
Monad Transformers
inspired by, and based on, Erik Bakker’s talk

Options in Futures, how to unsuck them

@philip_schwarzslides by

Part 1

This slide deck is inspired, and based on, a great talk by Erik Bakker:

author of

Options in Futures, how to unsuck them @eamelink

In his book, Functional Programming for Mortals with Scalaz, Sam Halliday has a ‘Thanks’ section in
which he says: “Some material was particularly helpful for my own understanding of the concepts that are
in this book”. That section thanks Erik Bakker for ‘Options in Futures, how to unsuck them’

@fommilSam Halliday

https://twitter.com/BartoszMilewski

We have a problem: we want to add two numbers but both
of the numbers are optional.

def getX: Option[Int] = Some(3)
def getY: Option[Int] = Some(5)

So how can we do that?

We can use flatMap and then map:

val z: Option[Int] =
getX flatMap { x =>

getY map { y =>
x + y

}
}

assert(z == Some(8))

val z: Option[Int] =
for {

x <- getX
y <- getY

} yield x + y

assert(z == Some(8))

This is exactly the same as the previous one.

The latter one is just syntactic sugar for the
map and flatMap but it is slightly nicer
because you don't get the nesting and it is
visually clearer what you are doing.

And what is interesting here is that this doesn't just work for Options, it works for anything
that has the necessary methods that the for comprehension desugars to, so in the cases
that I am using that means the objects need to have map and flatMap methods.

So this is just a mechanical transformation that is just written in the
Scala language specification: if you have this for comprehension then
this is the way it desugars, it is very early on in the compile phase, and
it is really just a mechanical transformation.

There is a slightly nicer way which
involves a for comprehension.

So, we are familiar with some objects that have map and flatMap
methods: Option, Future, List, etc, so we can use all these in for
comprehensions.

So for example take this one: it's the same problem except this time the
numbers are not in an Option but they are in a Future

def getX: Future[Int] = Future(5)
def getY: Future[Int] = Future(3)

We can still do it with
map and flatMap:

val z: Future[Int] =
getX flatMap { x =>

getY map { y =>
x + y

}
}

Await.ready(z,Duration.Inf)
assert(z.toString == "Future(Success(8))")

val z: Future[Int] =
 for {
 x <- getX
 y <- getY
 } yield x + y

We can use the same for comprehension,
except the result is a Future of an Int this time

Erik Bakker
 @eamelink

def getX: List[Int] = List(1,2)
def getY: List[Int] = List(3,4)

val z: List[Int] =
 getX flatMap { x =>

getY map { y =>
x + y

}
 }

val z: List[Int] =
 for {

x <- getX
y <- getY

 } yield x + y

assert(z == List(4,5,5,6))

And here is an example for List

def getX: Future[Int] = Future(3)
def getY: Future[Int] = Future(5)

val z: Future[Int] =
 getX flatMap { x =>
 getY map { y =>
 x + y
 }
 }

val z: Future[Int] =
 for {
 x <- getX
 y <- getY
 } yield x + y

Await.ready(z,Duration.Inf)
assert(z.toString == "Future(Success(8))”)

def getX: Option[Int] = Some(3)
def getY: Option[Int] = Some(5)

val z: Option[Int] =
getX flatMap { x =>

getY map { y =>
x + y

}
}

val z: Option[Int] =
 for {

x <- getX
y <- getY

 } yield x + y

assert(z == Some(8))

def getX: List[Int] = List(1,2)
def getY: List[Int] = List(3,4)

val z: List[Int] =
 getX flatMap { x =>

getY map { y =>
x + y

}
 }

val z: List[Int] =
 for {

x <- getX
y <- getY

 } yield x + y

assert(z == List(4,5,5,6))

def getX: Future[Int] = Future(3)
def getY: Future[Int] = Future(5)

val z: Future[Int] =
 getX flatMap { x =>
 getY map { y =>
 x + y
 }
 }

val z: Future[Int] =
 for {
 x <- getX
 y <- getY
 } yield x + y

Await.ready(z,Duration.Inf)
assert(z.toString == "Future(Success(8))”)

