
Monads do not Compose

@philip_schwarzslides by

inspired by (and with excerpts from)

Functional Programming in Scala A companion booklet to

Functional Programming in Scala

not in a generic way - there is no general way of composing monads

A Monad is both a Functor and an Applicative.

If you want to know more about Applicative then see the following

@philip_schwarz

https://www.slideshare.net/pjschwarz/ https://www.slideshare.net/pjschwarz/applicative-functor-116035644

https://www.slideshare.net/pjschwarz/functor-laws

Functor trait Functor[F[_]] {

map def map[A, B](m: F[A], f: A ⇒ B): F[B]

Applicative trait Applicative[F[_]] extends Functor[F] {

unit def unit[A](a: ⇒ A): F[A]
map2 def map2[A,B,C](fa: F[A], fb: F[B])(f: (A, B) ⇒ C): F[C]

 override def map[A,B](fa: F[A])(f: A ⇒ B): F[B] = map2(fa,unit(()))((a,_) ⇒ f(a))

traverse def traverse[A,B](as: List[A])(f: A ⇒ F[B]): F[List[B]] = as.foldRight(unit(List[B]()))((a, fbs) ⇒ map2(f(a), fbs)(_::_)
sequence def sequence[A](lfa: List[F[A]]): F[List[A]] = traverse(lfa)(fa ⇒ fa)

Monad trait Monad[F[_]] extends Applicative[F]

flatMap def flatMap[A,B](ma: F[A])(f: A ⇒ F[B]): F[B]

 override def map[A,B](m: F[A])(f: A ⇒ B): F[B] = flatMap(m)(a ⇒ unit(f(a)))
 override def map2[A,B,C](ma: F[A], mb: F[B])(f: (A, B) ⇒ C): F[C] = flatMap(ma)(a ⇒ map(mb)(b ⇒ f(a, b)))

compose def compose[A,B,C](f: A ⇒ F[B], g: B ⇒ F[C]): A ⇒ F[C] = a ⇒ flatMap(f(a))(g)
join def join[A](mma: F[F[A]]): F[A] = flatMap(mma)(ma => ma)

listMonad val listMonad = new Monad[List] {

 override def unit[A](a: ⇒ A)= List(a)
 override def flatMap[A,B](ma: List[A])(f: A ⇒ List[B]) = ma flatMap f

A Monad is both a Functor and an Applicative

Here we define a Monad in terms of unit and flatMap

Yes, sequence and traverse really belong on
a Traverse trait, but they are not the main
focus here, just examples of functions using
Applicative functions unit and map2.

Functors compose.

On the next slide we look at a couple of examples.

If you would like to know more about Functor composition then see the following

@philip_schwarz

https://www.slideshare.net/pjschwarz/functor-composition

https://www.slideshare.net/pjschwarz/functor-laws

trait Functor[F[_]] {

 def map[A,B](fa: F[A])(f: A => B): F[B]

 def compose[G[_]](G:Functor[G]):Functor[λ[α=>F[G[α]]]] = {
 val self = this
 new Functor[λ[α => F[G[α]]]] {
 override def map[A, B](fga:F[G[A]])(f:A=>B):F[G[B]] =
 self.map(fga)(ga => G.map(ga)(f))
 }
 }
}

// Functor[List[Option]] = Functor[List] compose Functor[Option]
val optionListFunctor = listFunctor compose optionFunctor

assert(optionListFunctor.map(List(Some(1),Some(2),Some(3)))(double) == List(Some(2),Some(4),Some(6)))

// Functor[Option[List]] = Functor[Option] compose Functor[List]
val listOptionFunctor = optionFunctor compose listFunctor

assert(listOptionFunctor.map(Some(List(1,2,3)))(double) == Some(List(2,4,6)))

val double: Int => Int = _ * 2

implicit val listFunctor = new Functor[List] {
 def map[A, B](fa: List[A])(f: A => B): List[B] = fa map f
}

implicit val optionFunctor = new Functor[Option] {
 def map[A, B](fa: Option[A])(f: A => B): Option[B] = fa map f
}

We first compose the List Functor with the Option Functor.
This allows us to map a function over lists of options. Then
we do the opposite: we compose the Option Functor with
the List Functor. This allows us to map a function over an
optional list.

using https://github.com/non/kind-projector
allows us to simplify type lambda ({type f[α] = F[G[α]]})#f
to this: λ[α => F[G[α]]]

Functors compose

The map function of the composite
Functor is the composition of the map
functions of the functors being composed.

https://github.com/non/kind-projector

Applicatives also compose.

