadic value whose result is a Bool, but because it's a monadic value, its context can be anything
from a possible failure to non-determinism and more! To ensure that the context is reflected in the final result, the result is

also a monadic value.

Let's take a list and only keep those values that are smaller than 4. To start, we'll just use the regular filter function:

ghci> filter (\x -> x < 4) [9,1,5,2,10,3]
[1,2,3]

That's pretty easy.

Learn You a
Haskell for
Great Good!

A Beginner’s Guide

Miran Lipovaca

Miran Lipovaca

mhile the next five slides provide a useful example of usib

the filterM function, the example involves the Writer monad,

so if you are not familiar with that monad you may want to erte I M onNna d

skip the slides for now.

Learn how to use the Writer monad to log (trace) the execution of functions
If you could do with an introduction to the Writer monad, through the work of

then you might want to check out the slide deck on the right.

Whether you go through the next five slides or skip them, the
two slides after that provide a nice and simple example of
using the filterM function on the List monad.

Bartosz Milewski Alvin Alexander
u @BartoszMilewski u @alvinalexander

slides by £ @philip_schwarz

u @philip_schwarz

Now, let's make a predicate that, aside from presenting a True or False result, also provides a log of what it did. Of course, we'll
be using the Writer monad for this:

keepSmall :: Int -> Writer [String] Bool Here is the signature of
keepSmall x [filterM again, for reference. }
| x < 4 = do
tell ["Keeping " ++ show Xx]
return True filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]

| otherwise = do
tell [show x ++
return False

is too large, throwing it away"]

Instead of just returning a Bool, this function returns a Writer [String] Bool. It's a monadic predicate. Sounds fancy, doesn't it?
If the number is smaller than 4 we report that we're keeping it and then return True. Now, let's give it to filterM along with a
list. Because the predicate returns a Writer value, the resulting list will also be a Writer value.

ghci> fst $ runWriter $ filterM keepSmall [9,1,5,2,10,3]
[1,2,3] |

Examining the result of the resulting Writer value, we see that everything is in order. Now, let's print the log and see what we got:

ghci> mapM_ putStrLn $ snd $ runWriter ¢ filterM keepSmall [9,1,5,2,10,3]

9 is too large, throwing it away |
Keeping 1
5 is too large, throwing it away

Awesome. So just by providing a monadic predicate to filterM, we

Keeping 2 were able to filter a list while taking advantage of the monadic
10 is too large, throwing it away context that we used.
Keeping 3

mapM_ is a variant of)| mapM_ :: (Foldable t, Monad m) => (a -> mb) -> t a ->m ()
the mapM function Map each element of a structure to a monadic action, evaluate these actions from left
that we saw earlier. to right, and ignore the results. For a version that doesn't ignore the results see mapM.

Learn You a
Haskell for
Great Good!

A Beginner’s Guide

Miran Lipovaca

Miran Lipovaca

The next slide shows the Scala
equivalent of the keepSmall function,
together with some tests.

I

import Control.Monad.Writer

import cats.data.Writer
import cats.instances._

! Cats

keepSmall :: Int -> Writer [String] Bool
keepSmall x
| x < 4 = do

tell ["Keeping
return True

| otherwise = do
tell [show x ++
return False

++ show x]

n

is too large, throwing it away"]

def keepSmall(x: Int): Writer[[String],Boolean] =
if x < 4
then
for
_ <- Writer.tell(List("Keeping " + x))
yield true
else
for
_ <- Writer.tell(List(x + " is too large, throwing it away"))
yield false

(assertEqual "keepSmall test 1"

(keepSmall 2)
(writer (True, ["Keeping 2"])))

(assertEqual "keepSmall test 2"
(keepSmall 5)
(writer (False, ["5 is too large, throwing it away"])))

(assertEqual "keepSmall test 3"
(runWriter (keepSmall 2))
(True, ["Keeping 2"]))

(assertEqual "keepSmall test 4"
(runWriter (keepSmall 5))
(False, ["5 is too large, throwing it away"]))

(assertEqual "keepSmall test 5"
(fst (runWriter (keepSmall 2)))
True)

assert(keepSmall(2)

Writer(List("Keeping 2"),true))
assert(keepSmall(5)

Writer(List("5 is too large, throwing it away"),false))
assert(keepSmall(2).run

?iist("Keeping 2"),true))
assert(keepSmall(5).run

(List("5 is too large, throwing it away"),false))

assert(keepSmall(2).value

Now let’s look at the Scala equivalent of passing the keepSmall function to filterM.

While the Scala Cats library doesn’t provide filterM, which operates on monads, it
provides filterA, which operates on applicatives, and is a generalization of filterM.

& > C' @& hackage.haskell.org/package/witherable-0.4.1/docs/Witherable.html

cats

TraverseFilter

Trave rse F | |te I companion object witherable-0.4.1: filterable traversable
! ‘ Cats

trait TraverseFilter[F[_]] extends
FunctorFilter[F]

» Witherable

TraverseFilter, also known as Witherable, represents list-like

structures that can essentially have a traverse and a filter applied as a

single combined operation (traverseFilter). class (Traversable t, Filterable t) => Witherable t where

Based on Haskell's Data.Witherable

filterA[G[_], Al(fa: F[A])(f: (A) = G[Boolean])(implicit G: Applicative[G]): G[F[A]] | filterA :: Applicative f => (a -> f Bool) -> t a -> £ (t a)
Filter values inside a G context.

This is a generalized version of Haskell's filterM. This StackOverflow question about filterM may be helpful in understanding how it behaves.

Example: filterA :: Applicative f => (a -> f Bool) -> t a -> f (t a)

rename
scala> import cats.implicits._ filterA :: Applicative g => (a -> g Bool) -> f a -> g (f a)

scala> val 1: List[Int] = List(1, 2, 3, 4)

scala> def odd(i: Int): Eval[Boolean] = Now(i % 2 == 1) Applicative G g
scala> val res: Eval[List[Int]] = 1.filterA(odd) function parameter A > G[Boolean] a -> g Bool
scala> ljes.value : - list-like parameter ! FLA])X‘ f a
res@: List[Int] = List(1l, 3) See the slide after next for more on the bottom example.
result G[F[A]] g (f a)

scala> List(1, 2, 3).filterA(_ => List(true, false))

resly Lastlilastlintl] = LbGsE(listl,: 2, 38),; LisStll; 2), Listil, 3),. Estil), List(2, 3), List(2), 1Hist(3); Last())

def filterA[G[_], A](fa: F[A])(f: (A) = G[Boolean])(implicit G: Applicative[G]): G[F[A]]

filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]

Note that while filterM operates on a
list, filterA operates on any list-like F.

assertEqual
"keepSmall test 6"
(fst (runWriter (filterM keepSmall [9,1,5,2,10,3])))

