
The Debt Metaphor
Ward Cunningham

in his 2009 YouTube video

@philip_schwarzslides by https://fpilluminated.com/

Semantic
Diffusion

Debt
Metaphor

http://fpilluminated.com/

Martin Fowler
 @martinfowler

I have the habit of creating neologisms to describe the things I see in software development.

It's a common habit amongst writers in this field, for software development still lacks much useful jargon.

One of the problems with building a jargon is that terms are vulnerable to losing their meaning, in a
process of semantic diffusion - to use yet another potential addition to our jargon.

Semantic diffusion occurs when you have a word that is coined by a person or group, often with a pretty
good definition, but then gets spread through the wider community in a way that weakens that definition.

This weakening risks losing the definition entirely - and with it any usefulness to the term.

…

Semantic Diffusion

https://martinfowler.com/bliki/SemanticDiffusion.html

@philip_schwarz

Like many other terms in software development, the Debt Metaphor
is not immune from what Martin Fowler calls Semantic Diffusion

https://martinfowler.com/bliki/SemanticDiffusion.html

This deck begins with a transcript of the YouTube video in which Ward Cunningham
• defines the Debt Metaphor (a term he coined)
• addresses the confusion he has noticed in some people’s understanding of the term

The deck continues with a visual summary of the video. The aim of the summary is twofold:
• provide a quick and easy reminder of the metaphor’s original definition
• help combat the semantic diffusion of the metaphor@philip_schwarz

Metaphor Debt

Speed

Burden

Agility

I became interested in the way metaphors influence
how we think, after reading George Lakoff and Mark
Johnson’s Metaphors We Live By.

An important idea is that we reason by analogy with
the metaphors that have entered our language.

I coined the Debt Metaphor to explain the refactoring that we were doing on the WyCash product.

This was an early product done in Digitalk Smalltalk, and it was important to me that we accumulate the learnings we did about the application
over time by modifying the program to look as if we had known what we are doing all along, and to look as if it had been easy to do in
Smalltalk.

The explanation I gave to my boss, and this was financial software, was a financial analogy I called the debt metaphor, and that said that if we
fail to make our program align with what we then understood to be the proper way to think about our financial objects, then we were going
to continually stumble over that disagreement, and that would slow us down, which is like paying interest on a loan.

With borrowed money you can do something sooner than you might otherwise, but
then, until you pay back that money, you’ll be paying interest.

I thought borrowing money was a good idea, I thought that rushing software out
the door to get some experience with it was a good idea, but that of course, you
would eventually go back and as you learn things about that software, you would
repay that loan by refactoring the program to reflect your experience as you
acquired it.

A lot of bloggers at least have explained the debt metaphor and confused it, I
think, with the idea that you could write code poorly with the intention of doing
a good job later and thinking that that was the primary source of debt.

I am never in favour of writing code poorly, but I am in favour of writing code to
reflect your current understanding of a problem even if that understanding is
partial.

If you want to be able to go into debt that way, by developing software that you
don’t completely understand, you are wise to make that software reflect your
understanding as best you can, so that when it does come time to refactor, it’s
clear what you were thinking when you wrote it, and making it easier to refactor
it into what your current thinking is now.

In other words, the whole debt metaphor, or let’s say, the ability to pay back
debt, and make the debt metaphor work for your advantage, depends upon you
writing code that is clean enough to be able to refactor as you come to
understand your problem.

I think that’s a good methodology, it is at the heart of extreme programming (XP).

The debt metaphor is an explanation, one of many explanations why XP works.

I think that there were plenty of cases were people would rush software out the door and learn things but
never put that learning back into the program, and that by analogy was borrowing money thinking that
you never had to pay it back.

Of course if you do that, say with your credit card, eventually all your income goes to interest and you
purchasing power goes to zero.

By the same token, if you develop a program for a long period of time by only adding features and never
reorganizing it to reflect your understanding of those features, then eventually that program simply
does not contain any understanding and all efforts to work on it take longer and longer, in other
words, the interest is total, you’ll make zero progress.

Debt Metaphor 15 Feb 2009Ward Cunningham

The remaining five slides are a
visual summary of the video.

borrowing money do something sooner

rushing software out the door learn things about that software,
get experience with it

is a good idea because it allows us to

repay the loan paying interest on the loan

until we

make the program align with our
newly acquired understanding
of the proper way to think about
domain entities

continually stumbling
over the misalignment,
which slows us down

we can’t avoid

repay the loan

refactor the program to reflect our
newly acquired experience, put our

learning back into the program

so we can

therefore we eventually

is a good idea because it allows us to

we can’t avoid

designed using resources from Flaticon.com

Debt Metaphor
Confusion

borrowing money do something sooner

rushing software out the door learn things about that software,
get experience with it

repay the loan

never having to

refactor the program to reflect our
newly acquired experience, put

our learning back into the program

whole
income

interest
payments

goes to

purchasing
power

goes to

zero

if you don’t pay back, e.g. on your credit card if you develop a program for a long period of time by only adding features
and never reorganizing it to reflect your understanding of those features

then eventually that program simply does not
contain any understanding, and all efforts to work
on it take longer and longer, in other words, the
interest is total, you’ll make zero progress.

zero
progress

all effort just
pays interest

is a good idea because it allows us to

is a good idea because it allows us to

designed using resources from Flaticon.com

take on debt

write code poorly do a good job later

Debt Metaphor
Confusion

repay the loan
interest payments

“I am never in favour of writing code poorly”

designed using resources from Flaticon.com

I am never in favour of writing code poorly.
I am in favour of writing code to reflect your current understanding of a problem even if that understanding is partial

If you want to be able to go into debt that way…

by developing software that you don’t completely understand

you are wise to

make that software reflect your understanding as best you can

It is clear what you were thinking when you wrote it

so that when it does come time to refactor

it is easier to refactor it into what your current thinking is now

designed using resources from Flaticon.com

The ability to pay back debt

and make the debt metaphor work for your advantage

depends upon

you writing code that is clean enough

Debt
Metaphor for your

to be able to refactor

as you come to understand your problem

designed using resources from Flaticon.com

That’s all. I hope you
found it useful.