def getX: Option[Int] = Some(3)
def getY: Option[Int] = Some(5)

val z: Option[Int] =
getX flatMap { x =>

getY map { y =>
x + y

}
}

val z: Option[Int] =
 for {

x <- getX
y <- getY

 } yield x + y

assert(z == Some(8))

def getX: List[Int] = List(1,2)
def getY: List[Int] = List(3,4)

val z: List[Int] =
 getX flatMap { x =>

getY map { y =>
x + y

}
 }

val z: List[Int] =
 for {

x <- getX
y <- getY

 } yield x + y

assert(z == List(4,5,5,6))

@philip_schwarz

As Erik said, we can use ’the same‘
for comprehension for Option[Int],
Future[Int], List[Int], etc.

Similarly for the nested flatMap and
map.

But what do we mean by ‘the same’?

We mean that copies of ’the same‘
for comprehension, or copies of ’the
same‘ nested flatMap/map, can be
used for Option[Int], Future[Int],
List[Int]. This is because it is only the
type of z, getX and getY, that needs
to change.

What does it take to allow the very same code, rather than copies of the same code, to be used for
Option[Int], Future[Int], List[Int], etc?

Is it possible to write a single method, sum say, that takes a pair of Option[Int] or a pair of Future[Int] or a
pair of List[Int], etc, and uses the nested flatMap/map, or the for comprehension, to add two integers and
return an Option[Int] or Future[Int] or List[Int], etc?

i.e. is it possible to get the following two methods to work?

https://www.slideshare.net/pjschwarz/ abstracting-over-the-monad-yielded-by-a-for-comprehension-and-its-generators

@philip_schwarz

If you are interested in this question, and you are quite familiar with Monads,
then see the following short slide deck, otherwise you can safely move on.

def sum[M[_]](mx:M[Int], my:M[Int])(implicit m: Monad[M]): M[Int] =
m.flatMap(mx) { x =>

m.map(my) { y =>
x + y

}
}

def sum[M[_]](mx:M[Int],my:M[Int])(implicit m: Monad[M]): M[Int] =
for {

x <- mx
y <- my

} yield x + y

https://www.slideshare.net/pjschwarz/natural-transformations

Erik Bakker
 @eamelink

So far so easy: what’s the problem?

The problem that you run into a lot these days, because there are so many asynchronous libraries that return futures, is that you get nested things, nested
containers, nested contexts, for example, a Future with an Option inside, and if you try to work with these you might have noticed, this kind of sucks.

So what we are going to see in this talk is a way to unsuck working with these things.

def getX: Future[Option[Int]] = Future(Some(5))
def getY: Future[Option[Int]] = Future(Some(3))

If we try to use a for comprehension like we did for the previous example, then this doesn't work because if
you write it like this then in the for comprehension, left of the arrows, the x and y are Option of Int and
they are not Ints, so in the yield they are still Option of Int, and we cannot just add them.

Of course there is no real issue, we can solve
this, we can make this program where we just
want to add these two integers, we just use
some more maps and flatMaps, first to map the
futures and then once we have got stuff out of
the futures we map and flatMap some more to
map the options.

val z: Future[Option[Int]] =
getX flatMap { xOpt =>

getY map { yOpt =>
xOpt flatMap { x =>

yOpt map { y =>
x + y

}
}

}
}

But this gets messy - it is this messy if
you have two levels deep and it gets
much messier if you have more things
coming out of a Future or Option.

