
Functor Composition

@BartoszMilewski

@philip_schwarzslides by

including (starting from) the definition in

@philip_schwarz

Let’s look at Bartosz Milewski’s explanation of the fact that Functors compose.

If you need an introduction to Functors then see the following

https://www.slideshare.net/pjschwarz/functors

@philip_schwarz

https://www.slideshare.net/pjschwarz/functor-laws

https://www.slideshare.net/pjschwarz/functors
https://www.slideshare.net/pjschwarz/functor-laws

Scala Edition Contains code
snippets in Haskell and Scala

7.1 Functors in Programming

7.1.1 The Option Functor

def map[A, B](f: A => B)(fa: Option[A]): Option[B]

def map[A, B](f: A => B): Option[A] => Option[B] = {
 case None => None
 case Some(x) => Some(f(x))
}

7.1.4 Typeclasses
trait Functor[F[_]] {

def map[A, B](f: A => B)(fa: F[A]): F[B]
}

implicit val optionFunctor = new Functor[Option] {
 def map[A, B](f: A => B)(fa: Option[A]): Option[B] =
 fa match {
 case None => None
 case Some(x) => Some(f(x))
 }
 }

7.1.6 The List Functor
implicit val listFunctor = new Functor[List] {
 def map[A, B](f: A => B)(fa: List[A]): List[B] =
 fa match {
 case Nil => Nil
 case x :: t => f(x) :: map(f)(t)
 }
 }

It’s not hard to convince yourself that functors between categories
compose, just like functions between sets compose. A composition
of two functors, when acting on objects, is just the composition of
their respective object mappings; and similarly when acting on
morphisms. After jumping through two functors, identity morphisms
end up as identity morphisms, and compositions of morphisms finish
up as compositions of morphisms. There’s really nothing much to it.
In particular, it’s easy to compose endofunctors. Remember the
function maybeTail? I’ll rewrite it using Scala’s built in
implementation of lists:

7.3 Functor Composition

def maybeTail[A]: List[A] => Option[List[A]] = {
 case Nil => None
 case x :: xs => Some(xs)
}

The result of maybeTail is of a type that’s a composition of two functors, Option and List, acting on A.
Each of these functors is equipped with its own version of map, but what if we want to apply some
function f to the contents of the composite: an Option of a List? We have to break through two layers of
functors. We can use map to break through the outer Option. But we can’t just send f inside Option
because f doesn’t work on lists. We have to send (map f) to operate on the inner list. For instance, let’s
see how we can square the elements of an Option of a List of integers:

def square: Int => Int = x => x * x
val maybeList: Option[List[Int]] = Some(1 :: (2 :: (3 :: Nil)))
val maybeListSquared = (optionFunctor map (listFunctor map square))(maybeList)
assert(maybeListSquared == Some(1 :: (4 :: (9 :: Nil))))

The compiler, after analyzing the types, will figure out that, for the outer map, it should use the
implementation from the Option instance, and for the inner one, the List functor implementation.

def square: Int => Int = x => x * x
val maybeList: Option[List[Int]] = Some(1 :: (2 :: (3 :: Nil)))
val maybeListSquared = (optionFunctor map (listFunctor map square))(maybeList)

It may not be immediately obvious that the last line in the above code may be rewritten as:

def mapOption[A, B]: (A => B) => Option[A] => Option[B] = optionFunctor.map

def mapList[A, B]: (A => B) => List[A] => List[B] = listFunctor.map

def mapOptionList[A, B]: (A => B) => Option[List[A]] => Option[List[B]] =
 mapOption compose mapList

val maybeListSquared = mapOptionList(square)(maybeList)

But remember that map may be considered a function of just one argument:

def map[F[_], A, B]: (A => B) => (F[A] => F[B])

In our case, the second map in (mapOption compose mapList) takes as its argument:

 def square: Int => Int

and returns a function of the type:

 List[Int] => List[Int]

The first map then takes that function and returns a function:

 Option[List[Int]] => Option[List[Int]]

Finally, that function is applied to maybeList. So the composition of two functors is a functor whose map is
the composition of the corresponding maps.

Scala Edition Contains code
snippets in Haskell and Scala

Yes, to aid comprehension in our context, I have taken the liberty to
rename a few things, e.g. fmap à map, Maybe à Option, a à A, Haskell
à Scala, mis à maybeList, mis2 à maybeListSquared, Cons à ::

@BartoszMilewski

In the next two slides I have a go at visualizing
this notion of a composite Functor.