We can compose Applicatives using a similar technique to the
one we used to compose Functors.

Let’s look at FPiS to see how it is done.
@philip_schwarz

EXERCISE 12.9

Hard: Applicative functors also compose another way! If F[_] and G[_] are applicative functors, then so is F[G[_]].

Implement this function:

 def compose[G[_]](G: Applicative[G]): Applicative[({type f[x] = F[G[x]]})#f]

ANSWER TO EXERCISE 12.9

def compose[G[_]](G: Applicative[G]): Applicative[({type f[x] = F[G[x]]})#f] = {
 val self = this
 new Applicative[({type f[x] = F[G[x]]})#f] {
 def unit[A](a: => A) = self.unit(G.unit(a))
 override def map2[A,B,C](fga: F[G[A]], fgb: F[G[B]])(f: (A,B) => C) =
 self.map2(fga, fgb)(G.map2(_,_)(f))
 }
}

Functional Programming in Scala

(by Paul Chiusano and Runar Bjarnason)
@pchiusano @runarorama

(by Runar Bjarnason)
@runarorama

https://twitter.com/pchiusano
https://twitter.com/runarorama
https://twitter.com/runarorama

In the next two slides we look at a couple of
examples of composing Applicatives.

trait Applicative[F[_]] extends Functor[F] {

def unit[A](a: => A): F[A]
def map2[A,B,C](fa: F[A], fb: F[B])(f: (A, B) => C): F[C]

def map[A,B](fa: F[A])(f: A => B): F[B] =
map2(fa, unit(()))((a, _) => f(a))

def compose[G[_]](G: Applicative[G]): Applicative[λ[α => F[G[α]]]] = {
val self = this
new Applicative[λ[α => F[G[α]]]] {
def unit[A](a: => A): F[G[A]] = self.unit(G.unit(a))
override def map2[A,B,C](fga:F[G[A]],fgb:F[G[B]])(f:(A,B)=>C):F[G[C]] =
self.map2(fga, fgb)(G.map2(_,_)(f))

}
}

}

val optionApplicative = new Applicative[Option] {
 def unit[A](a: => A): Option[A] = Some(a)
 def map2[A,B,C](fa:Option[A],fb:Option[B])
 (f:(A,B)=>C):Option[C] =
 (fa, fb) match {
 case (Some(a), Some(b)) => Some(f(a,b))
 case _ => None
 }
}

val listApplicative = new Applicative[List] {
def unit[A](a: => A): List[A] = List(a)
def map2[A, B, C](fa:List[A],fb:List[B])

 (f:(A,B)=>C):List[C] =
for {
a <- fa
b <- fb

} yield f(a, b)
}

Applicatives compose

The unit function of the composite Applicative first lifts
its parameter into inner Applicative G and then lifts the
result into outer Applicative F.

The map2 function of the composite Applicative is the
composition of the map2 functions of the applicatives
being composed. It uses the map2 function of F to
break through the outer Applicative and the map2
function of G to break through the inner Applicative.
This is how it manages to break through the two layers
of Applicative in the composite.

Let’s create an Applicative instance for Option and one for List.

// Applicative[Option] compose Applicative[List] = Applicative[Option[List]]
val listOptionApplicative = optionApplicative compose listApplicative

assert(listOptionApplicative.map2(Option(List(1,3,5)), Option(List(2,4,6)))(add)
 == Option(List(3,5,7,5,7,9,7,9,11)))

assert(listOptionApplicative.map(Option(List(1,2,3)))(double)
 == Option(List(2,4,6)))

// Applicative[List] compose Applicative[Option] = Applicative[List[Option]
val optionListApplicative = listApplicative compose optionApplicative

assert(optionApplicative.map2(Option(1), Option(2))(add)
 == Option(3))

assert(listApplicative.map2(List(1,2,3), List(4,5,6))(add)
 == List(5,6,7,6,7,8,7,8,9))

assert(
 (optionListApplicative map2(
 List(Option(1), Option(2)),
 List(Option(3), Option(4))
)(add)
 == List(Option(4), Option(5), Option(5), Option(6)))

assert(optionListApplicative.map(List(Option(1), Option(2)))(double)
 == List(Option(2), Option(4)))

Let’s create an Applicative that is the
composition of our List Applicative
and our Option Applicative. Let’s
then have a go at mapping a binary
function over two Lists of Options.

