
Scala 3 by Example - ADTs for DDD
Algebraic Data Types for Domain Driven Design

based on Scott Wlaschin’s book
Domain Modeling Made Functional

- Part 2 -

@ScottWlaschin

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

Debasish Ghosh
@debasishg

Scott Wlaschin Jorge Vicente Cantero
@jvican

Erik Osheim
@d6

https://www.slideshare.net/pjschwarz

Before we get started, I noticed that since I finished part 1 of this series there has been a change in Scala 3 that affects the
code in both part 1 and part 2.

In dotty 0.22 it was possible to replace pairs of braces using the with keyword, whereas in dotty 0.24 I see that the with
keyword is no longer supported and seems to have been replaced by a colon.

See the next slide for relevant extracts from the documentation of versions 0.22 and 0.24 of dotty.

See the slide after that for the original version of the main code from part 1, which eliminates pairs of braces by replacing
them with the with keyword.

See the slide after that for a new version of the code which instead eliminates pairs of braces by replacing them with a colon.

@philip_schwarz

From https://dotty.epfl.ch/docs/reference/changed-features/main-functions.html

Main Methods
Scala 3 offers a new way to define programs that can be invoked from
the command line: A @main annotation on a method turns this method
into an executable program.

From https://dotty.epfl.ch/docs/reference/other-new-features/indentation-
new.html

Optional Braces
As an experimental feature, Scala 3 enforces some rules on indentation
and allows some occurrences of braces {...} to be optional.
• First, some badly indented programs are ruled out, which means they

are flagged with warnings.
• Second, some occurrences of braces {...} are made optional. Generally,

the rule is that adding a pair of optional braces will not change the
meaning of a well-indented program.

…
New Role of With
To make braces optional for constructs like class bodies, the syntax of the
language is changed so that a class body or similar construct may
optionally be prefixed with with.
…

https://dotty.epfl.ch/docs/reference/changed-features/main-functions.html
https://dotty.epfl.ch/docs/reference/other-new-features/indentation-new.html
https://dotty.epfl.ch/docs/reference/other-new-features/indentation-new.html

enum CardType with
 case Visa, Mastercard

 enum Currency with
 case EUR, USD

 object OpaqueTypes with

 opaque type CheckNumber = Int
 object CheckNumber with
 def apply(n: Int): CheckNumber = n

 opaque type CardNumber = String
 object CardNumber with
 def apply(n: String): CardNumber = n

 opaque type PaymentAmount = Float
 object PaymentAmount with
 def apply(amount: Float): PaymentAmount = amount

import OpaqueTypes._

 case class CredictCardInfo (
 cardType: CardType,
 cardNumber: CardNumber
)

 enum PaymentMethod with
 case Cash
 case Check(checkNumber: CheckNumber)
 case Card(creditCardInfo: CredictCardInfo)

 case class Payment (
 amount: PaymentAmount,
 currency: Currency,
 method: PaymentMethod
)

@main def main =

 val cash10EUR = Payment(
 PaymentAmount(10),
 Currency.EUR,
 PaymentMethod.Cash
)

 val check350USD = Payment(
 PaymentAmount(350),
 Currency.USD,
 PaymentMethod.Check(CheckNumber(123)))

 println(cash10EUR)
 println(check350USD)

Payment(10.0,EUR,Cash)
Payment(350.0,USD,Check(123))

dotty 0.22 - replacing pairs of braces using the with keyword

enum CardType:
 case Visa, Mastercard

 enum Currency:
 case EUR, USD

 object OpaqueTypes:

 opaque type CheckNumber = Int
 object CheckNumber:
 def apply(n: Int): CheckNumber = n

 opaque type CardNumber = String
 object CardNumber:
 def apply(n: String): CardNumber = n

 opaque type PaymentAmount = Float
 object PaymentAmount:
 def apply(amount: Float): PaymentAmount = amount

import OpaqueTypes._

 case class CredictCardInfo (
 cardType: CardType,
 cardNumber: CardNumber
)

 enum PaymentMethod:
 case Cash
 case Check(checkNumber: CheckNumber)
 case Card(creditCardInfo: CredictCardInfo)

 case class Payment (
 amount: PaymentAmount,
 currency: Currency,
 method: PaymentMethod
)

@main def main =

 val cash10EUR = Payment(
 PaymentAmount(10),
 Currency.EUR,
 PaymentMethod.Cash
)

 val check350USD = Payment(
 PaymentAmount(350),
 Currency.USD,
 PaymentMethod.Check(CheckNumber(123)))

 println(cash10EUR)
 println(check350USD)

Payment(10.0,EUR,Cash)
Payment(350.0,USD,Check(123))

dotty 0.24 - replacing pairs of braces using a colon

With that out of the way, let’s get started.

In part 1, when Scott Wlaschin showed us Simple types, I translated them to Scala 3 opaque types.

Why? I want to explain the reason for that.

To get us started, on the next slide Scott Wlaschin explains why he models simple values using wrapper types,
which he calls Simple types.

Part of his explanation acts as a useful reminder of ideas already covered in part 1.

@philip_schwarz

@ScottWlaschin

Modeling Simple Values

Let’s first look at the building blocks of a domain: simple values.

As we found out when we gathered the requirements, a domain expert does not
generally think in terms of int and string but instead in terms
of domain concepts such as OrderId and ProductCode. Furthermore, it’s
important that OrderIds and ProductCodes don’t get mixed up. Just because
they’re both represented by ints, say, doesn’t mean that they are
interchangeable. So to make it clear that these types are distinct, we’ll create a
“wrapper type”— a type that wraps the primitive representation.

As we mentioned earlier, the easiest way to create a wrapper type in F# is to create
a “single-case” union type, a choice type with only one choice.

Here’s an example:

 type CustomerId =
 | CustomerId of int

Since there’s only one case, we invariably write the whole type definition on one line, like
this:

 type CustomerId = CustomerId of int

We’ll call these kinds of wrapper types “simple types” to distinguish them both
from compound types (such as records) and the raw primitive types (such
as string and int) that they contain.

https://my.safaribooksonline.com/9781680505481/sec_divingdeeper_html

@ScottWlaschin

In our domain, the simple types would be modeled this way:

 type WidgetCode = WidgetCode of string
 type UnitQuantity = UnitQuantity of int
 type KilogramQuantity = KilogramQuantity of decimal

The definition of a single case union has two parts: the name of the type and the “case”
label:

 type CustomerId = CustomerId of int
 // ^type name ^case label

As you can see from the examples above, the label of the (single) case is typically the
same as the name of the type. This means that when using the type, you can also use
the same name for constructing and deconstructing it, as we’ll see next.

Working with Single Case Unions

To create a value of a single case union, we use the case name as a
constructor function. That is, we’ve defined a simple type like this:

 type CustomerId = CustomerId of int
 // ^this case name will be the constructor function

Now we can create it by using the case name as a constructor function:

 let customerId = CustomerId 42
 // ^this is a function with an int parameter

@ScottWlaschin

Creating simple types like this ensures that we can’t confuse different types by
accident. For example, if we create a CustomerId and an OrderId and try to
compare them, we get a compiler error:

 // define some types
 type CustomerId = CustomerId of int
 type OrderId = OrderId of int

 // define some values
 let customerId = CustomerId 42
 let orderId = OrderId 42

 // try to compare them -- compiler error!
 printfn "%b" (orderId = customerId)
 // ^ This expression was expected to
 // have type 'OrderId’

Or if we have defined a function that takes a CustomerId as input, then trying to
pass it an OrderId is another compiler error:

 // define a function using a CustomerId
 let processCustomerId (id:CustomerId) = ...