[1,2,3]) =

assert(
List(9,1,5,2,10,3).filterA(keepSmall).value

List(1,2,3)) F = List !Cats

assertEqual
"keepSmall test 7"
(fst (runWriter (listen (filterM keepSmall [9,1,5,2,10,3]))))
([1,2,3],["9 is too large, throwing it away",

"Keeping 1",

"5 is too large, throwing it away",

"Keeping 2",

"10 is too large, throwing it away",

"Keeping 3"1]) HS

assert(
List(9,1,5,2,10,3).filterA(keepSmall).listen.value

(List(1,2,3),List("9 is too large, throwing it away",

"Keeping 1",

"5 is too large, throwing it away",
F = List "Keeping 2",

"10 is too large, throwing it away",
! w Cats " . "

Keeping 3")))

assert(Vector(9,1,5,2,10,3).filterA(keepSmall).value == List(1,2,3))

assert(Vector(9,1,5,2,10,3).filterA(keepSmall).listen.value ==
(Vector(1,2,3),List("9 is too large, throwing it away",
"Keeping 1",
"5 is too large, throwing it away",
"Keeping 2",
"10 is too large, throwing it away",
"Keeping 3")))

F = Vector ’Cats

assert(Option(3).filterA(keepSmall).listen.value ==
(Option(3),List("Keeping 3")))

assert(Option(9).filterA(keepSmall).listen.value ==
(None,List("9 is too large, throwing it away")))

F = Option !Cats

As promised, the next two slides show a
nice and simple example of using the
filterM function on the List monad.

u @philip_schwarz

A very cool Haskell trick is using filterM to get the powerset of a list (if we think of them as sets for now). The powerset of
some set is a set of all subsets of that set. So if we have a set like [1,2,3], its powerset would include the following sets:

[1,2,3]
[1,2]
[1,3]
[1]
[2,3]
[2]

[3]

[]

In other words, getting a powerset is like getting all the combinations of keeping and throwing out elements from a
set. [2,3] is like the original set, only we excluded the number 1. To make a function that returns a powerset of some list,
we're going to rely on non-determinism. We take the list [1,2,3] and then look at the first element, which is 1 and we ask
ourselves: should we keep it or drop it? Well, we'd like to do both actually. So we are going to filter a list and we'll use a

predicate that non-deterministically both keeps and drops every element from the list. Here's our powerset function:

powerset :: [a] -> [[a]]
powerset xs = filterM (\x -> [True, False]) xs

Wait, that's it? Yup. We choose to drop and keep every element, regardless of what that element is. We have a non-
deterministic predicate, so the resulting list will also be a non-deterministic value and will thus be a list of lists. Let's give
this a go:

ghci> powerset [1,2,3]
[[1,2,31,11,2],[1,3]1,[1],[2,3],[2],[3],[1]

This takes a bit of thinking to wrap your head around, but if you just consider lists as non-deterministic values that don't

know what to be so they just decide to be everything at once, it's a bit easier.

Learn You a
Haskell for
Great Good!

A Beginner’s Guide

Miran Lipovaca

Miran Lipovaca

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM f [] return []
mapM f (x:xs) =doy <- f x

ys <- mapM f xs

return (y:ys)

A monadic version of the filter function on lists is defined by generalizing its type m
definition in a similar manner to maIpM:
filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
filterM p [] return []
filterM p (x:xs) =do b <- p x
ys <- filterM p xs
return (if b then x:ys else ys)

Graham Hutton F le, in th f the list d. using filterM provid ticularl '
or example, In e case o e IIst monad, usin lHncer roviaes a particuiar concise
u @haskellhutt P g P P y

means of computing the powerset of a list, which is given by all possible ways of
including or excluding each element of the list:

> filterM (\x -> [True,False]) [1,2,3]
Q[LZ,B],[1,2],[1,3],[1],[2,3],[2],[3],[]] /

ond Edition

After familiarising (or reacquainting)
ourselves with mapM and filterM, it is
finally time to look at foldM.

Folding Unfolded

Polyglot FP for Fun and Profit
Haskell and Scala

relate to r i yp

See how recursive functions and structural il
Follow along as the fold abstraction is introduced and explained

Watch as folding is used to simplify the definition of recursive functions over recursive datatypes

Part 1 - through the work of

GRAHAM HUTTON

A tutorial on the universality and
expressiveness of fold

Uity o Nottngham. Notingham, UK
=

Folding Unfolded

Polyglot FP for Fun and Profit
Haskell and Scala

Richard Bird Graham Hutton

http://www.cs.ox.ac.uk/people/richard.bird, £l @haskellhutt

slides by . 2 @philip_schwarz {3 slideshare https //www slideshare.net/pischwarz

Folding Unfolded

Polyglot FP for Fun and Profit
Haskell and Scala

See aggregation f ions defined inductively and I d using r

Learn how in many cases, tail-recursion and the accumulator trick can be used to avoid stackoverflow errors

Watch as general aggregation is implemented and see duality theorems capturing the relationship between left folds and right folds

Part 2 - through the work of

The Science of
Functional
Programming

Al wen axamgios i Scas

Sergei Winitzki
i-winitzki-1126431

If you could do with an
introduction to (or refresher
on) folding, then maybe have
a look at one or more of the
first three decks in this series.

B
slides by - [@philip_schwarz

deshare https:/wwwslideshare.net/pischwarz

Develop the correct intuitions of what fold left and fold right actually do, and how different these two functions are
Learn other important concepts about folding, thus reinforcing and expanding on the material seen in parts 1 and 2
Includes a brief introduction to (or refresher of) asymptotic analysis and ©-notation

Part 3 - through the work of

PH i

Introduct

| “An Intuition for List Folds |

Tony Morris Youf® https://presentations.tmorris.net/ Richard Bird
E @dibblego http://www.cs.ox.ac.uk/people/richard.bird

slides by . E @philip_schwarz O

deshare https://www.slideshare.net/pischwarz

Folding Unfolded

Polyglot FP for Fun and Profit
Haskell and Scala
Can a left fold ever work over an infinite list? What about a right fold? Find out.

Learn about the other two functions used by functional programmers to implement math ical induction: i ing and

Learn about the limitations of the accumulator technique and about tupling, a technique that is the dual of the accumulator trick.