Now lets create the opposite
composite Applicative and have a go
at mapping a binary function over two

Optional Lists.

val add: (Int,Int) => Int = _ + _ val double: Int => Int = _ * 2

Applicatives compose

What about a Monad? Is it possible for the Monad
trait to have a compose function that takes any other
Monad and returns a composite Monad?

Let’s try implementing such a compose function.

trait Monad[F[_]] extends Applicative[F] {

def flatMap[A, B](ma: F[A])(f: A => F[B]): F[B]

override def map[A, B](m: F[A])(f: A => B): F[B] =
flatMap(m)(a => unit(f(a)))

override def map2[A, B, C](ma: F[A], mb: F[B])(f: (A, B) => C): F[C] =
flatMap(ma)(a => map(mb)(b => f(a, b)))

def compose[G[_]](G: Monad[G]): Monad[λ[α => F[G[α]]]] = {
val self = this
new Monad[λ[α => F[G[α]]]] {
def unit[A](a: => A): F[G[A]] = self.unit(G.unit(a))
def flatMap[A, B](fga: F[G[A]])(f: A => F[G[B]]): F[G[B]] = {
self.flatMap(fga) { ga =>
G.flatMap(ga) { a =>
val fgb: F[G[B]] = f(a)

 ??? // this inner flatMap must return G[_] but all we have is an F[G[_]
 ??? // to obtain a G[_] we'd have to swap F and G and return G[F[_]]
 }
 ??? // this outer flatMap must return F[G[_]] but all we have is a G[_]
 ??? // had we been able to swap F and G in the inner flatMap we would have a G[F[_]]
 ??? // so we would have to swap G and F again to get an F[G[_]]

}
}

}
}

The unit function of the composite Monad first lifts its
parameter into inner Monad G and then lifts the result into
outer Monad F.

The flatMap function of the composite Monad needs to be
the composition of the flatMap functions of the monads
being composed. It needs to use the flatMap function of F
to break through the outer Monad and the flatMap function
of G to break through the inner Monad. It would then be able
to break through the two layers of Monad in the composite.

But we are not able to write suitable functions to pass to
the flatMap functions of the inner and outer Monads.

Do Monads compose ?

@philip_schwarz

trait Monad[F[_]] extends Applicative[F] {

 def join[A](mma: F[F[A]]): F[A]

def flatMap[A, B](ma: F[A])(f: A => F[B]): F[B] = join(map(ma)(f))

override def map[A, B](m: F[A])(f: A => B): F[B] =
flatMap(m)(a => unit(f(a)))

override def map2[A, B, C](ma: F[A], mb: F[B])(f: (A, B) => C): F[C] =
flatMap(ma)(a => map(mb)(b => f(a, b)))

def compose[G[_]](G: Monad[G]): Monad[λ[α => F[G[α]]]] = {
val self = this
new Monad[λ[α => F[G[α]]]] {
def unit[A](a: => A): F[G[A]] = self.unit(G.unit(a))

 def join[A](fgfga: F[G[F[G[A]]]]): F[G[A]] = {
 self.join(G.join(fgfga)) // does not compile - it is impossible to flatten fgfga
 }

}
}

Do Monads compose ?

It is easier to see what the problem is if we change the Monad
trait so that it is defined in terms of map, join and unit rather
than in terms of flatMap and unit.

We then have to implement a join function for the composite
Monad (rather than a flatMap function).