 // call it with an OrderId -- compiler error!
 processCustomerId orderId
 // ^ This expression was expected to
 // have type 'CustomerId' but here has
 // type 'OrderId'

How should we translate F# Simple types into Scala?

Could it work if we translated F# Simple types CustomerId and OrderId to Scala type aliases?

It turns out that it would’t work. Let’s see why on the next four slides.@philip_schwarz

Let’s define CustomerId and OrderId as type aliases for Int.

Now we can define companion objects CustomerId and OrderId and get them to provide apply functions allowing us to use
CustomerId and OrderId as constructors.

And now we can use the constructors to create a CustomerId and an OrderId

But there is a problem: the compiler does not distinguish between a CustomerId and an OrderId: it treats them both just as Int values.

type CustomerId = Int
type OrderId = Int

type CustomerId = Int
object CustomerId:
 def apply(id: Int): CustomerId = id

type OrderId = Int
object OrderId:
 def apply(id: Int): OrderId = id

val customerId = CustomerId(42)
val orderId = OrderId(42)

 Remember Scott Wlaschin’s two sample situations where we want the compiler to distinguish between CustomerId and OrderId?

 // try to compare them -- compiler error!
 prtfn "%b" (orderId = customerId)
 // ^ This expression was expected to
 // have type 'OrderId’

 // call it with an OrderId -- compiler error!
 processCustomerId orderId
 // ^ This expression was expected to
 // have type 'CustomerId' but here has
 // type 'OrderId’

 Unfortunately the compiler does allows us to compare a CustomerId and an OrderId:

 Similarly, if we define a function that takes a CustomerId as a parameter

 we are able to invoke the function by passing in an OrderId as well as by passing in a CustomerId - the compiler does not
 complain about an OrderId not being a CustomerId:

ustomerId=42

// we would like this not to compile, but it does
assert(customerId == orderId)

def display(id: CustomerId): Unit =
 println(s"customerId=$id")

// we expect this to compile and of course it does
display(customerId)

// we would like this not to compile, but it does
display(orderId)

 customerId=42

 customerId=42

The problem is further illustrated by the fact that the following definitions all compile!!!

Values of the types OrderId, CustomerId and Int appear to be completely interchangeable.

val a: CustomerId = OrderId(10)
val b: OrderId = CustomerId(20)
val c: CustomerId = 30
val d: Int = CustomerId(40)

So here on the right is the type aliases approach we just tried, which
doesn’t work.

What else can we try?

What about using value classes?

As a refresher, in the next two slides we look at how Programming in
Scala introduces value classes.

type CustomerId = Int
object CustomerId:
 def apply(id: Int): CustomerId = id

type OrderId = Int
object OrderId:
 def apply(id: Int): OrderId = id

val customerId = CustomerId(42)
val orderId = OrderId(42)

// we would like this not to compile, but it does
assert(customerId == orderId)

def display(id: CustomerId): Unit =
 println(s"customerId=$id")

// we expect this to compile and of course it does
display(customerId)

// we would like this not to compile, but it does
display(orderId)

@philip_schwarz

The root class Any has two subclasses: AnyVal and AnyRef. AnyVal is the parent class of value
classes in Scala. While you can define your own value classes (see Section 11.4), there are nine
value classes built into Scala:

Byte, Short, Char, Int, Long, Float, Double, Boolean, and Unit.

The first eight of these correspond to Java's primitive types, and their values are represented
at run time as Java's primitive values.

The instances of these classes are all written as literals in Scala. For example, 42 is an instance
of Int, 'x' is an instance of Char, and false an instance of Boolean. You cannot create instances
of these classes using new.
…

11.4 Defining your own value classes

As mentioned in Section 11.1, you can define your own value classes to augment the ones that
are built in. Like the built-in value classes, an instance of your value class will usually
compile to Java bytecode that does not use the wrapper class.

In contexts where a wrapper is needed, such as with generic code, the value will get boxed and
unboxed automatically.

Only certain classes can be made into value classes. For a class to be a value class, it must have
exactly one parameter and it must have nothing inside it except defs.

Furthermore, no other class can extend a value class, and a value class cannot
redefine equals or hashCode.

https://my.safaribooksonline.com/9780981531687/scalas_hierarchy_html
https://my.safaribooksonline.com/9780981531687/scalas_hierarchy_html

To define a value class, make it a subclass of AnyVal, and put val before the one parameter. Here is
an example value class:

As described in Section 10.6, the val prefix allows the amount parameter to be accessed as a field. For
example, the following code creates an instance of the value class, then retrieves the amount from it:

In this example, money refers to an instance of the value class. It is of type Dollars in Scala
source code, but the compiled Java bytecode will use type Int directly. This example defines
a toString method, and the compiler figures out when to use it. That's why
printing money gives $1000000, with a dollar sign, but printing money.amount gives 1000000. You can
even define multiple value types that are all backed by the same Int value. For example:

Even though both Dollars and SwissFrancs are represented as integers, it works fine to use
them in the same scope:

https://my.safaribooksonline.com/9780981531687/composition_and_inheritance_html

Let’s define CustomerId and OrderId as value classes wrapping an Int.

In Scala 2, we create instances of CutomerId and OrderId by newing them up:

In Scala 3, we can drop the ‘new’ keyword:

See next slide for a brief introduction to why that is possible.

class CustomerId(val id: Int) extends AnyVal:
 override def toString() = "CustomerId" + id

class OrderId(val id: Int) extends AnyVal:
 override def toString() = "OrderId" + id

val customerId = new CustomerId(42)
val orderId = new OrderId(42)

val customerId = CustomerId(42)
val orderId = OrderId(42)

Just for reference, here is why in Scala 3 we can dispense with the ‘new’ keyword when instantiating classes

https://dotty.epfl.ch/docs/reference/other-new-features/creator-applications.html

https://dotty.epfl.ch/docs/reference/other-new-features/creator-applications.html

Translating Scott’s Simple types to value classes works better than translating them to type aliases. With type aliases, the
following assertion compiles and succeeds

With value classes, the above assertion fails.