Part 4 - through the work of

The Science of
Functional
Programming

I "An Intuition for List Folds. I

Atsorl,win examgies n Scas

Tony Morris Youf) https://presentations.tmorris.net/
K @dibblego

slides by . 2 @philip_schwarz

Richard Bird
http://www.cs.ox.ac.uk/people/richard.bird,

Richarld Bird‘ . Sergei Winitzki
http://wt ac. bird, sergei-winitzki-11a6431

| gain a deeper understanding of why right folds over very large and infinite lists are sometimes possible in Haskell

learn when an ordinary left fold results in a space leak and how to avoid it using a strict left fold

Folding Unfolded

Polyglot FP for Fun and Profit
Haskell and Scala

see how lazy evaluation and function strictness affect left and right folds in Haskell

Part 5 - through the work of

Tony Morris
El @dibblego

The Science of
Functional
Programming

[N ——

YuflB https://presentations tmorris.net/

G Sergei Winitzki
sergei-winitzki-11a6431

Bryan O'Sullivan
John Goerzen
Donald Bruce Stewart Graham Hutton
El @haskellhutt

slides by . I @philip_schwarz (ggsiideshare. hitpsi//wwnsiideshare.net/pischwarz

foldm

The monadic counterpart to foldl is foldM. If you remember your folds from the folds section, you know that foldl takes a
binary function, a starting accumulator and a list to fold up and then folds it from the left into a single value by using the
binary function. foldM does the same thing, except it takes a binary function that produces a monadic value and folds the
list up with that. Unsurprisingly, the resulting value is also monadic. The type of foldl is this:

foldl :: (a -> b ->a) ->a -> [b] -> a
Whereas foldM has the following type:
foldM :: (Monad m) => (a -> b ->ma) ->a -> [b] ->m a

The value that the binary function returns is monadic and so the result of the whole fold is monadic as well. Let's sum a list
of numbers with a fold:

ghci> foldl (\acc x -> acc + x) 0 [2,8,3,1]
14

The starting accumulator is 0 and then 2 gets added to the accumulator, resulting in a new accumulator that has a value
of 2. 8 gets added to this accumulator resulting in an accumulator of 10 and so on and when we reach the end, the final
accumulator is the result.

Now what if we wanted to sum a list of numbers but with the added condition that if any number is greater than 9 in the
list, the whole thing fails? It would make sense to use a binary function that checks if the current number is greater
than 9 and if it is, fails, and if it isn't, continues on its merry way. Because of this added possibility of failure, let's make our
binary function return a Maybe accumulator instead of a normal one.

Learn You a
Haskell for
Great Good!

A Beginner’s Guide

Miran Lipovaca

Miran Lipovaca

Here's the binary function:

binSmalls :: Int -> Int -> Maybe Int
binSmalls acc x

| x > 9 = Nothing

| otherwise = Just (acc + x)

Because our binary function is now a monadic function, we can't use it with the normal foldl, but we have to use foldM.

Here goes:

ghci> foldM binSmalls © [2,8,3,1]
Just 14

ghci> foldM binSmalls © [2,11,3,1]
Nothing

Excellent! Because one number in the list was greater than 9, the whole thing resulted in a Nothing. Folding with a binary
function that returns a Writer value is cool as well because then you log whatever you want as your fold goes along its way.

l-laskell for

Learn You a

Great Good!

-

A Beginner’s Guide

Miran Lipovaca

Here is the Scala equivalent of
the above example using Cats.

! Cats

def binSmalls(acc:
case n if n > 9 => None
case otherwise => Some(acc + Xx)

Int, x: Int): Option[Int] = x match

alternatively

| def binSmalls(acc:

import cats.syntax.foldable._
assert(
assert(List(2,11,3,1).foldM(©)(binSmalls)

List(2,8,3,1).foldM(0) (binSmalls) ==

Some(14))
== None)

Option.unless(x > 9)(acc + x)

Int, x: Int):

Option[Int] =

While that example of using foldM with a binary function that returns an optional value is usefuh
things get a bit harder to understand when the binary function returns a list of values.

Since the way that we are going to solve the N-Queens combinatorial problem using foldM is by
passing the latter a binary function returning a list of values, in upcoming slides we are going to look at
E2 @philip_schwarz | a number of examples that do just that, in order to strengthen our understanding of the foldM function.

Qefore we do that though, let’s take another look at the definition of foldM. /

example that helps a bit to understand how foldM works.

foldM does. We'll be reminding ourselves of this equivalence a few times in upcoming slides.

If we look back at Martin Lipovaca’s definition of the foldM function, we see that it doesn’t explain much. Rather, it ism

The nice thing about the official definition of foldM (on the next slide) is that while on the one hand it explains even less, on
the other hand, it is accompanied by a very helpful equivalence that gives us a very concrete way of understanding what

M=

By the way: while the signature of the foldM function explained by Martin Lipovaca operates exclusively on lists
foldM :: (Monad m) => (b -> a ->mb) ->b -> [a] ->mb

the definition of foldM on the next slide is more generic and operates on any Foldable:

j

KFoldM :: (Foldable t, Monad m) =>(b->a->mb) ->b ->ta->mb
The monadic counterpart to foldl is foldM... \
foldl takes a binary function, a starting accumulator and a foldM f al [x1, x2, ., xm]
list to fold up and then folds it from the left into a single ==
value by using the binary function. do
a2 <- f al x1
foldM does the same thing, except it takes a binary a3 <- f a2 x2
Miran Lipovaca function that produces a monadic value and folds the list ces
up with that. £ am xm

S

\ 4

Q\surprisingly, the resulting value is also monadic. /

foldM :: (Foldable t, Monad m) => (b -> a ->mb) -=>b ->t a ->mb # Source

The £oldM function is analogous to fold1l, except that its result is encapsulated in a monad. Note that
foldM works from left-to-right over the list arguments. This could be an issue where (>>) and the ‘folded

function' are not commutative.

foldM £ al [x1, x2, ..., xXm]

do
a2 <- f al x1
a3 <- £ a2 x2

f am xm

If right-to-Lleft evaluation is required, the input list should be reversed.

Note: foldM is the same as fold1lM

https://hackage.haskell.org/package/base-4.15.0.0/docs/Control-Monad.html

I

https://hackage.haskell.org/package/base-4.15.0.0/docs/Control-Monad.html

As planned, we now turn to examples
of folding a list using foldM with a
binary function that returns a list.

its list parameter and the list returned by its function parameter..

As shown in the example below, the length of the list returned by foldM is a function of the lengths of both

In this first example, we deliberately use a binary function that ignores both its parameters, to stress the
point that the above property holds regardless of the particular values contained in the lists.

J

I

foldM £ al [x1, x2,

a2 <- f al x1
a3 <- f a2 x2

f am xm

7

Xm]

If foldM is applied to >
* afunction returning a list of length m q
* aninitial accumulator z let £ = (_ -> _ -> [0,0])
* alistof lengthn [x1,x2,x3] = [1,2,3]
al = 9
Then foldM returns a list of length m A n in do
a2 <- f al x1
e.g. (foldm (_ ->_-> [0,0]) 9 [1,2,3]) = [0,0,0,0,0,0,0,0] a3 <- f a2 x2
m=2 z n=3 m*n = 273 = 8 f a3 x3

i
If foldM is applied to [0,0,0,0,0,0,0,0]
* no matter which function 7'y
* aninitial accumulator z
* anempty list (i.e. a list with length n=0)
Then foldM returns list [z].