You can improve slightly on this in an easy way by doing pattern matching immediately, so you can write it like this and
avoid mapping on the Option because we immediately pattern match on the None and the Some of the Option

val z: Future[Option[Int]] =
getX flatMap { xOpt =>

xOpt match {
case None => Future.successful(None)
case Some(x) => getY map { yOpt =>

yOpt match {
case None => None
case Some(y) => Some(x + y)

}
}

}
}

val z: Future[Option[Int]] =
getX flatMap { xOpt =>

getY map { yOpt =>
xOpt flatMap { x =>

yOpt map { y =>
x + y

}
}

}
}

val z: Future[Option[Int]] =
getX flatMap { xOpt =>

getY map { yOpt =>
(xOpt,yOpt) match {

case (Some(x),Some(y)) => Some(x + y)
case _ => None

}
}

}

Another way of improving
slightly on the above

@philip_schwarz

So, what is the main issue that we have? the main issue that we have is that we are
trying to use map and flatMap on a thing but map and flatMap do not work on the most
inner value, so the integer in the structure, it works only one level deep, so if we use
map and flatMap on Future, then what we work with is the Option, while what we
actually want to work on is the integer, so that is basically what we are going to solve.

And the solution is not very hard.

We'll just define a new wrapper, let's call it FutureOption, that contains one of these values, that contains a Future of Option.

case class FutureOption[A](inner: Future[Option[A]])

And now we are going to implement map and flatMap on this thing in such a way that it works on the innermost
value.

Then you get to the point: what is a map function? How should it look?

Well, for me that is just monkey see monkey do: we take a look at some other map methods, on List for example, on
Option and Future, and you can see that they all have the same structure.

// List[A]
def map[B](f: A => B): List[B]

// Option[A]
def map[B](f: A => B): Option[B]

// Future[A]
def map[B](f: A => B): Future[B]

map[B](f:A => B)(implicit executor:ExecutionContext):Future[B]

except in Scala the last one also takes an execution
context, but we’ll just ignore that for now, actually, for the
entire talk.

// List[A]
def map[B](f: A => B): List[B]

// Option[A]
def map[B](f: A => B): Option[B]

// Future[A]
def map[B](f: A => B): Future[B]

But this is how map looks on most of the other stuff in Scala so let’s just mimic that.

We are going to implement on our FutureOption a method map like this:

def map[B](f: A => B): FutureOption[B]

That’s not terribly hard

case class FutureOption[A](inner: Future[Option[A]]){

 def map[B](f: A => B): FutureOption[B] =
 FutureOption { inner map { _ map { f } } }

}

We are done. One down, one to go: flatMap.

How does flatMap look like on these existing classes from the standard library?

// List[A]
def flatMap[B](f: A => List[B]): List[B]

// Option[A]
def flatMap[B](f: A => Option[B]): Option[B]

// Future[A]
def flatMap[B](f: A => Future[B]): Future[B]

Very similar, except the function is not A to B, but it’s A to a B
inside the container, inside the context, for List, Option,
Future, very similar, and looking at that we can define the
function we need to implement:

def flatMap[B](f:A => FutureOption[B]):FutureOption[B]

Implementing flatMap is slightly harder, it’s not hard, it’s an interesting puzzle,
so I encourage you to try, but as you can see, the solution is not very hard

case class FutureOption[A](inner: Future[Option[A]]){

 def map[B](f: A => B): FutureOption[B] =
 FutureOption { inner map { _ map { f } } }

 def flatMap[B](f: A => FutureOption[B]): FutureOption[B] =
 FutureOption {
 inner flatMap {
 case Some(a) => f(a).inner
 case None => Future.successful(None)
 }
 }
}

That completes our FutureOption class. It now has a map and a flatMap function, and they both work on the
inner value, they don’t work on the Option inside the Future, they work on the value of type A that’s at the centre
of this structure.

And given that we now have a thing that has a map and a flatMap, we can use this in for comprehensions, because
for comprehensions work on anything with map and flatMap, there is no trait that you need to implement, there is
nothing, as long as you have map and flatMap, it will just work.

.