Not only that, but in Scala 2 the assertion generates the following warning:

Interestingly, in Scala 3 the assertion does not generate the warning! The reason the assertion compiles is that the comparison
is using universal equality, which allows comparisons of two values of any type. In Scala 3 we can opt into multiversal equality,
which makes universal equality safer. See the next slide for a quick intro to multiversal equality. Here is how in Scala 3 we can
make comparison of a CustomerId with a value of any other type illegal (similarly for OrderId):

// we would like this not to compile, but it does
assert(customerId == orderId)

java.lang.AssertionError: assertion failed

<console>:24: warning: CustomerId and OrderId are unrelated: they will never compare equal
 assert(customerId == orderId)

 ^

[error] 14 | assert(customerId == orderId)
[error] | ^^^^^^^^^^^^^^^^^^^^^
[error] |Values of types CustomerId and OrderId cannot be compared with == or !=

class CustomerId(val id: Int) extends AnyVal derives Eql:
 override def toString() = "CustomerId" + id

class OrderId(val id: Int) extends AnyVal derives Eql:
 override def toString() = "OrderId" + id

@philip_schwarz

https://dotty.epfl.ch/docs/reference/contextual/multiversal-equality-new.html

Just for reference, here is the very first part of the documentation on Multiversal Equality

https://dotty.epfl.ch/docs/reference/contextual/multiversal-equality-new.html

Using value classes also works better than using type aliases because
value classes do ensure that passing an OrderId to a function that
expects a CustomerId is not allowed - we get a compilation error

[error] 14 | display(orderId)
[error] | ^^^^^^^
[error] | Found: (orderId : OrderId)
[error] | Required: CustomerId

<console>:14: error: type mismatch;
found : OrderId
required: CustomerId
 display(orderId)
 ^

So here is the value classes approach that we just tried, which works.

class CustomerId(val id: Int) extends AnyVal derives Eql:
 override def toString() = "CustomerId" + id

class OrderId(val id: Int) extends AnyVal derives Eql:
 override def toString() = "OrderId" + id

@main def main =

 val customerId = CustomerId(42)
 val orderId = OrderId(42)

 // this does not compile, which is what we want
 assert(customerId == orderId)

 def display(id: CustomerId): Unit =
 println(s"customer id=$id")

 // we expect this to compile and of course it does
 display(customerId)

 // this does not compile, which is what we want
 display(orderId)

[error] 13 | assert(customerId == orderId)
[error] | ^^^^^^^^^^^^^^^^^^^^^
[error] |Values of types CustomerId and OrderId cannot be compared with == or !=

[error] 22 | display(orderId)
[error] | ^^^^^^^
[error] | Found: (orderId : OrderId)
[error] | Required: CustomerId

An easy way to show that the type aliases
approach was flawed was to show that it allowed
the following declarations to compile:

Since in the value classes approach the CustomerId,
OrderId and Int are all distinct classes, it is obvious that
those declarations are not going to compile, which is what
we want:val a: CustomerId = OrderId(10)

val b: OrderId = CustomerId(20)
val c: CustomerId = 30
val d: Int = CustomerId(40)

[error] 27 | val a: CustomerId = OrderId(10)
[error] | ^^^^^^^^^^^
[error] | Found: OrderId
[error] | Required: CustomerId
...
[error] 28 | val b: OrderId = CustomerId(20)
[error] | ^^^^^^^^^^^^^^
[error] | Found: CustomerId
[error] | Required: OrderId
...
[error] 29 | val c: CustomerId = 30
[error] | ^^
[error] | Found: (30 : Int)
[error] | Required: CustomerId
...
[error] 30 | val d: Int = CustomerId(40)
[error] | ^^^^^^^^^^^^^^
[error] | Found: CustomerId
[error] | Required: Int

@philip_schwarz

So, while the type alias approach to simple types doesn’t work, the value classes approach does work.

What about using case classes to wrap our CustomerId and OrderId?

If we get our case classes to derive
Eql, then this approach also works.

case class CustomerId(id: Int) derives Eql
case class OrderId(id: Int) derives Eql

@main def main =

 val customerId = CustomerId(42)
 val orderId = OrderId(42)

 // this does not compile, which is what we want
 assert(customerId == orderId)

 def display(id: CustomerId): Unit =
 println(s"customer id=$id")

 // we expect this to compile and of course it does
 display(customerId)

 // this does not compile, which is what we want
 display(orderId)

[error] 8 | assert(customerId == orderId)
[error] | ^^^^^^^^^^^^^^^^^^^^^
[error] |Values of types CustomerId and OrderId cannot be compared with == or !=

[error] 22 | display(orderId)
[error] | ^^^^^^^
[error] | Found: (orderId : OrderId)
[error] | Required: CustomerId

In the case classes approach, just as in the the value classes approach, the
CustomerId, OrderId and Int are all distinct classes, so it is just as obvious that
the following declarations are not going to compile, which is what we want:

[error] 27 | val a: CustomerId = OrderId(10)
[error] | ^^^^^^^^^^^
[error] | Found: OrderId
[error] | Required: CustomerId
...
[error] 28 | val b: OrderId = CustomerId(20)
[error] | ^^^^^^^^^^^^^^
[error] | Found: CustomerId
[error] | Required: OrderId
...
[error] 29 | val c: CustomerId = 30
[error] | ^^
[error] | Found: (30 : Int)
[error] | Required: CustomerId
...
[error] 30 | val d: Int = CustomerId(40)
[error] | ^^^^^^^^^^^^^^
[error] | Found: CustomerId
[error] | Required: Int

It turns out that the value class approach and the case class approach are not
completely general solutions in that they both suffer from performance
issues in some use cases.

It also turns out that opaque types address those performance issues.

In the SIP (Scala Improvement Proposal) for opaque types (SIP 35), there is a
motivation section which first explains the problem with type aliases and
then mentions the fact that in some use cases there are performance issues
with using value classes and case classes to wrap other types.

In the next two slides we look at two sections of the the Opaque Types SIP:
the beginning of the motivation section and the introduction section.

…
Opaque types

Motivation
Authors often introduce type aliases to differentiate many values that share a very
common type (e.g. String, Int, Double, Boolean, etc.).

In some cases, these authors may believe that using type aliases such
as Id and Password means that if they later mix these values up, the compiler will catch
their error.

However, since type aliases are replaced by their underlying type (e.g. String), these
values are considered interchangeable (i.e. type aliases are not appropriate for
differentiating various String values).

One appropriate solution to the above problem is to create case classes which
wrap String. This works, but incurs a runtime overhead (for every String in the previous
system we also allocate a wrapper, or a “box”). In many cases this is fine but in some it is
not.

Value classes, a Scala feature proposed in SIP-15, were introduced to the language to offer
classes that could be inlined in some scenarios, thereby removing runtime overhead. These
scenarios, while certainly common, do not cover the majority of scenarios that library
authors have to deal with. In reality, experimentation shows that they are insufficient, and
hence performance-sensitive code suffers (see Appendix A).

https://docs.scala-lang.org/sips/opaque-types.html

Jorge Vicente Cantero
@jvican

Erik Osheim
@d6

https://docs.scala-lang.org/sips/value-classes.html
https://failex.blogspot.ch/2017/04/the-high-cost-of-anyval-subclasses.html
https://docs.scala-lang.org/sips/opaque-types.html

Introduction

This is a proposal to introduce syntax for type aliases that only exist at compile time and
emulate wrapper types.

The goal is that operations on these wrapper types must not create any extra overhead at
runtime while still providing a type safe use at compile time.

Some use cases for opaque types are:

• Implementing type members while retaining parametricity. Currently,
concrete type definitions are treated as type aliases, i.e. they are expanded in-place.

• New numeric classes, such as unsigned integers. There would no longer need to be a boxing
overhead for such classes. This is similar to value types in .NET and newtype in Haskell.
Many APIs currently use signed integers (to avoid overhead) but document that the values
will be treated as unsigned.