Z n=0 z

e.g. (foldm (_ -> _ ->[0,0]) 9 []1) = [9]
Invocation Result Result length
foldM (_ -> _ -> [0,0]) 9 [] [9] 270=1
foldMm (_ -> _ -> [0,0]) 9 [1] [0,0] 2N1=2
foldMm (_ -> _ -> [0,0]) 9 [1,2] [0,0,0,0] 21°2=4
foldMm (_ -> _ -> [0,0]) 9 [1,2,3] [9,0,0,0,0,0,0,0] 2"°3=8
foldm (_ -> _ -> [0,0]) 9 [1,2,3,4] [9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 2"4=16

p)

Same example as on the previous slide, but with a diagram that helps us
understand how foldM builds its result when its list parameter is non-empty.

u @philip_schwarz

Invocation Result Result length
foldM (_ -> _ -> [0,0]) 9 [] [9] 270=1
foldM (_ -> _ -> [0,0]) 9 [1] [0,0] 2A1=2
foldM (_ -> _ -> [0,0]) 9 [1,2] [0,0,0,0] 2A2=4
foldMm (_ -> _ -> [0,0]) 9 [1,2,3] [0,0,0,0,0,0,0,0] 273=8
foldMm (_ -> _ -> [0,0]) 9 [1,2,3,4] [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 274=16
[0,0] I' [0,0]
| [0,0] [0,0] | | [0,0,0,0]
[[616] [@,@] [@)@] [@:@]]—[[@J@J@)@J@)@)@)@]
0,01 [e,6] [0,0] [o,06] [e,6] [e,0] [0,0] [e,e]

[[@,@,@,@,@,@,@,0,@,@,@,@,9,@,0,@]]

N
In this second example we change the binary function that we pass to foldM so that rather than ignoring its two parameters (the accumulator acc
and the current list element x) and always returning the same two-element list [0, 0], the function now returns a two-element list containing (a)
the result of adding the current element to the accumulator and (b) the result of subtracting the current element from the accumulator.

J

., Xm]

Invocation Result Result length >
foldM (\acc x -> [acc + x, acc - x]) 0 [] [0] 2°0=1 {
foldM (\acc x -> [acc + x, acc - x]) 0 [1] [1,-1] 2"1=2 let f = \acc x -> [acc + x, acc - X]
foldM (\acc x -> [acc + x, acc - x]) 0 [1,2] [3,-1,1,-3] 272=4 [x1,x2,x3] = [1,2,3]
foldM (\acc x -> [acc + x, acc - x]) 0 [1,2,3] [6,0,2,-4,4,-2,0,-6] 2"3=8 al = ©
in do
a2 <- f a1l x1
[0] a3 <- f a2 x2
f a3 x3
1)
+ - | [6,0,2,-4,4,-2,0,-6]
foldM f al [x1l, x2,
52 -2 2| -2 _
4
3 @ 1 '3 W [3;_1111_3] do
N\ a2 <- f al x1
+3|-3 /+3 -3\ /+3 -3\ +3| -3 a3 <- £ a2 x2
f am xm
@ @ 0 e [610121_4141_2101_6]

S

In this third example we change the binary function that we pass to foldM so that rather than\) =

returning a two-element list containing (a) the result of adding the current element x to the
accumulator and (b) the result of subtracting x from the accumulator, it returns a two element list
containing (a) the result of adding x to the front of the accumulator list and (b) the accumulator list. Selelil i al &y B2y oo
As a result, foldM computes the powerset of its list parameter. j ==
Invocation Result Result length 2le N
foldM (\acc x -> [x:acc,acc]) [] [] [[1] 270=1 az <- f al xl
— foldM (\acc x -> [x:acc,acc]) [] [1] [[11,[1] 271=2 a3 <- f a2 x2
foldM (\acc x -> [x:acc,acc]) [] [1,2] [[2,1],[1],[2],[]] 272=4
foldM (\acc x -> [x:acc,acc]) [] [1,2,3] [[3,2,1],[2,1],[3,1],[1],[3,2],[2],[3],[]] 2"3=8 £ am xm
) .. -
By the way, here on powerset :: [a]. > [[a]] >
the right is a reminder powerset xs = filterM (\x -> [True,False]) xs {
of how we computed a let f = \acc x -> [x:acc,acc]
powerset earlier on > powerset [1,2,3] [x1,x2,x3] = 11,2,3]
' Y, ([1,2,3]1,[1,2],[1,3],[1],[2,3],[2],[3],[1] al = []
in do -
- a2 <- f a1l x1
[] [[]] a3 <- f a2 x2
1: f a3 x3
A)
3,2,1],12,1],[3,1],11],13,2],(2],[3];
[[1] [” {[[1],[]]] [[1,02,1],[3,1],[1],[3,2],[2],[3],[1]
2; 2

[[2,1] [1] [2] [1—[[2,11,[11,[21,[1])
V\ 3. 3/\ 3/\
3,2,1] [2,1] [3,11 [1] [3,2] [2] [31 [1H[[3,2,11,12,11,[3,1]1,[21,[3,2],[21,[31,[1])

import Control.Monad

I

Here are some tests for the three foldM
examples that we have just gone through.

import cats.syntax.foldable.

assertEqual

"foldM test 1"

(f°1dM (_ _ "2 [e)e]) 9 [112:314])
[¢,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

assertEqual
"foldM test 2"
(foldM (\acc x -> [acc+x,acc-x]) @ [1,2,3])
[6)9)2J-4J4J_2)@)-6]

assertEqual
"foldM test 3"
(foldM (\acc x -> [x:acc,acc])[] [1,2,3])

[[3,2,1],[2,1],[3,1],[1],[3,2],[2],[3],[1]

! ‘ Cats
assert(

List(1,2,3,4).foldM(9)((_,) => List(@, 0))

List(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

assert(
List(1,2,3).foldM(9)((acc,x) => List(acc+x, acc-x))

List(6,0,2,-4,4,-2,0,-6))

assert(
List(1,2,3).foldM(List.empty)((acc,x) => List(x::acc,acc))

List(List(3,2,1),List(2,1),List(3,1),List(1),List(3,2),List(2),List(3),List()))

In the rest of this deck we’ll refer to the function passed to foldM as an updater function. The idea
comes from Sergei Winitzki, who gives that name to the function passed to foldLeft. See the next
slide for more details (if you are in a hurry then just see its first three lines and its last two lines).

The Science of
Functional
Programming

@tailrec def leftFold[A, B](s: Seq[A], b: B, g: (B, A) => B): B = A tutoril, with examples in Scala
if (s.isEmpty) b
else leftFold(s.tail, g(b, s.head), g)

We call this function a “left fold” because it aggregates (or “folds”) the sequence starting from the leftmost
element.

In this way, we have defined a general method of computing any inductively defined aggregation function on
a sequence.