So back to our original problem.

getX and getY still return a Future of an Option of an Int

and we want to add the two integers that are at the centre of these structures, so now we just wrap
our Future of Option of Int in our new FutureOption class, use that in a for comprehension,
and now in the for comprehension, x and y are integers and we can just add them.

def getX: Future[Option[Int]] = Future(Some(5))
def getY: Future[Option[Int]] = Future(Some(3))

val z: FutureOption[Int] =
 for {
 x <- FutureOption(getX)
 y <- FutureOption(getY)
 } yield x + y

What happened when we used straight Future[Option[Int]]

Of course, the result that we get there is also a FutureOption of Int
which is probably not the structure that you want to continue using in the
remainder of your program, this is just a class that we made up, so we have
to get the inner value out again, which is easy, we just take the inner field

val z1: FutureOption[Int] =
 for {
 x <- FutureOption(getX)
 y <- FutureOption(getY)
 } yield x + y

val z = z1.inner

val FutureOption(z): FutureOption[Int] =
 for {
 x <- FutureOption(getX)
 y <- FutureOption(getY)
 } yield x + yor get to the inner value using pattern matching

What happens now that we use FutureOption

case class FutureOption[A](inner: Future[Option[A]]){

 def map[B](f: A => B): FutureOption[B] =
 FutureOption { inner map { _ map { f } } }

 def flatMap[B](f:A => FutureOption[B]): FutureOption[B] =
 FutureOption {
 inner flatMap {
 case Some(a) => f(a).inner
 case None => Future.successful(None)
 }
 }
}

def getX: Future[Option[Int]] = Future(Some(5))
def getY: Future[Option[Int]] = Future(Some(3))

val FutureOption(z): FutureOption[Int] =
 for {
 x <- FutureOption(getX)
 y <- FutureOption(getY)
 } yield x + y

val result = Await.result(z,Duration.Inf)
assert(result == Some(8))

case class ListOption[A](inner: List[Option[A]]){

 def map[B](f: A => B): ListOption[B] =
 ListOption { inner map { _ map { f } } }

 def flatMap[B](f:A => ListOption[B]): ListOption[B] =
 ListOption {
 inner flatMap {
 case Some(a) => f(a).inner
 case None => List(None)
 }
 }
}

def getX: List[Option[Int]] = List(Some(5), Some(6))
def getY: List[Option[Int]] = List(Some(3), Some(4))

val ListOption(z): ListOption[Int] =
 for {
 x <- ListOption(getX)
 y <- ListOption(getY)
 } yield x + y

assert(z == List(Some(8),Some(9),Some(9),Some(10)))

Let’s see again the whole code for
the FutureOption example

And here is another example: ListOption

So, basically this is almost everything there is to it: we have an interesting structure and we just wrap it
in something that knows how to get the innermost value, we define map and flatMap for that, and then
we can use it in for comprehensions.

Except that the thing we have now is very specific, it only works on this structure: a Future with an
Option inside, but that is not the only structure that we are working with, we have values that come in
all different kinds of shapes, so we need to see if we can generalize this a bit.

So in part 2, we are going to try to generalize this very simple class, that you could have written, into
something that is more widely applicable.

Part 2
Generalizing FutureOption

case class FutureOption[A](inner: Future[Option[A]]){

 def map[B](f: A => B): FutureOption[B] =
 FutureOption { inner map { _ map { f } } }

 def flatMap[B](f: A => FutureOption[B]): FutureOption[B] =
 FutureOption {
 inner flatMap {
 case Some(a) => f(a).inner
 case None => Future.successful(None)
 }
 }
}

So take another good look at FutureOption. What you
see here is that from the Future, the inner, we only use
three things. We use map, we use flatMap and we create
a new one, we just create a new Future with some
value inside.

So that’s interesting to notice.

We only do three things with the outer container:
• map
• flatMap
• create a new one

So that is something we could abstract over.

So let's say, instead of making this thing for Future, let's make an interface for this.

Yes, let's just make a trait that has a type parameter, and the type is a Future, that
has a map and a flatMap method, and give it a suitable name, people have done
that, and the suitable name for this is Monad. These are the operations we have on monads!

So let’s define a Monad trait that looks like this

trait Monad[M[_]] {
def map[A, B](ma: M[A])(f: A => B): M[B]
def flatMap[A, B](ma: M[A])(f: A => M[B]): M[B]
def create[A](a:A): M[A]

}

It has a map and a flatMap that look very similar to the ones we have
defined before. The only difference is then we defined map and flatMap
on an object and here the object is external, so the first parameter to map
and flatMap is the thing that you want to map and flatMap.