• Classes representing units of measure. Again, no boxing overhead would be incurred for
these classes.

• Classes representing different entities with the same underlying type, such
as Id and Password being defined in terms of String.

Jorge Vicente Cantero
@jvican

Erik Osheim
@d6

https://docs.scala-lang.org/sips/opaque-types.html

https://docs.scala-lang.org/sips/opaque-types.html

For our purposes in this slide deck, the decision to implement Simple types using Scala 3 Opaque types is
simply based on the considerations we have just seen in SIP 35.

Bear in mind however that SIP 35 is dated 2017 and in my coverage of value classes, case classes and
opaque types I am just scratching the surface.

To dispel any doubt about the fact that I have only taken a simplistic look at the above types, in the next
three slides we look at a laundry lists of some of the many observations that someone with Erik Osheim’s
level of expertise makes about these types.

I found the observations in the following:

Opaque types: understanding SIP-35 – Erik Osheim – Apr 2018
http://plastic-idolatry.com/erik/nescala2018.pdf

I don’t expect you to read and understand every bullet point in the next three slides, in fact you can happily
just skim through them or even skip the slides and come back to them later if you really want to know more.

@philip_schwarz

http://plastic-idolatry.com/erik/nescala2018.pdf

Type aliases are transparent:
— code can "see through" type aliases in proper types
— authors can inline aliases present in proper types
— aliases do not introduce new types
— are completely erased before runtime
— do not produce classes

Opaque types are... well... opaque:
— code cannot see through an opaque type
— authors cannot inline opaque types
— opaque types do introduce new types
— are still completely erased before runtime
— still do not produce classes

It's easiest to compare opaque types with type aliases

Erik Osheim
@d6

Opaque types:
— work well with arrays
— work well with specialization
— avoid an "abstraction penalty"
— are useful for "subsetting" a type
— offer pleasing minimalism

However, opaque types also:
— require lots of boilerplate (especially wrappers)
— require a class anyway when doing enrichments
— do not act like traditional classes
— do not eliminate standard primitive boxing
— cannot participate in subtyping

Erik Osheim
@d6

Value classes were introduced in 2.10:
— defined with extends AnyVal
— very specific class requirements
— can only extend universal traits
— avoids allocating objects in some cases
— intended to support zero-cost enrichment
— class still exists at runtime

Value classes have capabilities opaque types lack:
— able to define methods
— can be distinguished from underlying type at runtime
— can participate in subtyping relationships
— can override .toString and other methods

However, value classes have some down sides too:
— unpredictable boxing
— constructor/accessor available by default
— cannot take advantage of specialization
— always allocates when used with arrays
— always allocates when used in a generic context

By contrast, opaque types are always erased.

Erik Osheim
@d6

Value classes are best used:
— to provide low-cost enrichment
— in cases where traditional wrappers are needed
— in direct contexts (e.g. fields/transient values)

(In other cases, value classes may be more marginal.)

We have seen how implementing Simple types with type aliases doesn’t work and we
have shown how implementing them with value classes and case classes does work but
with potential performance issues in some use cases.

That is why I decided to implement Simple types using Scala 3 Opaque types.

We still need to show that implementing Simple types using opaque types works.

Let’s do that before we move on.

The code on the left satisfies our requirements in that the
assert call and the last line both fail to compile.

In the case of value classes and case classes, the way we
got the assertion not to compile was by attaching
derives Eql to the class declarations to disallow usage
of == and != with CustomerId and OrderId unless both
arguments are of the same type.

In the case of opaque types, there is no class to wich to
attach derives Eql, so we achieve the same effect by
defining the following:

object OpaqueTypes:

 opaque type CustomerId = Int
 object CustomerId:
 def apply(id: Int): CustomerId = id
 given Eql[CustomerId, CustomerId] = Eql.derived

 opaque type OrderId = Int
 object OrderId:
 def apply(id: Int): OrderId = id
 given Eql[OrderId, OrderId] = Eql.derived

import OpaqueTypes._

@main def main =

 val customerId = CustomerId(42)
 val orderId = OrderId(42)

 // this does not compile, which is what we want
 assert(customerId == orderId)

 def display(id: CustomerId): Unit =
 println(s"customer id=$id")

 // we expect this to compile and of course it does
 display(customerId)

 // this does not compile, which is what we want
 display(orderId)

given Eql[CustomerId, CustomerId] = Eql.derived
 given Eql[OrderId, OrderId] = Eql.derived

[error] 24 | assert(customerId == orderId)
[error] | ^^^^^^^^^^^^^^^^^^^^^
[error] |Values of types CustomerId and OrderId cannot be compared with == or !=

[error] 33 | display(orderId)
[error] | ^^^^^^^
[error] |Found: (orderId : OrderId))
[error] |Required: CustomerId

Furthermore, unlike in the type aliases approach, in
the opaque type approach the following
declarations do not compile, which is what we
want:

Here are the compilation errors the declarations cause:

val a: CustomerId = OrderId(10)
val b: OrderId = CustomerId(20)
val c: CustomerId = 30
val d: Int = CustomerId(40)

[error] 27 | val a: CustomerId = OrderId(10)
[error] | ^^^^^^^^^^^
[error] | Found: OrderId
[error] | Required: CustomerId
...
[error] 28 | val b: OrderId = CustomerId(20)
[error] | ^^^^^^^^^^^^^^
[error] | Found: CustomerId
[error] | Required: OrderId
...
[error] 29 | val c: CustomerId = 30
[error] | ^^
[error] | Found: (30 : Int)
[error] | Required: CustomerId
...
[error] 30 | val d: Int = CustomerId(40)
[error] | ^^^^^^^^^^^^^^
[error] | Found: CustomerId
[error] | Required: Int

Before we move on, I just wanted to mention that in his book, Scott Wlaschin
also looks at the performance problems with Simple types and the problem
with type aliases. Let’s see an extract in the next slide.

@philip_schwarz

@ScottWlaschin

Avoiding Performance Issues with Simple Types

Wrapping primitive types into simple types is a great way to ensure type-safety
and prevent many errors at compile time. However, it does come at a cost in
memory usage and efficiency. For typical business applications a small decrease in
performance shouldn’t be a problem, but for domains that require high performance, such
as scientific or real-time domains, you might want to be more careful. For example,
looping over a large array of UnitQuantity values will be slower than looping over an array
of raw ints.

But there are a couple of ways you can have your cake and eat it too.

First, you can use type aliases instead of simple types to document the domain.
This has no overhead, but it does mean a loss of type-safety.

Next, as of F# 4.1, you can use a value type (a struct) rather than a reference type.
You’ll still have overhead from the wrapper, but when you store them in arrays the
memory usage will be contiguous and thus more cache-friendly.

Finally, if you are working with large arrays, consider defining the entire collection of
primitive values as a single type rather than having a collection of simple types:

This will give you the best of both worlds. You can work efficiently with the raw data (such
as for matrix multiplication) while preserving type-safety at a high level…

type UnitQuantity = int

type UnitQuantity = UnitQuantity of int

type UnitQuantities = UnitQuantities of int []

OK. Now that I have explained why I have translated Scott’s implementation of
Simple types in F# to opaque types in Scala 3, let’s look at what Scott has to say
about constraining Simple values.