The function leftFold implements the logic of aggregation defined via mathematical induction.

Using leftFold, we can write concise implementations of methods such as .sum, .max, and many other
aggregation functions.

The method leftFold already contains all the code necessary to set up the base case and the inductive step.

The programmer just needs to specify the expressions for the initial value b and for the updater function g.

Sergei Winitzki
m sergei-winitzki-11a6431

u @philip_schwarz

Now that we have gained some familiarity with the foldM function, let’s begin to see
how it can be used to solve the N-Queens combinatorial problem.

Let’s refer to the solution that uses foldM as the folding queens solution.

The folding queens solution needs to generate the permutations of a list of integers)

The number of permutations of a list of
length n is n!, the factorial of n.

e.g. the number of permutations of a list
of three elements is

31 =3*%2*1 =6

List

OO

Permutations

OO
OO
000
000
000
000

List

O]

Permutations

. 49lO,
4010
1 1O
@@
ol IO
O0] _

List

QOO

Permutations

QOO
QOO
] 1@
CO®
@ 1
O[] _

Let’s take a look at the # Invocation Result

updater functions that we 1 foldMm (_ _ -> [0,0]) 9 [1,2,3] [0,0,0,0,0,0,0,0]

have seen so far in our 2 foldM (\acc x -> [acc + x, acc - x]) © [1,2,3] [6,0,2,-4,4,-2,0,-6]

foldm usage examples. 3 foldm (\acc X -> [x:acc,acc]) [] [112:3] [[312:1]:[211]:[3.'1]:[1]:[312]:[2]:[311[]]
Here are some of the characteristics of the above updater functions: \

The first updater function ignores both its parameters. It doesn’t really manage an accumulator and doesn’t care about the particular
elements that are in the input list. The role of the input list is purely to control the number of iterations, so the only thing that matters is it
length.

The second and third updater functions use both of their parameters. They do manage the accumulator and they do care about the
particular elements that are in the input list, as they affect the final result.

In all three updater functions, the accumulator is a single value, i.e. a number or a list.

Since all three updater functions return a two-element list, the length of the list returned by folding an input list of length n is is 2”n. /

Now let’s take a look at an updater function that can be used to generate the permutations of a list.

update :: Eq a => ([a], [a]) -> p -> [([a], [a])]
update (permutation,choices) _ = [(choice:permutation, delete choice choices) | choice <- choices]

K See below for a sample invocation of the updater function. See the next slide for more examples and a diagram clarifying how things work. /

While this updater function does not ignore its first parameter, it does ignore its second one. While it does manage an accumulator, ﬁ
doesn’t care about the particular elements that are in the input list. The role of the input list is purely to control the number of iterations, so
the only thing that matters is it length.

This updater function also has a more complex accumulator parameter which consists of a pair of values. The first accumulator value is a
partial permutation. The second accumulator value is a list of the input list elements that have not yet been chosen (picked) in the creation
of the partial permutation. Each remaining (not yet chosen) input list elements is chosen in turn to grow the partial permutation into a new,
more complete partial permutation by prefixing it with the chosen element, which is removed from the available choices.

Invocation Result

D= foldM update ([1,[1,2,3]) [1,2,3] [([3,2,11,[1),([2,3,11,01),([3,1,21, (1), ([1,3,2], (1), ([2,1,31, 1), ([1,2,3],[])]

update :: Eq a => ([a], [a]) -> p -> [([a], [a])])
update (permutation,choices) _ = [(choice:permutation, delete choice choices) | choice <- choices]

Invocation Result

foldM update ([],[1,2,3]) [] [([1,[1,2,3])]

foldM update ([],[1,2,3]) [1] [([1],[2,3]), ([2],[1,3]), ([3],[1,2])]

foldM update ([],[1,2,3]) [1,2] [([2,1],[3]), ([3,11,[2]), ([%1,2],[3]),

foldM update ([],[1,2,3]) [1,2,3] [([3,2,1],[1), ([2,3,1],[1), ([3,1,2],[]), ([1,3,2],[1), ([2,1,3],[1), ([1,2,3],[])]

([3,2],[1]), ([1,31,[2]), ([2,3],[1])]

([11,[2,3])

(1J,11,2,3])

choose 1 chopse 2

(121,[1,3])

choose 3

([31,1,2])

chwse 3 choosmose 3 choose lw 2

((2,1L3]) (BALI2D) ([1,2,131) ([3,21,[1])

cho#se3 cho

rsez

chokse3 ch%osel

(3,2,1),01) (2,3,1L1) (3,1,2L01) ([1,3,2),01)

([1,3L,121) ([2,3L(1])

chdose 2 choFsel

((2,1,3),01) ([1,2,3L,1])

[The result of foldM is not exactly a list of

permutations, but rather, a list of a pair of a
permutation and the empty list.

Let’s defined a couple of helper functions to
make it more convenient to get hold of the

Qesired list of permutations. /

permute :: Eq a => [a] -> [([a]l, [a])]
permute xs = foldM update ([],xs) xs

permutations :: (Eq a) => [a] -> [[a]]
permutations xs = map fst (permute xs)

> permutations []

[[]1]

> permutations [1]

[[1]]

> permutations [1,2]

[[2,1],[1,2]]

> permutations [1,2,3]

[[3,2,1],[2,3,1],[3,1,2],[1,3,2],[2,1,3],[1,2,3]]

> permutations [1,2,3,4]

[[4)3)2)1]) [3)412.’1]) [4)2)3.’1].’ [2)4)3J1]J [3.’2.’4.’1]
J [2)3)4)1]) [4)311.’2]) [3)4)1.’2].’ [4)1)3J2]J [1.’4.’3.’2]
J [3)1)4)2]) [1)314.’2]) [4)2)1.’3].’ [2)4)1J3]J [4.’1.’2.’3]
J [1)4)2)3]) [2)114.’3]) [1)2)4.’3].’ [3)2)1J4]J [2.’3.’1.’4]
J [3)1)2)4]) [1)312.’4]) [2)1)3.’4].’ [1)2)3J4]]

update (permutation,choices) _ = [(choice:permutation, delete choice choices) | choice <- choices]

I

generate are the possible lists of positions (columns) of n queens on an nxXn board.

We want to use foldM to solve the N-Queens combinatorial problem, so let’s rename the
variables of the update function to reflect the fact that the permutations that we want to

oneMoreQueen (queens, emptyColumns) _ = [(queen:queens, delete queen emptyColumns) |

queen <- emptyColumns]

Not all permutations are valid though: we need to filter out unsafe permutations.

Let’s add to oneMoreQueen a filter that invokes the safe function.

Just like we did in Part 1, the way we are going to determine if a permutation is safe is by using a safe function.