The join function has to turn an F[G[F[G[A]]]]]]]]):
 into an F[G[A]], which is not possible using the join
functions of the Monads being composed.

trait Monad[F[_]] extends Applicative[F] {

 def join[A](mma: F[F[A]]): F[A]

def flatMap[A, B](ma: F[A])(f: A => F[B]): F[B] = join(map(ma)(f))

override def map[A, B](m: F[A])(f: A => B): F[B] =
flatMap(m)(a => unit(f(a)))

override def map2[A, B, C](ma: F[A], mb: F[B])(f: (A, B) => C): F[C] =
flatMap(ma)(a => map(mb)(b => f(a, b)))

def compose[G[_]](G: Monad[G]): Monad[λ[α => F[G[α]]]] = {
val self = this
new Monad[λ[α => F[G[α]]]] {
def unit[A](a: => A): F[G[A]] = self.unit(G.unit(a))

 def join[A](fgfga: F[G[F[G[A]]]]): F[G[A]] = {
 self.join(G.join(fgfga)) // does not compile - it is impossible to flatten fgfga
 val ffgga: F[F[G[G[A]]]] = ??? // if it were possible to rearrange fgfga into ffgga
 val fgga: F[G[G[A]]] = self.join(ffgga) // then we could flatten ffgga to fgga
 val fga: F[G[A]] = self.map(fgga)(gga => G.join(gga)) // and then flatten fgga to fga
 fga
 }

}
}

Do Monads compose ?

If join were able to turn its parameter F[G[F[G[A]]]] into
F[F[G[G[A]]]] then it would be able to flatten the two Fs
and the 2 Gs and be left with the desired F[G[A]].

But is doing something like that possible and in which cases?

@philip_schwarz

In the next two slides we look at what FPiS says about
Monad composition, and we’ll see that it discusses turning
F[G[F[G[A]]]] into F[F[G[G[A]]]].

Answer to Exercise 12.11

You want to try writing flatMap in terms of Monad[F] and Monad[G].

def flatMap[A,B](mna: F[G[A]])(f: A => F[G[B]]): F[G[B]] =
 self.flatMap(na => G.flatMap(na)(a => ???))

Here all you have is f, which returns an F[G[B]]. For it to have the appropriate type to return from the argument
to G.flatMap, you’d need to be able to “swap” the F and G types. In other words, you’d need a distributive

law. Such an operation is not part of the Monad interface.

EXERCISE 12.11

Try to write compose on Monad. It’s not possible, but it is instructive to attempt it and understand why this is the case.

 def compose[G[_]](G: Monad[G]): Monad[({type f[x] = F[G[x]]})#f]

Functional Programming in Scala

(by Paul Chiusano and Runar Bjarnason)
@pchiusano @runarorama

(by Runar Bjarnason)
@runarorama

https://twitter.com/pchiusano
https://twitter.com/runarorama
https://twitter.com/runarorama

Many Concepts Go Well Together

Before we delve into monads, let us consider those cases where there are no problems. If we know that both f and
g are functors, we can make a new functor out of their composition.
…
Traversables provide a similar interface to functors but work with functions of the form a -> f b, where f is an
applicative functor.
…
Given these similarities with Functor, we can reuse the idea of mapping twice to obtain an instance for the
composition of two, traversable functors
...
The applicative functor is another structure that works well under composition.
…

…
It seems like the promise of composition is achieved: start with a set of primitive functors — which might also be
traversables, applicatives, or alternatives — and compose them as desired. The resulting combination is
guaranteed to support at least the same operations as its constituents. If only that were true of monads.

But Monads Do Not

As you might have already guessed, it is not possible to take two monads f and g and compose them into a new
monad f :.: g in a generic way. By generic way, we mean a single recipe that works for every pair of monads. Of
course, there are some pairs of monads that can be combined easily, like two Readers, and others that need a bit
more work, like lists and optionals, as shown at the beginning of the chapter. But, stressing the point once again,
there is no uniform way to combine any two of them.