@philip_schwarz

A B
f

F[A] F[B]
f↑F

G[A] G[B]
f↑G

F[G[A]] F[G[B]]
(f↑G) ↑F

mapGmapF

--

- -

(mapF compose mapG)

mapF lifts function f into F
f↑F is f lifted into F

Int Int
square

Option[Int]
square↑Option

List[Int] List[Int]
square↑List

Option[List[Int]] Option[List[Int]]

mapListmapOption

--

- .

(mapOption compose mapList)

(square↑List)↑Option

Option[Int]

def square: Int => Int = x => x * x

def mapOption[A,B]:
 (A => B) => Option[A] => Option[B] =
 optionFunctor.map

def mapList[A,B]:
 (A => B) => List[A] => List[B] =
 listFunctor.map

def mapOptionList[A,B]:
 (A => B) => Option[List[A]] => Option[List[B]] =
 mapOption compose mapList

package scala
trait Function1 …
/** Composes two instances of Function1 in a new
 * Function1, with this function applied last.
 * @tparam A the type to which function
 * `g` can be applied
 * @param g a function A => T1
 * @return a new function `f` such that
 * `f(x) == apply(g(x))`
 */
…def compose[A](g: A => T1): A => R =
 { x => apply(g(x)) }
…

mapOption = mapOption
mapList = mapList
(mapOption compose mapList) = mapOptionList

the composition of two functors is a functor whose map is the composition of the corresponding maps

mapF lifts function f into F
f↑F is f lifted into F

Int Int
square

Option[Int]
square↑Option

List[Int] List[Int]
square↑List

Option[List[Int]] Option[List[Int]]

mapListmapOption

--

- .

(mapOption compose mapList)

(square↑List)↑Option

Option[Int]

mapOption = mapOption
mapList = mapList
(mapOption compose mapList) = mapOptionList

def square: Int => Int = x => x * x

def mapOption[A,B]: (A => B) => Option[A] => Option[B] = optionFunctor.map

def mapList[A,B]: (A => B) => List[A] => List[B] = listFunctor.map

def mapOptionList[A,B]: (A => B) => Option[List[A]] => Option[List[B]] = mapOption compose mapList

mapping f with the composition of two functors is
the same as first mapping f with the 1st functor and
then mapping the result with the 2nd functor.

The composition of two functors is a functor whose map is the composition of the corresponding maps

// mapOptionList = mapOption compose mapList

assert(mapOptionList(square)(Some(List(1,2,3))) == mapOption(mapList(square))(Some(List(1,2,3))))

assert(mapOptionList(square)(Some(List(1,2,3))) == Some(List(1,4,9)))

assert((mapOption(mapList(square))(Some(List(1,2,3))) == Some(List(1,4,9)))

@philip_schwarz

To get a fuller picture of the notion of a composite Functor, let’s look at
Functor laws.

See the following for a more comprehensive introduction to Functor laws.

@philip_schwarz

https://www.slideshare.net/pjschwarz/functor-laws

https://www.slideshare.net/pjschwarz/functor-laws

A B

C

f

g
g ∘ f

idB
idB	∘ 	f

F[A] F[B]

F[C]

f↑F

g↑F

g↑F ∘ f↑F

idB↑F

f↑F ∘	 idB↑F	

C

D

h

idC

h	∘ idC

F[C]

F[D]

h↑F

idC↑F

idC↑F ∘	h↑F	

C1 C2

C1 = C2 = Scala types and functions
• objects: types
• arrows: functions
• composition operation: compose function, denoted here by ∘
• identity arrows: identity function T => T, denoted here by idT

A functor F from C1 to C2 consisting of
• a type constructor F that maps type A to F[A]
• a map function from function f:A=>B to function f↑F :F[A] => F[B]
Functor Laws
F(g	∘	f) = F(g) ∘	F(f) i.e. map(g	∘	f) = map(g)	∘	map(f)
F(idX) = idF(X) i.e. map(idX) = idX↑	F	

F[B]B

f↑F is function f lifted into context F
F[A] is type A lifted into context F
idX↑	F	is idX lifted into context F

F

F

F

F(g	∘	f) = F(g)	∘	F(f)
map(g	∘	f) = map(g)	∘	map(f)

F(A) = F[A]
F(B) = F[B]
F(C) = F[C]

F(f:A=>B) = map(f) = f↑F:F[A]=>F[B]
F(g:B=>C) = map(g) = g↑F:F[B]=>F[C]
F(g∘f:A=>C) = map(g∘f) = g ↑F∘f↑F:F[A]=>F[C]

the mapping of the composition is
the composition of the mappings

A Functor from the category of ‘Scala types and functions’ to itself

A B

C

f

g
g ∘ f

idB
idB	∘ f = f

F[A] F[B]