\

J

oneMoreQueen (queens, emptyColumns) _ = [(queen:queens, delete queen emptyColumns) |

queen <- emptyColumns, safe queen]

The safe function that we are going to use this time round is much more\
concise that the one that we used in Part 1 (reproduced here on the right).

safe queen queens = all safe (zipWithRows queens) where
safe (r,c) = ¢ /= col && not (onDiagonal col row c r)
row = length queens
col = queen

Since the safe function is not the focus of Part 4, and since we have already
defined one such function in Part 1, we are not going to spend any time
explaining it, except for saying that it takes as parameter the candidate queen

onDiagonal row column otherRow otherColumn =
abs (row - otherRow) == abs (column - otherColumn)

position x and relies both on queens (the board to which we want to add the
next queen), and on n, the size of the board.

safe x = and [x /=c +n & x /=¢c - n | (n,c) <- zip [1..] queens]

zipWithRows queens = zip rowNumbers queens
where
rowCount = length queens
rowNumbers = [rowCount-1,rowCount-2..0]

I

' ﬁ Earlier we tried out our update function as follows

Invocation Result
foldM update ([],[1,2,3]) [1,2,3] [([3,2,1],[]1), ([2,3,1],[D), ([3,1,2],[1), ([1,3,2],[1), ([2,1,3],[]), ([1,2,3],[])]

The queens function that we need to implement is this:

queens :: Int -> [[Int]]
queens n = ???

Given that we have renamed update to oneMoreQueen, here is how we need to call foldM:

foldM oneMoreQueen ([],[1..n]) [1..n]

We saw earlier that in order to extract the list of permutations/queens from the result of
Ed @philip_schwarz update/oneMoreQueen, we need to map over the result list a function that takes the first
element of each pair in the list.

So here is how we implement queens:

queens :: Int -> [[Int]]
queens n = map fst (foldM oneMoreQueen ([],[1..n]) [1..n])

On the next slide we add oneMoreQueen and safe to queens and see the final result.

where

]

On the next slide we compare

the above function with how it
looks on the Rosetta Code site

where it originates from.

.] queens]

.n]) where

.n]) [1.

[(queen:queens, delete queen emptyColumns) | queen <- emptyColumns, safe queen]

safe x = and [x /=c +n& x /=¢c -n | (n,c) <- zip [1.

map fst (foldM oneMoreQueen ([],[1.

Int -> [[Int]]
oneMoreQueen (queens, emptyColumns) _

o
+—
Q.
-}
[eT4]
£
K=
S
Ke]
[
()]
(]
0
()]
>
©
<
)]
2
4+
©
<
o+
C
Res
)
(@]
C
>
Y=
[72)
c
Q
[}
=)
(o
(]
e
)
L2
]
—
(]
I

queens ::
queens n
> queens 8

n WO

a A A

AN N

a A o«
o0 N AN
a A o«
O N <
L T}

<
a A -
N 00 N
a A A
<t N
— e
a A A
[T s W |

m M m
a A A
n O O

,6,4,1,8,5,7,2],[4,7,5,3,1,6,8,2],[6,4,2,8,5,7,1,3

,5,3,1,6,8,2,4],[7,3,8,2,5,1,6,4],[5,3,1,7,2,8,6,4],[2,5,7,1,3,8,6,4], [3,6, 2,5,8,
1
2

a A A &
ON < M

a @

| s By B ey B e B s B s B ey B s B e B ey |

NN M MM

a A A

A IS S S i P

a A A

N o0

a A A

1

a &
n O
a &
N 00
LY
AN ™M
a &
O
a &

oMn ™~

e el

a &

| o B |

< in
LYY
o0 i
a &
— 00
L WY
m O
LYY
O M
a &
NN
L Y
N N
a &

n <

—_

a &

/rr

< N
a &
N
a &
N 00

AN O

e

a &

| B e |

< in
o @
N
a A
n <t
a @
AN O
L WY
O 00
a A
-1 AN
o @
m N
o a

o0 M

e

a &

/T

< <
a &
N o
a &
m LN
a &
o0 M
a &
AN
a &
mn ~
LY
1 N

a &

M O AN ONN OO

a A -

4,6]
1,7]

B
b B}

a &
M
a &
n <
a &
AN 0
a &

00 N

e

a &

| B e |

O ™~
L Y
<t AN
a @
N <
a o«
00 i
LY
n o0
a @
N N
LY

i M

a &

m O

e

a &

i M
LN 00

J
J

)8)
)6)
,[6,3,1,8,5,2,4,7],[5,3,1,6,8,2,4,7],[4,2,8,6,1,3,5,7],[6,3,5,7,1,4,2,8],[6,4,7,1,3,5, 2, 8]

,[4,7,5,2,6,1,3,8],[5,7,2,6,3,1,4,8]]

AN <t
A a
N N
a A

m LN

e e et e e e et e e et e e]
a &

a &

> length (queens 8)

92

queens :: Int -> [[Int]])x‘

queens n = map fst (foldM oneMoreQueen ([],[1..n]) [1..n]) where
oneMoreQueen (safeQueens,emptyColumns) _ = [(queen:safeQueens, delete queen emptyColumns) | queen <- emptyColumns, safe queen]

where safe x = and [x /=c + n & x /= ¢c - n | (n,c) <- zip [1..] safeQueens]

https://rosettacode.org/wiki/N-queens problem

-- given n, "queens n" solves the n-queens problem, returning a list of all the < Iterat!ve

-- safe arrangements. each solution is a list of the columns where the queens are Solution

-- located for each row

queens :: Int -> [[Int]]

queens n = map fst $ foldM oneMoreQueen ([],[1..n]) [1..n] where Understanding the code on the left is

straightforward now that we have a firm

-- foldM :: (Monad m) => (a -> b ->ma) ->a -> [b] ->ma understanding of how foldM works, although
-- foldM folds (from left to right) in the 1list monad, which is convenient for renaming x, y and d the way we did above
-- "nondeterminstically" finding "all possible solutions" of something. the eases comprehension imho.

-- initial value [] corresponds to the only safe arrangement of queens in © rows

Note that while the recursive implementation
-- given a safe arrangement y of queens in the first i rows, and a list of of queens from Part 1 (shown below), blindly

-- possible choices, "oneMoreQueen y _" returns a list of all the safe
-- arrangements of queens in the first (i+l) rows along with remaining choices
oneMoreQueen (y,d) _ = [(x:y, delete x d) | x <- d, safe x] where

tries to place the next queen in every column
1..n, the implementation of queens that uses
foldM only tries to place the queen in columns
which are known not to be already occupied.