But using this trait we can generalize our FutureOption class and make it an AnyMonadOption class that is parameterised not just by the inner value
type but also by the type of Monad, the outer of the stack, so we had a Future Option something, I call Future the outer and Option the inner thing.

case class AnyMonadOption[M[_], A](inner: M[Option[A]])(implicit m: Monad[M]) {

 def map[B](f: A => B): AnyMonadOption[M, B] =
 AnyMonadOption {
 m.map(inner)(_ map { f })
 }

 def flatMap[B](f: A => AnyMonadOption[M, B]): AnyMonadOption[M, B] =
 AnyMonadOption {
 m.flatMap(inner){
 case Some(a) => f(a).inner
 case None => m.create(None)
 }
 }
}

So we have paremeterised over the outer one, which is M, and then
we say this thing takes a value, some M with inside it an Option of
A. We need a Monad instance for this thing, otherwise we don’t
know how we would map and flatMap the M. Now that we have
the type class for that we can do that, and now we can redefine map
and flatMap to not call map and flatMap on the object itself, but on
the implementation of the Monad trait for this thing.

So what would we need to reuse this for Futures, Options? We
have to implement this Monad trait for Futures. Well, you can
imagine that it is not to hard, to implement map, flatMap and create
for Futures, because it already has map and flatMap methods.

So that’s easy.

let’s have a go at using our
AnyMonadOption with
Future

def getX: Future[Option[Int]] = Future(Some(5))(global)
def getY: Future[Option[Int]] = Future(Some(3))(global)

implicit val futureMonad: Monad[Future] = new Monad[Future] {
 def map[A, B](ma: Future[A])(f: A => B): Future[B] = ma map f
 def flatMap[A, B](ma: Future[A])(f: A => Future[B]): Future[B] = ma flatMap f
 def create[A](a: A): Future[A] = Future(a)
}

val z: AnyMonadOption[Future,Int] = for {
 x <- AnyMonadOption(getX)(futureMonad)
 y <- AnyMonadOption(getY)(futureMonad)
} yield x + y

val result: Option[Int] = Await.result(z.inner,Duration.Inf)
assert(result == Some(8))

def getX: List[Option[Int]] = List(Some(5),Some(6))
def getY: List[Option[Int]] = List(Some(3),Some(4))

implicit val listMonad: Monad[List] = new Monad[List] {
 def map[A, B](ma: List[A])(f: A => B): List[B] = ma map f
 def flatMap[A, B](ma: List[A])(f: A => List[B]): List[B] = ma flatMap f
 def create[A](a: A): List[A] = List(a)
}

val z: AnyMonadOption[List,Int] = for {
 x <- AnyMonadOption(getX)(listMonad)
 y <- AnyMonadOption(getY)(listMonad)
} yield x + y

assert(z.inner == List(Some(8),Some(9),Some(9),Some(10)))

and now with List

@philip_schwarz

implicit val futureMonad: Monad[Future] = new Monad[Future] {
 def map[A, B](ma: Future[A])(f: A => B): Future[B] = ma map f
 def flatMap[A, B](ma: Future[A])(f: A => Future[B]): Future[B] = ma flatMap f
 def create[A](a: A): Future[A] = Future(a)
}

implicit val listMonad: Monad[List] = new Monad[List] {
 def map[A, B](ma: List[A])(f: A => B): List[B] = ma map f
 def flatMap[A, B](ma: List[A])(f: A => List[B]): List[B] = ma flatMap f
 def create[A](a: A): List[A] = List(a)
}

case class AnyMonadOption[M[_], A](inner: M[Option[A]])(implicit m: Monad[M]) {

 def map[B](f: A => B): AnyMonadOption[M, B] =
 AnyMonadOption {
 m.map(inner)(_ map { f })
 }

 def flatMap[B](f: A => AnyMonadOption[M, B]): AnyMonadOption[M, B] =
 AnyMonadOption {
 m.flatMap(inner){
 case Some(a) => f(a).inner
 case None => m.create(None)
 }
 }
}

trait Monad[M[_]] {
def map[A, B](ma: M[A])(f: A => B): M[B]
def flatMap[A, B](ma: M[A])(f: A => M[B]): M[B]
def create[A](a:A): M[A]