@ScottWlaschin

The Integrity of Simple Values
In the earlier discussion on modeling simple values, we saw that they should not be
represented by string or int but by domain-focused types such
as WidgetCode or UnitQuantity.
But we shouldn’t stop there, because it’s very rare to have an unbounded
integer or string in a real-world domain. Almost always, these values are
constrained in some way:
• An OrderQuantity might be represented by a signed integer, but it’s very unlikely

that the business wants it to be negative, or four billion.
• A CustomerName may be represented by a string, but that doesn’t mean that it

should contain tab characters or line feeds.
In our domain, we’ve seen some of these constrained types
already. WidgetCode strings had to start with a specific letter, and UnitQuantity had to
be between 1 and 1000. Here’s how we’ve defined them so far, with a comment for
the constraint.

 type WidgetCode = WidgetCode of string // starting with "W" then 4 digits
 type UnitQuantity = UnitQuantity of int // between 1 and 1000
 type KilogramQuantity = KilogramQuantity of decimal // between 0.05 and 100.00

Rather than having the user of these types read the comments, we want to
ensure that values of these types cannot be created unless they satisfy the
constraints. Thereafter, because the data is immutable, the inner value never
needs to be checked again. You can confidently use a WidgetCode or
a UnitQuantity everywhere without ever needing to do any kind of defensive
coding.
Sounds great. So how do we ensure that the constraints are enforced?

https://my.safaribooksonline.com/9781680505481/sec_modelingsimplevalues_html

@ScottWlaschin

Answer: The same way we would in any programming language—make the constructor private
and have a separate function that creates valid values and rejects invalid values,
returning an error instead. In FP communities, this is sometimes called the smart
constructor approach. Here’s an example of this approach applied to UnitQuantity:

type UnitQuantity = private UnitQuantity of int

So now a UnitQuantity value can’t be created from outside the containing module due to
the private constructor. However, if we write code in the same module that contains the type
definition above, then we can access the constructor.

Let’s use this fact to define some functions that will help us manipulate the type. We’ll start by
creating a submodule with exactly the same name (UnitQuantity); and within that, we’ll define
a create function that accepts an int and returns a Result type (as discussed
in Modeling Errors) to return a success or a failure. These two possibilities are made explicit in
its function signature: int -> Result<UnitQuantity,string>.

// define a module with the same name as the type
module UnitQuantity =
 /// Define a "smart constructor" for UnitQuantity
 /// int -> Result<UnitQuantity,string>
 let create qty =
 if qty < 1 then
 // failure
 Error "UnitQuantity can not be negative"
 else if qty > 1000 then
 // failure
 Error "UnitQuantity can not be more than 1000"
 else
 // success -- construct the return value
 Ok (UnitQuantity qty)

F#

Result<UnitQuantity,string>
Error("error message")
Ok(…xyz…)

Scala

Either[String,UnitQuantity]
Left("error message")
Right(…xyz…)

https://my.safaribooksonline.com/9781680505481/d24e4639_html

 type UnitQuantity = private UnitQuantity of int

module UnitQuantity =

 let create qty =
 if qty < 1 then
 Error "UnitQuantity can not be negative"
 else if qty > 1000 then
 Error "UnitQuantity can not be more than 1000"
 else
 Ok (UnitQuantity qty)

 opaque type UnitQuantity = Int

 object UnitQuantity:

 def create(qty: Int): Either[String, UnitQuantity] =
 if qty < 1
 Left(s”UnitQuantity can not be negative: $qty ")
 else if qty > 1000
 Left(s" UnitQuantity can not be more than 1000: $qty ")
 else
 Right(qty)

Here is that F# code again, together with the Scala 3 equivalent

@ScottWlaschin

One downside of a private constructor is that you can no longer use it to pattern-match and
extract the wrapped data. One workaround for this is to define a separate value function, also in
the UnitQuantity module, that extracts the inner value.

 /// Return the wrapped value
 let value (UnitQuantity qty) = qty

Let’s see how this all works in practice. First, if we try to create a UnitQuantity directly, we get a
compiler error:

 let unitQty = UnitQuantity 1
 // ^ The union cases of the type 'UnitQuantity’
 // are not accessible

But if we use the UnitQuantity.create function instead, it works and we get back a Result,
which we can then match against:

 let unitQtyResult = UnitQuantity.create 1

 match unitQtyResult with
 | Error msg ->
 printfn "Failure, Message is %s" msg
 | Ok uQty ->
 printfn "Success. Value is %A" uQty
 let innerValue = UnitQuantity.value uQty
 printfn "innerValue is %i" innerValue

 let unitQty = UnitQuantity 1
 // ^ The union cases of the type 'UnitQuantity’
 // are not accessible

let unitQtyResult = UnitQuantity.create 1

match unitQtyResult with
| Error msg ->
 printfn "Failure, Message is %s" msg
| Ok uQty ->
 printfn "Success. Value is %A" uQty
 let innerValue = UnitQuantity.value uQty
 printfn "innerValue is %i" innerValue

val unitQty = UnitQuantity(3)
 // ^ too many arguments for constructor Int: (): Int

val unitQtyResult = UnitQuantity.create(1)

 unitQtyResult match {
 case Left(msg) =>
 println(s"Failure, Message is $msg")
 case Right(uQty) =>
 println(s"Success. Value is $uQty")
 }

Success. Value is 1

The reason why we get an error is not that we have made a
constructor private, but rather that there is no such constructor.

/// Return the wrapped value
let value (UnitQuantity qty) = qty

we don’t need this function because using an opaque
type means there is no problem accessing the value.

Here is that F# code again, together with the Scala 3 equivalent

@philip_schwarz

@main def main: Unit =

 val quantities: List[Either[String,UnitQuantity]] =
 List(UnitQuantity.create(-5),
 UnitQuantity.create(99),
 UnitQuantity.create(2000))

 val expectedQuantities: List[Either[String,UnitQuantity]] =
 List(Left("cannot be negative: -5"),
 UnitQuantity.create(99),
 Left("cannot be more than 1000: 2000"))

 assert(quantities == expectedQuantities)

 quantities.foreach { maybeQuantity =>
 println(
 maybeQuantity.fold(
 error => s"invalid UnitQuantity - $error",
 qty => s"UnitQuantity($qty)")
)
 }

 opaque type UnitQuantity = Int

 object UnitQuantity:

 def create(qty: Int): Either[String, UnitQuantity] =
 if qty < 1
 Left(s”UnitQuantity can not be negative: $qty ")
 else if qty > 1000
 Left(s" UnitQuantity can not be more than 1000: $qty ")
 else
 Right(qty)

Here again are the declarations of our UnitQuantity opaque type
and our UnitQuantity object.

In Scala 3 we are better off calling the constructor apply, because
that makes constructing instances more convenient, so on the next
slide we rename create to apply.

There is another issue with our code. If we print a UnitQuantity, the printing is
done by the toString method of the type being aliased, i.e. Int

 UnitQuantity.create(5).foreach(println) // prints 5

If we want to customise the printing of a UnitQuantity, then it turns out that
opaque type aliases cannot redefine methods of Any such as toString, and so
what we have to do is define a UnitQuantity extension method, asString, say,
and call this method explicitly. On the next slide we define such a method and get
our code to use it.