-- "safe x" tests whether a queen at column x is safe from previous queens
safe x = and [x /=c +n & x /=¢c - n | (n,c) <- zip [1..] y]

queens n = placeQueens n where safe queen queens = all safe (zipWithRows queens)
placeQueens 0 = [[]] where
placeQueens k = [queen:queens | queens <- placeQueens(k-1), safe (r,c) = c /= col & & not (onDiagonal col row c r)
queen <- [1..n], row = length queens
safe queen queens] col = queen | Recursive
Solution
onDiagonal row column otherRow otherColumn = zipWithRows queens = zip rowNumbers queens
abs (row - otherRow) where
== rowCount = length queens
abs (column - otherColumn) rowNumbers = [rowCount-1,rowCount-2..0]

https://rosettacode.org/wiki/N-queens_problem

Let’s translate our foldM-based N-Queens program from Haskell to Scala with Cats.

See the next slide for the same code but spread over several lines, to aid comprehension.

import Control.Monad)x=

queens :: Int -> [[Int]]
queens n = map fst (foldM oneMoreQueen ([],[1..n]) [1..n]) where
oneMoreQueen (safeQueens,emptyColumns) _ = [(queen:safeQueens, delete queen emptyColumns) | queen <- emptyColumns, safe queen]
where safe x = and [x /= c +n & x /=c - n | (n,c) <- zip [1..] safeQueens]

import cats.syntax.foldable. ! ‘Cats

def queens(n: Int): List[List[Int]] =
def oneMoreQueen(acc:(List[Int],List[Int]),x:Int): List[(List[Int],List[Int])] = acc match { case (queens, emptyColumns) =>
def safe(x:Int): Boolean = { for (c,n) <- queens zip (1 to n) yield x !=c + n & x != ¢ - n } forall identity
for queen <- emptyColumns if safe(queen) yield (queen::queens, emptyColumns diff List(queen)) }
List.range(1, n + 1).foldM(Nil, List.range(1, n + 1))(oneMoreQueen) map (_.head)

import Control.Monad)x=

queens :: Int -> [[Int]]
queens n = map fst (foldM oneMoreQueen ([],[1..n]) [1..n]) where
oneMoreQueen (safeQueens,emptyColumns) =
[(queen:safeQueens, delete queen emptyColumns) |
queen <- emptyColumns,
safe queen]
where safe x = and [x /= ¢c + n & X /= ¢c - n |
(n,c) <- zip [1..] safeQueens]

import cats.syntax.foldable. ! ‘Cats

def queens(n: Int): List[List[Int]] =
def oneMoreQueen(acc:(List[Int],List[Int]),x:Int): List[(List[Int],List[Int])] =
acc match { case (queens, emptyColumns) =>
def safe(x:Int): Boolean = {
for (c,n) <- queens zip (1 to n)

yield x = c + n & x I=c - n
} forall identity
for

queen <- emptyColumns
if safe(queen)
yield (queen::queens, emptyColumns diff List(queen)) }
List.range(1, n + 1).foldM(Nil, List.range(1l, n + 1))(oneMoreQueen) map (_.head)

The leafs of the tree on the . .
/right represent all the\ _ ([2’1]’[3’4])] ([3;2:1];[4]) ([4,3,2,1];[])

possible permutation of 4 T ([4'2'1]'[3]) - ([3'4'2'1]'[])
gueens on a 4 x 4 board. . 1 _ ([2’3’1]’[4]) — ([4,2’3’1]’[])
The only two solutions to ([1]’[2’3’4]) ([3’1]’[2’4]) - ([4’3’1]’[2]) T ([2’4’3’1]’[])
the 4-Queens Problem are — ([2,4,1],[3]) — ([3,2,4,1],1])
s by o — WA T Ganp) — 22400
of the corresponding board. — — ([3’1’2]’[4]) — ([4’3’1’2]’[])
(1 coresponding b, / L2BA =L @i m) — a1
- —1 —— ([1,3,2],[4]) — ([4,1,3,2],1])
' (121,[1,3,4]) (13,21,[1,4]) (13911 — (1432110 .
— — — 4
I ([4’2]’[1’3]) — ([11412]1[3]) ([3111412]1[])
— (13,4,2],11]) — ([1,3,4,2],
A (([[]] [[]])) (([[]] [[]]))
—(L312.4]) —— (213114 — (14,2,1,3],
WA= (G312 — (el —
- —1 — ([1,2,3],[4]) — ([4,1,2,3],1])
3],11,2,4 2,3],11,4
(BLI 1) ([2,3],01,4]) —__ ([14.2.3L[1]) — ([L4.2.31.0)
| — ([1,4,2],3]) — ([2,1,4,31.0])
' 3LV L 52y 1)) — (2,4,30,0)
S 1’4 , 2’3] ([21114])[3]) - ([312)114]1[])
The/Eslide shows the ([] []) o ([3'1'4]'[2]) T ([2'3'1'4]'[])
[same tree after greying out] — ([4],[1,2,3]) —1— ([2,4],[1,3]) —— ([L,2,41,8]) — (13,1,2,41,11)
those portions that are not ([3,4,2],[1]) — ([1,3,2,4]1,0])
part of the two success paths. | ([3’4]’[1’2]) — ([3’2’4]’[1]) S ([2’1’3’4]’[])
— ([2,3,4],[1]) — ([1,2,3,41,[1)

([1,[1,2,3,4]) —

— ([2],[1,3,4]) —

— (421,013 — " (L4218) — (3,1,4.2L0) —

— (el ([4,1,31,[2]) — ([2,4,1,3L1)) —

— ([31,[1,2,4]) —

([1,2,3],[4]) — ([4,1,2,3L,1])

-
"

To conclude this slide deck, let’s create a tree which, rather than being greyed out im
its portions that lead to a failed permutation, it is greyed out only in subtrees whose
root represents the failed attempt to add an unsafe queen to a board.

To help us work out which portions to grey out, we are going to take the accumulator
parameter of the Scala oneMoreQueen function and change its type from

List[Int]
u @philip_schwarz
to

Writer[List[String],List[Int]]

so that we can get oneMoreQueen to log events informing us when adding a queen to
a board is safe and when it isn’t.

def queens(n: Int): List[List[Int]] = ! Cats
def oneMoreQueen(acc:(List[Int],List[Int]),x:Int): List[(List[Int],List[Int])] =

acc match { case (queens, emptyColumns) =>
def safe(x:Int): Boolean = {
for (c,n) <- queens zip (1 to n)

yield x !'=c + n & x I=c - n
} forall identity
for

queen <- emptyColumns
if safe(queen)
yield (queen::queens, emptyColumns diff List(queen)) }
List.range(1, n + 1).foldM(Nil, List.range(1, n + 1))(oneMoreQueen) map (_.head)

List[Int] ‘ [Writer[List[String],List[Int]]

def queens(n: Int): List[Writer[List[String],List[Int]]] =
def oneMoreQueen(acc:(Writer[List[String],List[Int]],List[Int]),x:Int): List[(Writer[List[String],List[Int]],List[Int])] =
acc match { case (queens, emptyColumns) =>
def safe(x:Int): Boolean = {
for (c,n) <- queens.value zip (1 to n)

yield x '=c + n && x !=c - n
} forall identity
for

queen <- emptyColumns
newQueens = queens.tell(List(s"\n$queen is ${if safe(queen) then "safe" else "unsafe" } for ${queens.value}"))
if safe(queen)
yield (newQueens map (queen::_), emptyColumns diff List(queen)) }
List.range(1, n + 1).foldM(Writer(List.empty[String],Nil), List.range(1, n + 1))(oneMoreQueen) map (_.head)