The Book of Monads: Master the theory and
practice of monads, applied to solve real world

problems
Alejandro Serrano Mena

@trupill

https://twitter.com/pchiusano

In order to understand why, we are going to consider in greater detail the idea of monads as boxes

class Monad m where
 return :: a -> m a
 join :: m (m a) -> m

We have just seen how to combine the fmap operations of two functors and the pure operations — return for
monads — of two applicative functors. The latter method, return, poses no problem for composition: just take
the definition of pure we described for the composition of two applicative functors. Therefore, we must conclude
that join is the one to blame. The join operation for the composition of two monads has the following type:

join :: (f :.: g) ((f :.: g) a) -> (f :.: g) a

If we leave out for a moment the newtype, this type amounts to:

join :: f (g (f (g a))) -> f (g a)

In a monad, we only have methods that add layers of monads — return and fmap — and a method that flattens
two consecutive layers of the same monad. Alas, f (g (f (g a))) has interleaved layers, so there is no way to use
join to reduce them to f (g a). As you can see, the reason why we cannot combine two monads is not very deep.
It is just a simple matter of types that do not match. But the consequences are profound, since it tells us that
monads cannot be freely composed.

The Book of Monads: Master the theory and
practice of monads, applied to solve real world

problems
Alejandro Serrano Mena

@trupill

map fmap
flatMap bind
flatten/join join
unit pure/return

https://twitter.com/pchiusano

Distributive Laws for Monads

One way to work around this problem is to provide a function that swaps the middle layers:

swap :: g (f a) -> f (g a)

This way, we can first turn f (g (f (g a))) into f (f (g (g a))) by running swap under the first layer. Then we can join
the two outer layers, obtaining f (g (g a)) as a result. Finally, we join the two inner layers by applying the fmap
operation under the functor f.
…
When such a function, swap, exists for two monads f and g, we say that there is a distributive law for those
monads. In other words, if f and g have a distributive relationship, then they can be combined into a new
monad.
…
Some monads even admit a distributive law with any other monad. The simplest example is given by Maybe.
…

The Book of Monads: Master the theory and
practice of monads, applied to solve real world

problems
Alejandro Serrano Mena

@trupill

https://twitter.com/pchiusano

The list monad

The discussion above contains a small lie. We definitely need a swap function if we want to combine two
monads, but this is not enough. The reason is that a well-typed implementation may lead to a combined monad
that violates one of the monad laws. The list monad is a well-known example of this.
…
For the specific situation of the list monad, the cases for which its combination with another monad m lead to a
new monad have been described. In particular, for the swap procedure to be correct, m needs to be a
commutative monad, that is, the following blocks must be equal. The difference lies in the distinct order in which
xs and ys are bound:

do x <- xs do y <- ys
 y <- ys ≡ x <- xs
return (x, y) return (x, y)

The Maybe monad is commutative, since the order of failure does not matter for a final absent value, and in the
case in which both elements are Just values, the result is the same. On the other hand, the list monad is not
commutative: both blocks will ultimately result in the same elements, but the order in which they are produced
will be different.
…

The Book of Monads: Master the theory and
practice of monads, applied to solve real world

problems
Alejandro Serrano Mena

@trupill

https://twitter.com/pchiusano

12.7.6 Monad composition

Let’s now return to the issue of composing monads. As we saw earlier in this chapter, Applicative instances

always compose, but Monad instances do not. If you tried before to implement general monad composition, then you

would have found that in order to implement join for nested monads F and G, you’d have to write something of a

type like F[G[F[G[A]]]] => F[G[A]]. And that can’t be written generally.

But if G also happens to have a Traverse instance, we can sequence to turn G[F[_]] into F[G[_]], leading to

F[F[G[G[A]]]]. Then we can join the adjacent G layers using their respective Monad instances.

EXERCISE 12.20

Hard: implement the composition of two monads where one of them is traversable.

def composeM[F[_],G[_]](F: Monad[F], G: Monad [G], T: Traverse[G]):

 Monad[({type f[x] = F[G[x]]})#f]

Answer to Exercise 12.20

def composeM[G[_],H[_]](implicit G: Monad[G], H: Monad[H], T: Traverse[H]):
 Monad[({type f[x] = G[H[x]]})#f] = new Monad[({type f[x] = G[H[x]]})#f] {
 def unit[A](a: => A): G[H[A]] = G.unit(H.unit(a))
 override def flatMap[A,B](mna: G[H[A]])(f: A => G[H[B]]): G[H[B]] =
 G.flatMap(mna)(na => G.map(T.traverse(na)(f))(H.join))
}