F[C]

f↑F

g↑F

g↑F ∘ f↑F

idB↑F

idB↑F ∘ f↑F = f↑F

C

D

h

idC

h	∘ idC

F[C]

F[D]

h↑F

idC↑F

h↑F∘idC↑F = h↑F	

C1 C2 F[B]B

F

F

F

F(idX) = idF(X)
map(idX) = idX↑F	

the mapping of an arrow’s identity is
the identity of the arrow’s mapping

F

F

F

F(A) = F[A]
F(B) = F[B]
F(C) = F[N]
F(D) = F[P]

F(f) = f↑F

F(h) = h↑F
F(idB) = idB↑F
F(idC) = idC↑F

Now let’s revisit that with the notion of a
composite Functor in mind.

@philip_schwarz

A B

C

f

g
g ∘ f

F[A] F[B]

F[C]

f↑F

g↑F

g↑F ∘ f↑F

G[F[A]] G[F[B]]

G[F[C]]

(f↑F)↑G

(g↑F)↑G

(g↑F)↑G ∘ (f↑F)↑G

Functor F

the mapping of the composition is
the composition of the mappings

The composition of Functors G and F is a composite functor G ∘	F from C1 to C2 consisting of
• a type constructor
• a mapG∘F function from function f:A=>B to function (f↑F)↑G: G[F[A]] => G[F[B]]

where mapG∘F = mapG ∘ mapF

G∘F(idX) = idG∘F(X)
i.e. mapG∘F(idX) = (idX↑	F)↑	G	

the mapping of an arrow’s identity is
the identity of the arrow’s mapping

G∘F(g	∘	f) = (G∘F(g))	∘ 	(G∘F(f))
i.e. mapG∘F(g	∘	f) = (mapG∘F (g))	∘	(mapG∘F (f))

Here is what the Functor Laws look like for a composite Functor

To keep the diagram simple, we are only illustrating the first law
and we are not showing the Functor mappings between
functions, e.g. f F f↑F G (f↑F)↑G

Functions: f, g, g ∘ f, f↑F, g↑F, g↑F∘f↑F, etc
Higher Order functions: mapF, mapG, mapG∘F

mapF

mapG

// mapOptionList = mapOption compose mapList

assert(((mapOptionList(inc compose twice))(Some(List(1,2,3))))
 == (mapOption(mapList(inc)))((mapOption(mapList(twice)))(Some(List(1,2,3)))))

assert((mapOption(mapList(inc)))((mapOption(mapList(twice)))(Some(List(1,2,3)))) == Some(List(3,5,7)))

assert(((mapOptionList(inc compose twice))(Some(List(1,2,3)))) == Some(List(3,5,7)))

// mapOptionList = mapOption compose mapList

assert(mapOptionList(square)(Some(List(1,2,3))) == mapOption(mapList(square))(Some(List(1,2,3))))

assert(mapOptionList(square)(Some(List(1,2,3))) == Some(List(1,4,9)))

assert((mapOption(mapList(square))(Some(List(1,2,3))) == Some(List(1,4,9)))

Mapping the composition of g and f
with the composition of two functors is
the same as doing the following:
1. mapping f first with the 1st functor

and then with the 2nd functor
2. mapping g first with the 1st functor

and then with the 2nd functor
3. applying first the function computed

in (1) and then the function
computed in (2)

Mapping f with the composition of two
functors is the same as first mapping f
with the 1st functor and then mapping
the result with the 2nd functor.

assert((mapList(inc compose twice))(List(1,2,3)) == (mapList(inc))(mapList(twice)(List(1,2,3))))

assert((mapList(inc compose twice))(List(1,2,3)) == List(3,5,7))

assert((mapList(inc))(mapList(twice)(List(1,2,3))) == List(3,5,7))

Mapping the composition of f and g is
the same as first applying the mapping
of f and then applying the mapping of g.