As it stands, the modified oneMoreQueen function is not very useful because queens only returns boards that are solutions, and so the
logged events that accompany the solution boards simply tell us that all the queens added to the solution boards were safe to add.

assert(
queens(4).map(_.value)
List(
List(3, 1, 4, 2),
List(2, 4, 1, 3)))

queens(4) map (_.listen.value) foreach println

(List(3, 1, 4, 2),List(

2 is safe for List(),

4 is safe for List(2),

1 is safe for List(4, 2),

3 is safe for List(1, 4, 2)))
(List(2, 4, 1, 3),List(

3 is safe for List(),

is safe for List(3),

is safe for List(1, 3),

is safe for List(4, 1, 3)))

N DR

In order to get oneMoreQueens to log information about queens that are unsafe to add to a board, we are going to comment out the guard\
(constraint) that causes oneMoreQueens to backtrack whenever an attempt is made to add an unsafe queen.

if safe(queen)

The next slide shows the results that are returned by the queens function after doing that (with some spacing added to aid comprehension).j

(List(4, 3, 2, 1), List(

1 is safe for List(),

2 is unsafe for List(1),

3 is unsafe for List(2, 1),

4 is unsafe for List(3, 2, 1)))

(List(3, 4, 2, 1), List(

1 is safe for List(),

2 is unsafe for List(1),

4 is safe for List(2, 1),

3 is unsafe for List(4, 2, 1)))

(List(4, 2, 3, 1), List(

1 is safe for List(),

3 is safe for List(1),

2 is unsafe for List(3, 1),

4 is unsafe for List(2, 3, 1)))

(List(2, 4, 3, 1), List(

1 is safe for List(),

3 is safe for List(1),

4 is unsafe for List(3, 1),
2 is safe for List(4, 3, 1)))

(List(3, 2, 4, 1), List(

1 is safe for List(),

4 is safe for List(1),

2 is safe for List(4, 1),

3 is unsafe for List(2, 4, 1)))

(List(2, 3, 4, 1), List(

1 is safe for List(),

4 is safe for List(1),

3 is unsafe for List(4, 1),

2 is unsafe for List(3, 4, 1)))

(List(3, 4, 1, 2),List(

2 is safe for List(),

1 is unsafe for List(2),

4 is unsafe for List(1, 2),

3 is unsafe for List(4, 1, 2)))

(List(4, 1, 3, 2),List(

2 is safe for List(),

3 is unsafe for List(2),

1 is safe for List(3, 2),

4 is safe for List(1, 3, 2)))

(List(1, 4, 3, 2),List(

2 is safe for List(),

3 is unsafe for List(2),

4 is unsafe for List(3, 2),

1 is unsafe for List(4, 3, 2)))

(List(3,1, 4, 2),List(
2 is safe for List(),
4 is safe for List(2),

1 is safe for List(4, 2),

3 is safe for List(1, 4, 2)))

(List(1, 3, 4, 2),List(

2 is safe for List(),

4 is safe for List(2),

3 is unsafe for List(4, 2),
1 is safe for List(3, 4, 2)))

(List(4, 2, 1, 3),List(

3 is safe for List(),

1 is safe for List(3),

2 is unsafe for List(1, 3),
4 is safe for List(2, 1, 3)))

(List(4, 3, 1, 2),List(

2 is safe for List(),

1 is unsafe for List(2),

3 is safe for List(1, 2),

4 is unsafe for List(3, 1, 2)))

(List(2, 4, 1, 3),List(
3 is safe for List(),
1 is safe for List(3),

4 is safe for List(1, 3),

2 is safe for List(4, 1, 3)))

(List(4, 1, 2, 3),List(

3 is safe for List(),

2 is unsafe for List(3),

1 is unsafe for List(2, 3),

4 is unsafe for List(1, 2, 3)))

(List(1, 4, 2, 3),List(

3 is safe for List(),

2 is unsafe for List(3),

4 is safe for List(2, 3),

1 is safe for List(4, 2, 3)))

(List(2, 1, 4, 3),List(

3 is safe for List(),

4 is unsafe for List(3),

1 is unsafe for List(4, 3),

2 is unsafe for List(1, 4, 3)))

(List(1, 2, 4, 3),List(

3 is safe for List(),

4 is unsafe for List(3),

2 is safe for List(4, 3),

1 is unsafe for List(2, 4, 3)))

(List(3, 2, 1, 4),List(

4 is safe for List(),

1 is safe for List(4),

2 is unsafe for List(1, 4),

3 is unsafe for List(2, 1, 4)))

(List(2, 3, 1, 4),List(

4 is safe for List(),

1 is safe for List(4),

3 is safe for List(1, 4),

2 is unsafe for List(3, 1, 4)))

(List(3, 1, 2, 4),List(

4 is safe for List(),

2 is safe for List(4),

1 is unsafe for List(2, 4),
3 is safe for List(1, 2, 4)))

(List(1, 3, 2, 4),List(

4 is safe for List(),

2 is safe for List(4),

3 is unsafe for List(2, 4),

1 is unsafe for List(3, 2, 4)))

(List(2, 1, 3, 4),List(

4 is safe for List(),

3 is unsafe for List(4),

1 is safe for List(3, 4),

2 is unsafe for List(1, 3, 4)))

(List(1, 2, 3, 4),List(

4 is safe for List(),

3 is unsafe for List(4),

2 is unsafe for List(3, 4),

1 is unsafe for List(2, 3, 4)))

ﬂrmed with the information ih

those logging events, we are now 2 T
able to update our tree so that -
unsafe queens are highlighted in 2 S
red and the unfruitful paths — ([1],[2,3,4]) ([3,11,[2,4]) A .

associated with to those unsafe ([2 4 1] [3]) 2
queen additions (paths normally ,4,11, —
ignored by the queens function) ([4; 1];[2;3]) 3 —_—
are greyed out. _

1
— ([2],[1,3,4]) — 3 —
u@philip_schwarz I ([4 2] [1 3]) - ([11412]1[3]) - ([3111412]1[]) -

14 ’ ? 3 —_—

([1,[1,2,3,4]) —

_ 2
WA (41510 — (241310 —

— ([31,[1,2,4]) — 2 :
4 _
1.41,[2,3 2 —
(11,4],12,3]) (3,1,41,[2]) — 2
— ([41,[1,2,3]) ([2,4],(1,3]) 313 _

3

That’s all for Part 4.)

| hope you found it useful.

See you in Part 5.)