}

case class FutureOption[A](inner: Future[Option[A]]){

 def map[B](f: A => B): FutureOption[B] =
 FutureOption { inner map { _ map { f } } }

 def flatMap[B](f:A => FutureOption[B]): FutureOption[B] =
 FutureOption {
 inner flatMap {
 case Some(a) => f(a).inner
 case None => Future.successful(None)
 }
 }
}

case class ListOption[A](inner: List[Option[A]]){

 def map[B](f: A => B): ListOption[B] =
 ListOption { inner map { _ map { f } } }

 def flatMap[B](f:A => ListOption[B]): ListOption[B] =
 ListOption {
 inner flatMap {
 case Some(a) => f(a).inner
 case None => List(None)
 }
 }
}

Just as a recap, let’s compare the initial approach, in
which we have to write a new class for each outer type
that we want to wrap an Option with, i.e. Future, List, etc

And the improved approach, in which instead of writing a new class, for
each outer type Future, List, etc, we instantiate AnyMonadOption for
the outer type (and supply an implicit monad for the outer type).

So what we have got now is some sort of structure that
takes a Monad and it also is a Monad itself. Why is it a
Monad? Because it has map and flatMap methods and it
has a constructor, so you can create new ones if you put a
value in, and people also have given this a name, they say
this is a MonadTransformer because it takes a Monad and
it transforms it into a Monad that behaves slightly
differently.

case class AnyMonadOption[M[_], A](inner: M[Option[A]])(implicit m: Monad[M]) {

 def map[B](f: A => B): AnyMonadOption[M, B] =
 AnyMonadOption {
 m.map(inner)(_ map { f })
 }

 def flatMap[B](f: A => AnyMonadOption[M, B]): AnyMonadOption[M, B] =
 AnyMonadOption {
 m.flatMap(inner){
 case Some(a) => f(a).inner
 case None => m.create(None)
 }
 }
}

AnyMonadOption[M[_], A]
is a

Monad Transformer

A natural question would be, hey, if we have generalised over the outer container,
the Future, can we also generalize over the inner container, the Option?

Can we basically make some class and whatever stack of monads you put in, it will
end up a single monad and it is going to be perfect?

Let’s have a go at at generalising AnyMonadOption
over the inner container.

So we are taking AnyMonadOption

case class AnyMonadOption[M[_], A](inner: M[Option[A]])(implicit m: Monad[M]) {

 def map[B](f: A => B): AnyMonadOption[M, B] = …

 def flatMap[B](f: A => AnyMonadOption[M, B]): AnyMonadOption[M, B] = …
}

case class AnyMonadMonad[M[_], N[_], A](inner: M[N[A]])(implicit m: Monad[M], n: Monad[M]) {

 def map[B](f: A => B): AnyMonadMonad[M, N, B] = ???

 def flatMap[B](f: A => AnyMonadMonad[M, N, B]): AnyMonadMonad[M, N, B] = ???

}

And turning it into AnyMonadMonad

and we now want to have a go at implementing map and flatMap

@philip_schwarz

Implementing map is easy.

Here is how we can modify the map implementation of AnyMonadOption to obtain a map implementation for AnyMonadMonad.

def map[B](f: A => B): AnyMonadOption[M, B] =
 AnyMonadOption {
 m.map(inner)(_ map { f })
 }

def map[B](f: A => B): AnyMonadMonad[M, N, B] =
 AnyMonadMonad {
 m.map(inner)(na => n.map(na){ f })
 }

def getX: Future[Option[Int]] = Future(Some(5))(global)

implicit val futureMonad: Monad[Future] = new Monad[Future] {
 def map[A, B](ma: Future[A])(f: A => B): Future[B] = ma map f
 def flatMap[A, B](ma: Future[A])(f: A => Future[B]): Future[B] = ma flatMap f
 def create[A](a: A): Future[A] = Future(a)
}

 implicit val optionMonad: Monad[Option] = new Monad[Option] {
 def map[A, B](ma: Option[A])(f: A => B): Option[B] = ma map f
 def flatMap[A, B](ma: Option[A])(f: A => Option[B]): Option[B] = ma flatMap f
 def create[A](a: A): Option[A] = Option(a)
}

val z: AnyMonadMonad[Future,Option,Int] = for {
 x <- AnyMonadMonad(getX)(futureMonad,optionMonad)
} yield x + 3

val result: Option[Int] = Await.result(z.inner,Duration.Inf)
assert(result == Some(8))

Let’s try it out.