Here is some code exercising and testing UnitQuantity.
Notice how the test is not quite satisfactory in that we are not able
to specify an expected value of Right(99). Instead, we have to
specify an expected value of UnitQuantity.create(99), i.e.
we have to use the same code that we are actually testing!

To address that, all we need to do is define an alternative ‘unsafe’
constructor that can be used in special situations, e.g. in tests. On
the next slide we add such a constructor and improve our test to
reflect that.

 opaque type UnitQuantity = Int

 object UnitQuantity:

 def apply(qty: Int): Either[String, UnitQuantity] =
 if qty < 1
 Left(s”UnitQuantity can not be negative: $qty ")
 else if qty > 1000
 Left(s" UnitQuantity can not be more than 1000: $qty ")
 else
 Right(qty)

 def unsafe(qty: Int): UnitQuantity = qty

 extension unitQuantityOps on (qty: UnitQuantity):
 def asString : String =
 s"UnitQuantity($qty)”

 val quantities: List[Either[String,UnitQuantity]] =
 List(
 UnitQuantity(-5),
 UnitQuantity(99),
 UnitQuantity(2000)
)

 val expectedQuantities: List[Either[String,UnitQuantity]] =
 List(
 Left("UnitQuantity can not be negative: -5"),
 Right(UnitQuantity.unsafe(99)),
 Left("UnitQuantity can not be more than 1000: 2000")
)

 assert(quantities == expectedQuantities)

 import UnitQuantity.unitQuantityOps

 quantities.foreach { maybeQuantity =>
 println(
 maybeQuantity.fold(
 error => s"Error - $error",
 qty => qty.asString
)
)
 }

Error - UnitQuantity can not be negative: -5
UnitQuantity(99)
Error - UnitQuantity can not be more than 1000: 2000

The ‘safe’ constructor function has been renamed from create to apply, so
creating UnitQuantity values is more convenient.
There is now an unsafe constructor function used e.g. by test code.
There is now an asString function to be used instead of Int’s toString.

In the next three slides we look at the first smart constructor example that
Debasish Ghosh provides in his book Functional and Reactive Domain Modeling.

We then convert the example to use an opaque type.

3.3.2. The smart constructor idiom
The standard technique for allowing easy construction of objects that need to honor a set of
constraints is popularly known as the smart constructor idiom. You prohibit the user from
invoking the basic constructor of the algebraic data type and instead provide a smarter
version that ensures the user gets back a data type from which she can recover either a
valid instance of the domain object or an appropriate explanation of the failure. Let’s
consider an example.

In our personal banking domain, many jobs may need to be scheduled for execution on specific
days of the week. Here you have an abstraction—a day of the week that you can implement
so that you can have it validated as part of the construction process.

You may represent a day of the week as an integer value, but obviously it needs to honor some
constraints in order to qualify as a valid day of a week—it has to be a value between 1 and
7, 1 representing a Monday and 7 representing a Sunday. Will you do the following?

case class DayOfWeek(day: Int) {
 if (day < 1 or day > 7)
 throw new IllegalArgumentException("Must lie between 1 and 7")
}

This violates our primary criterion of referential transparency—an exception isn’t one of
the benevolent citizens of functional programming. Let’s be smarter than that.

@debasishg
Debasish Ghosh

 sealed trait DayOfWeek {

 val value: Int

 override def toString =
 value match {
 case 1 => "Monday"
 case 2 => "Tuesday"
 case 3 => "Wednesday"
 case 4 => "Thursday"
 case 5 => "Friday"
 case 6 => "Saturday"
 case 7 => "Sunday"
 }
 }

The following listing illustrates the smart constructor idiom for this abstraction.

Take a look at the code and then we’ll dissect it to identify the rationale.

@debasishg
Debasish Ghosh

 object DayOfWeek {

 private def unsafeDayOfWeek(d: Int) =
 new DayOfWeek { val value = d }

 private val isValid: Int => Boolean =
 { i => i >= 1 && i <= 7 }

 def dayOfWeek(d: Int): Option[DayOfWeek] =
 if (isValid(d))
 Some(unsafeDayOfWeek(d))
 else None

 }

Listing 3.4. A DayOfWeek using the smart constructor idiom

object DayOfWeek {

 private def unsafeDayOfWeek(d: Int) =
 new DayOfWeek { val value = d }

 private val isValid: Int => Boolean =
 { i => i >= 1 && i <= 7 }

 def dayOfWeek(d: Int): Option[DayOfWeek] =
 if (isValid(d))
 Some(unsafeDayOfWeek(d))
 else None

 }

@debasishg
Debasish Ghosh

Let’s explore some of the features that this implementation offers that make
the implementation a smart one:

• The primary interface for creating a DayOfWeek has been named unsafe
and marked private. It’s not exposed to the user and can be used only
within the implementation. There’s no way the user can get back an
instance of DayOfWeek by using this function call. This is intentional,
because the instance may not be a valid one if the user passed an out-of-
range integer as the argument to this function.

• The only way to get an instance of a data type representing either a valid
constructed object or an absence of it is to use dayOfWeek,
the smart constructor from the companion object DayOfWeek.

• Note the return type of the smart constructor, which
is Option[DayOfWeek]. If the user passed a valid integer, then she gets
back a Some(DayOfWeek), or else it’s a None, representing the absence
of a value.

• To keep the example simple, Option is used to represent the optional
presence of the constructed instance. But for data types that may have
more complex validation logic, your client may want to know the reason
that the object creation failed. This can be done by using more expressive
data types such as Either or Try, which allow you to return the reason, as
well, in case the creation fails. You’ll see an illustration of this in the next
example.

• Most of the domain logic for creation and validation is moved away from
the core abstraction, which is the trait, to the companion object, which is
the module. This is what I meant by skinny model implementation, as
opposed to rich models that OO espouses.

• A typical invocation of the smart constructor could
be DayOfWeek.dayOfWeek(n).foreach(schedule), where schedule is a
function that schedules a job on the DayOfWeek that it gets as input.

 sealed trait DayOfWeek {

 val value: Int

 override def toString =
 value match {
 case 1 => "Monday"
 case 2 => "Tuesday"
 case 3 => "Wednesday"
 case 4 => "Thursday"
 case 5 => "Friday"
 case 6 => "Saturday"
 case 7 => "Sunday"
 }
 }

 sealed trait DayOfWeek {

 val value: Int

 override def toString = value match {
 case 1 => "Monday"
 case 2 => "Tuesday"
 case 3 => "Wednesday"
 case 4 => "Thursday"
 case 5 => "Friday"
 case 6 => "Saturday"
 case 7 => "Sunday"
 }

 }

 object DayOfWeek {

 private def unsafeDayOfWeek(d: Int) =
 new DayOfWeek { val value = d }

 private val isValid: Int => Boolean =
 { i => i >= 1 && i <= 7 }

 def dayOfWeek(d: Int): Option[DayOfWeek] =
 if (isValid(d))
 Some(unsafeDayOfWeek(d))
 else None