1st Functor Law

1st Functor Law and Functor Composition together

Functor Composition
The composition of two functors is a functor whose map is the composition of the corresponding maps

def inc: Int => Int = _ + 1
def twice: Int => Int = _ * 2

package scalaz

private trait CompositionFunctor[F[_], G[_]] extends Functor[λ[α => F[G[α]]]] {
 implicit def F: Functor[F]
 implicit def G: Functor[G]
 override def map[A, B](fga: F[G[A]])(f: A => B): F[G[B]] =
 F(fga)(G.lift(f))
}

In Scalaz there is a CompositionFunctor trait

Let’s adopt a similar approach to provide a functor composition trait

trait CompositionFunctor[F[_],G[_]] extends Functor[λ[α => F[G[α]]]] {
 implicit def F: Functor[F]
 implicit def G: Functor[G]
 override def map[A, B](fga: F[G[A]])(f: A => B): F[G[B]] =
 F.map(fga)(ga => G.map(ga)(f))
}

Let’s see two examples of composing functors
using our CompositionFunctor

@philip_schwarz

implicit val listFunctor = new Functor[List] {
 def map[A, B](fa: List[A])(f: A => B): List[B] = fa map f
}

implicit val optionFunctor = new Functor[Option] {
 def map[A, B](fa: Option[A])(f: A => B): Option[B] = fa map f
}

trait Functor[F[_]] {
 def map[A,B](fa: F[A])(f: A => B): F[B]
}

trait CompositionFunctor[F[_],G[_]] extends Functor[λ[α => F[G[α]]]] {
 implicit def F: Functor[F]
 implicit def G: Functor[G]
 override def map[A, B](fga: F[G[A]])(f: A => B): F[G[B]] =
 F.map(fga)(ga => G.map(ga)(f))
}

val listOptionFunctor = new CompositionFunctor[List,Option] {
 implicit def F: Functor[List] = listFunctor
 implicit def G: Functor[Option] = optionFunctor
}

val twice: Int => Int = _ * 2
val listOfOption = List(Some(3),None,Some(4))
val doubledListOfOption = List(Some(6),None,Some(8))

assert(listOptionFunctor.map(listOfOption)(twice) == doubledListOfOption)

using https://github.com/non/kind-projector
allows us to simplify type lambda ({type f[α] = F[G[α]]})#f
to this: λ[α => F[G[α]]]

Composing the List Functor
with the Option Functor.

https://github.com/non/kind-projector

implicit val listFunctor = new Functor[List] {
 def map[A, B](fa: List[A])(f: A => B): List[B] = fa map f
}

import scala.concurrent.ExecutionContext.Implicits.global
val futureFunctor = new Functor[Future] {
 def map[A, B](fa: Future[A])(f: A => B): Future[B] = fa map f (global)
}

val futureOptionFunctor = new CompositionFunctor[Future,Option] {
 implicit def F: Functor[Future] = futureFunctor
 implicit def G: Functor[Option] = optionFunctor
}

assert(Await.result(futureOptionFunctor.map(Future{ Some(3) })(twice), Duration.Inf) == Some(6))

Composing the Option Functor
with the Future Functor.

trait Functor[F[_]] {
 def map[A,B](fa: F[A])(f: A => B): F[B]
}

trait CompositionFunctor[F[_],G[_]] extends Functor[λ[α => F[G[α]]]] {
 implicit def F: Functor[F]
 implicit def G: Functor[G]
 override def map[A, B](fga: F[G[A]])(f: A => B): F[G[B]] =
 F.map(fga)(ga => G.map(ga)(f))
}

Instead of having a trait, let’s have a
compose method on Functor

@philip_schwarz

trait Functor[F[_]] {

 def map[A,B](fa: F[A])(f: A => B): F[B]

 def compose[G[_]](G:Functor[G]):Functor[λ[α=>F[G[α]]]] = {
 val self = this
 new Functor[λ[α => F[G[α]]]] {
 override def map[A, B](fga:F[G[A]])(f:A=>B):F[G[B]] =
 self.map(fga)(ga => G.map(ga)(f))
 }
 }
}

// Functor[List[Option]] = Functor[List] compose Functor[Option]
val optionListFunctor = listFunctor compose optionFunctor

assert(optionListFunctor.map(List(Some(1),Some(2),Some(3)))(double) == List(Some(2),Some(4),Some(6)))

// Functor[Option[List]] = Functor[Option] compose Functor[List]
val listOptionFunctor = optionFunctor compose listFunctor

assert(listOptionFunctor.map(Some(List(1,2,3)))(double) == Some(List(2,4,6)))

val double: Int => Int = _ * 2

implicit val listFunctor = new Functor[List] {
 def map[A, B](fa: List[A])(f: A => B): List[B] = fa map f
}

implicit val optionFunctor = new Functor[Option] {
 def map[A, B](fa: Option[A])(f: A => B): Option[B] = fa map f
}

So that we can create a composite functor with

 listFunctor compose optionFunctor

rather than with

 new CompositionFunctor[Future[Option]]{
 …
 …
 }