Now let’s try to implement flatMap.

Let’s have a go at modifying the flatMap implementation of AnyMonadOption to obtain a flatMap implementation for AnyMonadMonad.

def flatMap[B](f: A => AnyMonadOption[M, B]): AnyMonadOption[M, B] =
 AnyMonadOption {
 m.flatMap(inner){
 case Some(a) => f(a).inner
 case None => m.create(None)
 }
 }

def flatMap[B](f: A => AnyMonadMonad[M, N, B]): AnyMonadMonad[M, N, B] =
 AnyMonadMonad {

m.flatMap(inner){ na =>
n.flatMap(na){ a => f(a).inner }

}
 }

Let’s just add types in a couple of places to aid comprehensionIt doesn’t work!

[error] found : M[N[B]]
[error] required: N[?]
[error] n.flatMap(na){ a => f(a).inner }
[error] ^

The problem is that f(a) yields an AnyMonadMonad[M, N, B] and so f(a).inner is an M[N[B]], whereas the n Monad’s flatMap is supposed to yield an N[B]:

But how can flatMap possibly turn M[N[B]] into N[B], without knowing anything about M and N other than that they are Monads? It can’t.

Note that it is possible for any monad to turn N[N[B]] into N[B], because every monad can define a function that does just that, i.e. join (aka flatten).

trait Monad[M[_]] {
def map[A, B](ma: M[A])(f: A => B): M[B]
def flatMap[A, B](ma: M[A])(f: A => M[B]): M[B]
def create[A](a:A): M[A]

 def join[A](mma:M[M[A]]): M[A] = flatMap(mma)(ma => ma)
}

But flattening N[N[B]] to N[B] is not the problem at
hand. The problem is turning M[N[B]] into N[B], which
AnyMonadMonad cannot do.

def flatMap[A, B](na: N[A])(f: A => N[B]): N[B]

def flatMap[B](f: A => AnyMonadMonad[M, N, B]): AnyMonadMonad[M, N, B] =
 AnyMonadMonad {

m.flatMap(inner:M[N[A]]){ na:N[A] =>
n.flatMap(na){ a:A => val mnb: M[N[B]] = f(a).inner; mnb }

}
 }

A natural question would be, hey, if we have generalised over the outer container,
the Future, can we also generalize over the inner container, the Option?

Can we basically make some class and whatever stack of monads you put in, it will
end up a single monad and it is going to be perfect?

So back to this question:

We had a go at at generalising AnyMonadOption over the inner container.

We tried taking AnyMonadOption and turning it into AnyMonadMonad

That is not possible apparently.

Maybe you have heard people say, or have read the phrase, monads are not composable, and this is basically what they mean: you can't
make a single recipe that takes two monads and transforms them into a new monad, you have to specialize it for one of the two
monads.

So we have made a specific recipe that works with any monad with an Option inside. We can make that, but we cannot make a
transformer for ‘any’ monad with ‘any’ other monad inside. That's not possible.

But we did not succeed: we were able
to implement map, but not flatMap

Here is Erik’s answer:

case class AnyMonadMonad[M[_], N[_], A](inner: M[N[A]])(implicit m: Monad[M], n: Monad[M]) {

 def map[B](f: A => B): AnyMonadMonad[M, N, B] = ???

 def flatMap[B](f: A => AnyMonadMonad[M, N, B]): AnyMonadMonad[M, N, B] = ???

}

@philip_schwarz

Monads are not composable.
We cannot make a single recipe that takes two monads and transforms them into a new monad.

