
to flatMap, first map and then flatten
to foldMap, first map and then fold
to traverse, first map and then sequence

to flatten, just flatMap identity
to fold, just foldMap identity
to sequence, just traverse with identity

def flatMap[A,B](ma: F[A])(f: A ⇒ F[B]): F[B] = flatten(map(ma)(f))
def foldMap[A,B:Monoid](fa: F[A])(f: A ⇒ B): B = fold(map(fa)(f))
def traverse[M[_]:Applicative,A,B](fa: F[A])(f: A ⇒ M[B]): M[F[B]] = sequence(map(fa)(f))

def flatten[A](mma: F[F[A]]): F[A] = flatMap(mma)(x ⇒ x)
def fold[A:Monoid](fa: F[A]): A = foldMap(fa)(x ⇒ x)
def sequence[M[_]:Applicative,A](fma: F[M[A]]): M[F[A]] = traverse(fma)(x ⇒ x)

While this is just a simple observation, I think it is a nice
example of the symmetries that help us reason about
functional programs.

Of course I am not suggesting that flatMap, traverse and
foldMap are actually implemented this way, just that this
definition helps us understand them.

‡ see next slide for a caveat.

@philip_schwarz

Symmetry in the interrelation of flatMap/foldMap/traverse and flatten/fold/sequence

‡

‡

flatMapping is mapping and then flattening - flattening is just flatMapping identity

traversing is mapping and then sequencing - sequencing is just traversing with identity

foldMapping is mapping and then folding – folding is just foldMapping identity ‡

trait Foldable[F[_]] { self ⇒

 def foldMap[A,B:Monoid](fa: F[A])(f: A ⇒ B): B = fold(map(fa)(f))

 def fold[A:Monoid](fa: F[A]): A = foldMap(fa)(x ⇒ x)

 …
}

trait Traverse[F[_]] extends Functor[F] with Foldable[F] { self ⇒

def traverse[M[_]:Applicative,A,B](fa: F[A])(f: A ⇒ M[B]): M[F[B]] = sequence(map(fa)(f))

def sequence[M[_]:Applicative,A](fma: F[M[A]]): M[F[A]] = traverse(fma)(x ⇒ x)

 override def foldMap[A,B:Monoid](fa: F[A])(f: A ⇒ B): B = fold(map(fa)(f))
 …
}

trait Monad[F[_]] extends Functor[F] { self ⇒

def flatMap[A,B](ma: F[A])(f: A ⇒ F[B]): F[B] = flatten(map(ma)(f))

 def flatten[A](mma: F[F[A]]): F[A] = flatMap(mma)(x ⇒ x)

 …
}

to flatMap, first map and then flatten
to foldMap, first map and then fold
to traverse, first map and then sequence

to flatten, just flatMap identity
to fold, just foldMap identity
to sequence, just traverse with identity

Note that Traverse extends both Foldable
and Functor! Importantly, Foldable itself
can’t extend Functor. Even though it’s
possible to write map in terms of a fold for
most foldable data structures like List, it’s
not possible in general.

‡ While in most cases it is possible for Foldable’s
foldMap to be defined in terms of map, it is not
always possible. Traverse’s foldMap can instead
always be defined in terms of map.

@philip_schwarz

FP in Scala

….

….
….

….

‡