 }

 opaque type DayOfWeek = Int

 object DayOfWeek {

 def apply(d: Int): Option[DayOfWeek] =
 if (isValid(d))
 Some(d)
 else None

 def unsafe(d: Int): DayOfWeek = d

 private val isValid: Int => Boolean =
 i => i >= 1 && i <= 7

 extension dayOfWeekOps on (d: DayOfWeek):

 def asString : String =
 d match {
 case 1 => "Monday"
 case 2 => "Tuesday"
 case 3 => "Wednesday"
 case 4 => "Thursday"
 case 5 => "Friday"
 case 6 => "Saturday"
 case 7 => "Sunday"
 }

 }

Here we take the smart constructor example on the left, by
Debasish Ghosh, and convert it to use an opaque type.

 val daysOfWeek: List[Option[DayOfWeek]] =
 List(
 DayOfWeek(-5),
 DayOfWeek(3),
 DayOfWeek(10)
)

 val expectedDaysOfWeek: List[Option[DayOfWeek]] =
 List(
 None,
 Some(DayOfWeek.unsafe(3)),
 None
)

 assert(daysOfWeek == expectedDaysOfWeek)

 // printing DayOfWeek using toString
 daysOfWeek.foreach(println)

 None
 Some(3)
 None

 opaque type DayOfWeek = Int

 object DayOfWeek {

 def apply(d: Int): Option[DayOfWeek] =
 if (isValid(d))
 Some(d)
 else None

 def unsafe(d: Int): DayOfWeek = d

 private val isValid: Int => Boolean =
 i => i >= 1 && i <= 7

 extension dayOfWeekOps on (d: DayOfWeek):

 def asString : String =
 d match {
 case 1 => "Monday"
 case 2 => "Tuesday"
 case 3 => "Wednesday"
 case 4 => "Thursday"
 case 5 => "Friday"
 case 6 => "Saturday"
 case 7 => "Sunday"
 }

 }

 // priting DayOfWeek using asString
 daysOfWeek.foreach { maybeDay =>
 println(
 maybeDay.fold
 ("Error: undefined DayOfWeek")
 (day => day.asString)
)
 }

 Error: undefined DayOfWeek
 Wednesday
 Error: undefined DayOfWeek

Here we take our
DayOfWeek simple type
and add a test, plus
some code that uses it.

@philip_schwarz

In his book, Debasish Ghosh goes on to provide a more involved example of smart constructor. If you are interested, see
here for details: https://github.com/debasishg/frdomain/tree/master/src/main/scala/frdomain/ch3/smartconstructor

https://github.com/debasishg/frdomain/tree/master/src/main/scala/frdomain/ch3/smartconstructor

The next slide consists of an extract from the current Dotty documentation, which is where I got the
idea of adding the asString extension function to our opaque types.

The extract is also interesting in that it shows an example where the unsafe constructor is called apply
and the safe one is called safe.

https://dotty.epfl.ch/docs/reference/other-new-features/opaques.html

https://dotty.epfl.ch/docs/reference/other-new-features/opaques.html

enum CardType:
 case Visa, Mastercard

 enum Currency:
 case EUR, USD

 object OpaqueTypes:

 opaque type CheckNumber = Int
 object CheckNumber:
 def apply(n: Int): CheckNumber = n

 opaque type CardNumber = String
 object CardNumber:
 def apply(n: String): CardNumber = n

 opaque type PaymentAmount = Float
 object PaymentAmount:
 def apply(amount: Float): PaymentAmount = amount

import OpaqueTypes._

 case class CredictCardInfo (
 cardType: CardType,
 cardNumber: CardNumber
)

 enum PaymentMethod:
 case Cash
 case Check(checkNumber: CheckNumber)
 case Card(creditCardInfo: CredictCardInfo)

 case class Payment (
 amount: PaymentAmount,
 currency: Currency,
 method: PaymentMethod
)

@main def main =

 val cash10EUR = Payment(
 PaymentAmount(10),
 Currency.EUR,
 PaymentMethod.Cash
)

 val check350USD = Payment(
 PaymentAmount(350),
 Currency.USD,
 PaymentMethod.Check(CheckNumber(123)))

 println(cash10EUR)
 println(check350USD)

Payment(10.0,EUR,Cash)
Payment(350.0,USD,Check(123))

Next, we take the e-commerce payments example on this slide
and in the next two slides we add integrity checks for Simple
values by adding validation to Simple types (the types in red)
using the smart constructor pattern.

opaque type CardNumber = String
object CardNumber:

 def apply(n: String): Either[String, CardNumber] =
 if n < "111111"
 Left(s"CardNumber cannot be less than 111111: $n")
 else if n > "999999"
 Left(s"CardNumber cannot be greater than 999999: $n")
 else
 Right(n)

 def unsafe(n: String): CardNumber = n

opaque type CheckNumber = Int
object CheckNumber:

 def apply(n: Int): Either[String, CheckNumber] =
 if n < 1
 Left(s"CheckNumber cannot be less than 1: $n")
 else if n > 1000000
 Left(s"CheckNumber cannot be greater than 1,000,000: $n")
 else
 Right(n)

 def unsafe(n: Int): CheckNumber = n

enum CardType:
 case Visa, Mastercard

case class CreditCardInfo(
 cardType: CardType,
 cardNumber: CardNumber
)

enum PaymentMethod:
 case Cash
 case Check(checkNumber: CheckNumber)
 case Card(creditCardInfo: CreditCardInfo)

opaque type PaymentAmount = Float
object PaymentAmount:

 def apply(amount: Float): Either[String, PaymentAmount] =
 if amount < 0
 Left(s"PaymentAmount cannot be negative: $amount")
 else if amount > 1000000
 Left(s"PaymentAmount cannot be greater than 1,000,000: $amount")
 else
 Right(amount)

 def unsafe(amount: Float): PaymentAmount = amount

enum Currency:
 case EUR, USD

Here we add validation to our simple types (the types in red), by modifying
their associated apply function to return either a valid value or an error
message. We also introduce an unsafe constructor function for each type.

@philip_schwarz

case class Payment(
 amount: PaymentAmount,
 currency: Currency,
 method: PaymentMethod
)
object Payment {

 def apply(amount: Either[String, PaymentAmount],
 currency: Currency,
 checkNumber: Either[String, CheckNumber])
 : Either[String, Payment] =
 for {
 amt <- amount
 checkNo <- checkNumber
 } yield Payment(amt, currency, PaymentMethod.Check(checkNo))

 def apply(amount: Either[String, PaymentAmount],
 currency: Currency)
 : Either[String, Payment] =
 for {
 amt <- amount
 } yield Payment(amt, currency, PaymentMethod.Cash)

 def apply(amount: Either[String, PaymentAmount],
 currency: Currency,
 cardType: CardType,
 cardNumber: Either[String, CardNumber])
 : Either[String, Payment] =
 for {
 amt <- amount
 cardNo <- cardNumber
 cardInfo = CreditCardInfo(cardType, cardNo)
 } yield Payment(amt, currency, PaymentMethod.Card(cardInfo))
}