We cannot make a generic transformer for ‘any’ monad with ‘any’ nested monad.

A Monad is both a Functor and
an Applicative.

Here we define a
Monad in terms of
unit and flatMap

Functors compose. i.e. a generic Functor can
be written that is the composition of any two
other Functors.

The same is true for Applicatives: they also
compose.

But it turns out that Monads do not
compose.

See the next two slides for how FPiS puts it,
and how it says that monad transformers are a
way of addressing this problem.

Answer to Exercise 12.11

You want to try writing flatMap in terms of Monad[F] and Monad[G].

def flatMap[A,B](mna: F[G[A]])(f: A => F[G[B]]): F[G[B]] =
 self.flatMap(na => G.flatMap(na)(a => ???))

Here all you have is f, which returns an F[G[B]]. For it to have the appropriate type to return from the argument to G.flatMap,
you’d need to be able to “swap” the F and G types. In other words, you’d need a distributive law. Such an operation is not part
of the Monad interface.

EXERCISE 12.11

Try to write compose on Monad. It’s not possible, but it is instructive to attempt it and understand why this is the case.

 def compose[G[_]](G: Monad[G]): Monad[({type f[x] = F[G[x]]})#f]

Functional Programming in Scala
(by Paul Chiusano and Runar Bjarnason)

@pchiusano @runarorama

(by Runar Bjarnason)
@runarorama

def flatMap[B](f: A => AnyMonadMonad[M, N, B]): AnyMonadMonad[M, N, B] =
 AnyMonadMonad {

m.flatMap(inner:M[N[A]]){ na:N[A] =>
n.flatMap(na){ a:A => val mnb: M[N[B]] = f(a).inner; mnb }

}
 }

A companion booklet to
Functional Programming in Scala

Earlier, when we tried to implement flatMap for AnyMonadMonad, we couldn’t because
we weren’t able to swap M with N in M[N[B]] to allow n.flatMap to return an N[_]

https://twitter.com/pchiusano
https://twitter.com/runarorama
https://twitter.com/runarorama

Expressivity and power sometimes come at the price of compositionality and modularity.

The issue of composing monads is often addressed with a custom-written version of each monad that’s specifically
constructed for composition. This kind of thing is called a monad transformer. For example, the OptionT monad
transformer composes Option with any other monad:

The flatMap definition here maps over both M and Option, and flattens structures like
M[Option[M[Option[A]]]] to just M[Option[A]]. But this particular implementation is specific to Option.
And the general strategy of taking advantage of Traverse works only with traversable functors. To compose with
State (which can’t be traversed), for example, a specialized StateT monad transformer has to be written.
There’s no generic composition strategy that works for every monad.

case class OptionT[M[_],A](value: M[Option[A]])(implicit M: Monad[M]) {

 def flatMap[B](f: A => OptionT[M, B]): OptionT[M, B] =
 OptionT(value flatMap {
 case None => M.unit(None)
 case Some(a) => f(a).value
 })

}
Functional Programming in Scala
(by Paul Chiusano and Runar Bjarnason)

@pchiusano @runarorama

There is no generic composition strategy that works for every monad The issue of composing monads is often addressed with monad transformers

https://twitter.com/pchiusano
https://twitter.com/runarorama

If you want to know more about how
Functors and Applicatives compose but
Monads do not then see the following

@philip_schwarz
https://www.slideshare.net/pjschwarz/ https://www.slideshare.net/pjschwarz/monads-do-not-compose

https://www.slideshare.net/pjschwarz/functor-laws

We've made a monad transformer, we've defined a monad trait, it is all very easy, easily fits
on a single slide.

So hopefully you feel comfortably now that monad transformers are not a very hard
concept.

But you don't necessarily have to define them yourself in your code, of course. We could,
for example use the ones defined in the scalaz library. They have many more methods
defined on them beside map and flatMap and they also provide many instances for
monads, so they have the instance of the monad trait for List, for Option, for Future, etc,
which is very useful.

But they are fundamentally the same stuff as we just built, different in the details.

to be continued in part 2