(by Runar Bjarnason)
@runarorama

Functional Programming in Scala

(by Paul Chiusano and Runar Bjarnason)
@pchiusano @runarorama

https://twitter.com/runarorama
https://twitter.com/pchiusano
https://twitter.com/runarorama

6 The name Traversable is already taken by an unrelated trait in the Scala standard library.

The interesting operation here is sequence. Look at its signature closely. It takes F[G[A]] and swaps the order of F and G, so

long as G is an applicative functor. Now, this is a rather abstract, algebraic notion. We’ll get to what it all means in a minute, but

first, let’s look at a few instances of Traverse.

trait Traverse[F[_]] {

 def traverse[M[_]:Applicative,A,B](fa: F[A])(f: A => M[B]): M[F[B]]
 sequence(map(fa)(f))

 def sequence[M[_]:Applicative,A](fma: F[M[A]]): M[F[A]] =
 traverse(fma)(ma => ma)
}

Functional Programming in Scala

(by Paul Chiusano and Runar Bjarnason)
@pchiusano @runarorama

If you are interested in Traverse, then see the following for an in depth explanation.

@philip_schwarz

https://www.slideshare.net/pjschwarz/sequence-and-traverse-part-1
https://www.slideshare.net/pjschwarz/sequence-and-traverse-part-2
https://www.slideshare.net/pjschwarz/sequence-and-traverse-part-3

As you can see on the previous slide, composeM uses Traverse.traverse

There is a lot to say about the Traverse trait that is out of scope for this slide deck.

The following excerpt from FPiS is sufficient for our current purposes.

The next slide is just a teaser to whet your appetite.@philip_schwarz

https://twitter.com/pchiusano
https://twitter.com/runarorama
https://www.slideshare.net/pjschwarz/sequence-and-traverse-part-1
https://www.slideshare.net/pjschwarz/sequence-and-traverse-part-1
https://www.slideshare.net/pjschwarz/sequence-and-traverse-part-1

trait Applicative[F[_]] extends Functor[F] {

def map2[A,B,C](fa: F[A], fb: F[B])(f: (A, B) => C): F[C]

def unit[A](a: => A): F[A]

def map[B](fa: F[A])(f: A => B): F[B] =
map2(fa, unit(()))((a, _) => f(a))

 def sequence[A](fas: List[F[A]]): F[List[A]] =
 traverse(fas)(fa => fa)

def traverse[A,B](as: List[A])(f: A => F[B]): F[List[B]]
as.foldRight(unit(List[B]()))((a, fbs) => map2(f(a), fbs)(_ :: _))

 …
}

trait Foldable[F[_]] {
 import Monoid._

 def foldRight[A, B](as: F[A])(z: B)(f: (A, B) => B): B =
 foldMap(as)(f.curried)(endoMonoid[B])(z)

 def foldLeft[A, B](as: F[A])(z: B)(f: (B, A) => B): B =
 foldMap(as)(a => (b: B) => f(b, a))(dual(endoMonoid[B]))(z)

 def foldMap[A,B](as:F[A])(f:A=>B)(implicit mb: Monoid[B]):B =
 foldRight(as)(mb.zero)((a, b) => mb.op(f(a), b))

 def concatenate[A](as: F[A])(implicit m: Monoid[A]): A =
 foldLeft(as)(m.zero)(m.op)
}

trait Functor[F[_]] {
def map[A,B](fa: F[A])(f: A => B): F[B]

}

trait Monad[F[_]] extends Applicative[F] {
def flatMap[A,B](ma: F[A])(f: A => F[B]): F[B]

override def map[A,B](m: F[A])(f: A => B): F[B] =
flatMap(m)(a => unit(f(a)))

override def map2[A,B,C](ma:F[A], mb:F[B])(f:(A, B) => C): F[C] =
flatMap(ma)(a => map(mb)(b => f(a, b)))

}

trait Traverse[F[_]] extends Functor[F] with Foldable[F] { self =>

def traverse[M[_]:Applicative,A,B](fa:F[A])(f:A=>M[B]):M[F[B]]

def sequence[M[_] : Applicative, A](fma: F[M[A]]): M[F[A]] =
traverse(fma)(ma => ma)

type Id[A] = A
val idMonad = new Monad[Id] {
def unit[A](a: => A) = a
override def flatMap[A, B](a: A)(f: A => B): B = f(a)

}

def map[A, B](fa: F[A])(f: A => B): F[B] =
traverse[Id, A, B](fa)(f)(idMonad)

 import Applicative._

 override def foldMap[A,B](as: F[A])(f: A => B)
 (implicit mb: Monoid[B]): B =
 traverse[({type f[x] = Const[B,x]})#f,A,Nothing](
 as)(f)(monoidApplicative(mb))
 …
}

type Const[M, B] = M
implicit def monoidApplicative[M](M: Monoid[M]) =
 new Applicative[({ type f[x] = Const[M, x] })#f] {
 def unit[A](a: => A): M = M.zero
 def map2[A,B,C](m1: M, m2: M)(f: (A,B) => C): M = M.op(m1,m2)
 }

trait Monoid[A] {
 def op(x: A, y: A): A
 def zero: A
}

In the next two slides we look at an example of
composing a Monad with a traversable Monad.

@philip_schwarz

trait Traverse[F[_]] {

 def traverse[M[_]:Applicative,A,B](fa: F[A])(f: A => M[B]): M[F[B]]

 def sequence[M[_]:Applicative,A](fma: F[M[A]]): M[F[A]] =
 traverse(fma)(ma => ma)
}

trait Monad[F[_]] extends Applicative[F] {

def join[A](mma: F[F[A]]): F[A] = flatMap(mma)(ma => ma)

def flatMap[A, B](ma: F[A])(f: A => F[B]): F[B]

override def map[A, B](m: F[A])(f: A => B): F[B] =
flatMap(m)(a => unit(f(a)))

override def map2[A, B, C](ma: F[A], mb: F[B])(f: (A, B) => C): F[C] =
flatMap(ma)(a => map(mb)(b => f(a, b)))

def composeM[G[_]](G: Monad[G], T: Traverse[G]): Monad[λ[α => F[G[α]]]] = {
val self = this
new Monad[λ[α => F[G[α]]]] {

def unit[A](a: => A): F[G[A]] = self.unit(G.unit(a))
def flatMap[A, B](fga: F[G[A]])(f: A => F[G[B]]): F[G[B]] = {

self.flatMap(fga){ ga => self.map(T.traverse(ga)(f)(self))(G.join) }
}

}
}

trait Applicative[F[_]] extends Functor[F] {

def unit[A](a: => A): F[A]
def map2[A,B,C](fa: F[A], fb: F[B])(f: (A, B) => C): F[C]

def map[A,B](fa: F[A])(f: A => B): F[B] =
map2(fa, unit(()))((a, _) => f(a))

}

trait Functor[F[_]] {
def map[A,B](fa: F[A])(f: A => B): F[B]

}
Example of composing a Monad with a traversable Monad

val optionMonad = new Monad[Option] {

 def unit[A](a: => A): Option[A] = Some(a)

 def flatMap[A,B](ma: Option[A])(f: A => Option[B]): Option[B] =
 ma match {
 case Some(a) => f(a)
 case None => None
 }
}

assert(traversableListMonad.traverse(List("12","23"))(parseInt)(optionApplicative) == Some(List(12, 23)))
assert(traversableListMonad.traverse(List("12","2x"))(parseInt)(optionApplicative) == None)

val listOptionMonad = optionMonad.composeM(traversableListMonad,traversableListMonad)

assert(listOptionMonad.flatMap(Option(List("12", "34")))(charInts) == Option(List('1', '2', '3', '4')))
assert(listOptionMonad.flatMap(Option(List("12", "3x")))(charInts) == None)

val optionApplicative = new Applicative[Option] {

 def unit[A](a: => A): Option[A] = Some(a)

 def map2[A,B,C](fa:Option[A],fb:Option[B])(f:(A,B)=>C):Option[C] =
 (fa, fb) match {
 case (Some(a), Some(b)) => Some(f(a,b))
 case _ => None
 }
}

val traversableListMonad = new Monad[List] with Traverse[List] {

 def unit[A](a: => A): List[A] = List(a)

 def flatMap[A,B](ma: List[A])(f: A => List[B]): List[B] = {
 ma.foldRight(List.empty[B])((a,bs) => f(a) ::: bs)
 }

 override def traverse[M[_],A,B](as: List[A])
 (f: A => M[B])(implicit M: Applicative[M]): M[List[B]] =
 as.foldRight(M.unit(List[B]()))((a, fbs) => M.map2(f(a), fbs)(_ :: _))
}

val parseInt: String => Option[Int] =
 s => Try{ s.toInt }.toOption

val charInts: String => Option[List[Char]] =
 s => parseInt(s).map(_.toString.toList)

assert(charInts("12") == Option(List('1', '2')))
assert(charInts("1x") == None)

Example of composing a Monad with a traversable Monad

Expressivity and power sometimes come at the price of compositionality and modularity.

The issue of composing monads is often addressed with a custom-written version of each monad that’s specifically
constructed for composition. This kind of thing is called a monad transformer. For example, the OptionT monad

transformer composes Option with any other monad:

The flatMap definition here maps over both M and Option, and flattens structures like

M[Option[M[Option[A]]]] to just M[Option[A]]. But this particular implementation is specific to Option.

And the general strategy of taking advantage of Traverse works only with traversable functors. To compose with

State (which can’t be traversed), for example, a specialized StateT monad transformer has to be written.

There’s no generic composition strategy that works for every monad.

See the chapter notes for more information about monad transformers.

case class OptionT[M[_],A](value: M[Option[A]])(implicit M: Monad[M]) {

 def flatMap[B](f: A => OptionT[M, B]): OptionT[M, B] =
 OptionT(value flatMap {
 case None => M.unit(None)
 case Some(a) => f(a).value
 })

}

Functional Programming in Scala

(by Paul Chiusano and Runar Bjarnason)
@pchiusano @runarorama

There is no generic composition strategy that works for every monad The issue of composing monads is often addressed with monad transformers

https://twitter.com/pchiusano
https://twitter.com/runarorama

Monad transformers

A monad transformer is a data type that composes a particular monad with any other monad, giving us a
composite monad that shares the behavior of both.

There is no general way of composing monads. Therefore we have to have a specific transformer for each monad.

For example, OptionT is a monad transformer that adds the behavior of Option to any other monad. The type
OptionT[M, A] behaves like the composite monad M[Option[_]]. Its flatMap method binds over both the M and the

Option inside, saving us from having to do the gymanstics of binding over both.

Scalaz provides many more monad transformers, including StateT, WriterT, EitherT, and ReaderT (also known
as Kleisli).

(by Runar Bjarnason)
@runarorama

https://twitter.com/runarorama

The Book of Monads: Master the theory and
practice of monads, applied to solve real world

problems
Alejandro Serrano Mena

@trupill

A Solution: Monad Transformers

It would be impolite to thoroughly describe a problem — the composition of monads — and then not describe
at least one of the solutions. That is the goal of this chapter, to describe how monad transformers allow us to
combine the operations of several monads into one, single monad. It is not a complete solution, however, since
we need to change the building blocks: instead of composing several different monads into a new monad, we
actually enhance one monad with an extra set of operations via a transformer.

Alas, there is one significant downside to the naïve, transformers approach: we cannot abstract over monads
that provide the same functionality but are not identical. This hampers the maintainability of our code, as any
change in our monadic needs would lead to huge rewrites. The classic solution is to introduce type classes for
different sets of operations. Consider that solution carefully, as it forms the basis of one of the styles for
developing your own monads.

One word of warning before proceeding: monad transformers are a solution to the monad composition
problem. But they are not the solution. Another approach, effects, is gaining traction in the functional
programming community. The right way to design an effects system is an idea that is still in flux, however, as
witnessed by its many, different implementations.

https://twitter.com/pchiusano

If you are interested in knowing more about
Monad Transformers then see the following

@philip_schwarz

https://www.slideshare.net/pjschwarz/ https://www.slideshare.net/pjschwarz/monad-transformers-part-1

https://www.slideshare.net/pjschwarz/functor-laws

	Slide 1: Monads do not Compose
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