val payments: List[Either[String, Payment]] =
 List(
 Payment(PaymentAmount(10), Currency.USD, CheckNumber(15)),
 Payment(PaymentAmount(10), Currency.USD, CheckNumber(2_000_000)),
 Payment(PaymentAmount(20), Currency.EUR, CardType.Visa, CardNumber("123")),
 Payment(PaymentAmount(20), Currency.EUR, CardType.Visa, CardNumber("005")),
 Payment(PaymentAmount(30), Currency.EUR),
 Payment(PaymentAmount(-30), Currency.EUR)
)

val expectedPayments List[Either[String, Payment]] =
 List(
 Right(Payment(PaymentAmount.unsafe(10.0),
 Currency.USD,
 PaymentMethod.Check(CheckNumber.unsafe(15)))),
 Left("CheckNumber cannot be greater than 1,000,000: 2000000"),
 Right(Payment(PaymentAmount.unsafe(20.0),
 Currency.EUR,
 PaymentMethod.Card(CreditCardInfo(CardType.Visa,
 CardNumber.unsafe("123"))))),
 Left("CardNumber cannot be less than 111111: 005"),
 Right(Payment(PaymentAmount.unsafe(30.0),
 Currency.EUR,
 PaymentMethod.Cash)),
 Left("PaymentAmount cannot be negative: -30.0")
)

assert(payments == expectedPayments)

payments.foreach(println)

Right(Payment(10.0,USD,Check(15)))
Left(CheckNumber cannot be greater than 1,000,000: 2000000)
Right(Payment(20.0,EUR,Card(CreditCardInfo(Visa,123))))
Left(CardNumber cannot be less than 111111: 005)
Right(Payment(30.0,EUR,Cash))
Left(PaymentAmount cannot be negative: -30.0)

Here we add to the Payment type some constructors
that make the validation of Payment dependent on
the validation of Simple types. We also add a test.

The rest of this slide deck involves the use of the
Applicative type class. If you are not familiar with it then
one way you can learn about it is by going through the slide
decks on this slide, though you might still find it useful to
skim through the rest of the slides here to get some idea of
how Applicative can be used for validation.

https://www.slideshare.net/pjschwarz

@philip_schwarz

https://www.slideshare.net/pjschwarz

The code that we have just seen has the limitation that even though the validation of a Simple type might fail due to multiple constraints
being violated, our constructors return an error that only informs us about a single violation.

e.g. if we try to create a Payment with both an invalid PaymentAmount and an invalid CheckNumber then the resulting error only informs us
that the PaymentAmount is invalid.

assert(Payment(PaymentAmount(-10), Currency.USD, CheckNumber(2_000_000))
 ==
 Left("PaymentAmount cannot be negative: -10.0"))

In the following slides we take the code that we have just seen and improve it so that it returns an error for all constraint violations, not just a
single violation. We are going to do that by changing the code so that rather than doing validation using the Either monad, it is going to do it
using an Applicative Functor.

This is happening because Either is a monad, so our validations are carried out sequentially and as soon as one of the validations fails then
the remaining validations are not even attempted, they are bypassed, and we are left with an error informing us of that single failure.

def apply(amt:Either[String,PaymentAmount],ccy:Currency,cardType:CardType,cardNo:Either[String,CardNumber])
 :Either[String,Payment] =
 for {
 amount <- amt
 cardNumber <- cardNo
 cardInfo = CreditCardInfo(cardType, cardNumber)
 } yield Payment(amt, ccy, PaymentMethod.Card(cardInfo))
}

If the amt validation is a failure i.e. an
Either, then the whole for
comprehension returns that failure: the
cardNo validation does not even get
used in the computation of the result.

The resulting code is going to be somewhat overcomplicated for
our simple use case, so we are then going to switch to a simpler
Applicative seen in Functional Programming in Scala.

Functional Programming in Scala
(by Paul Chiusano and Runar Bjarnason)

@pchiusano @runarorama

If we want to use Applicative and related abstractions to do
validation, can’t we just use the ready-made abstractions
provided by a functional programming library like Scalaz or Cats?

No we cannot, because we are using Scala 3 and there are no
versions of Scalaz and/or Cats available for Scala 3 because the
latter has not been released yet.

So we are going to use a hand-rolled Applicative. We are first
going to use the one seen in the slide deck on the right.

trait Semigroup[A] {
 def <>(lhs: A, rhs: A): A
}

trait Functor[F[_]] {
 def map[A,B](fa: F[A])(f: A => B): F[B]
}

trait Applicative[F[_]] extends Functor[F] {
 def <*>[A,B](fab: F[A => B],fa: F[A]): F[B]
 def unit[A](a: => A): F[A]
 def map[A,B](fa: F[A])(f: A => B): F[B] =
 <*>(unit(f),fa)
 def map2[A,B,C](fa: F[A], fb: F[B])(f: (A,B) => C): F[C] =
 <*>(map(fa)(f.curried), fb)
}

trait Traverse [F[_]] {
 def traverse[M[_]:Applicative,A,B](fa:F[A])(f: A => M[B]): M[F[B]]
 def sequence[M[_]:Applicative,A](fma: F[M[A]]): M[F[A]] =
 traverse(fma)(x => x)
}

The first hand-rolled Applicative that we are
going to use is defined in terms of <*> (tie-
fighter) and unit. *> (right-shark) was also
provided but I have removed it because we
don’t need it.

Whilst we could get our code to use <*>
directly, this would not be as convenient as
using map and map2 and since these can be
defined in terms of <*> and unit, I have added
them to Applicative.

The Applicative instance
that we are going to use
will involve a Semigroup.

An Applicative is a Functor.

The sequence function
provided by Traverse is
going to come in handy
when we write tests.

On the next slide we see a Scala 3 type lambda. While explaining type lambdas is out of scope for
this slide deck, here are the first few lines from the dotty 0.25.0 documentation for type lambdas.

@philip_schwarz

case class Error(error:List[String])

sealed trait Validation[+E, +A]
case class Failure[E](error: E) extends Validation[E, Nothing]
case class Success[A](a: A) extends Validation[Nothing, A]

implicit val errorSemigroup: Semigroup[Error] =
 new Semigroup[Error] {
 def <>(lhs: Error, rhs: Error): Error =
 Error(lhs.error ++ rhs.error)
 }

def validationApplicative[E](implicit sg:Semigroup[E])
 : Applicative[[α] =>> Validation[E,α]] =
new Applicative[[α] =>> Validation[E,α]] {
def unit[A](a: => A) = Success(a)

 def <*>[A,B](fab: Validation[E,A => B], fa: Validation[E,A]): Validation[E,B] =
 (fab, fa) match {
 case (Success(ab), Success(a)) => Success(ab(a))
 case (Failure(err1), Failure(err2)) => Failure(sg.<>(err1,err2))
 case (Failure(err), _) => Failure(err)
 case (_, Failure(err)) => Failure(err)
 }
}
val errorValidationApplicative: Applicative[[α] =>> Validation[Error,α]] =
 validationApplicative[Error]

val listTraverse = new Traverse[List] {
 override def traverse[M[_],A,B](as:List[A])(f: A => M[B])
 (implicit M:Applicative[M])
 : M[List[B]] =
 as.foldRight(M.unit(List[B]()))((a, fbs) => M.map2(f(a), fbs)(_ :: _))
}

The Applicative that we are going
to use is a Validation whose Failure
contains an Error consisting of a List
of error messages.

There is a Semigroup that can be
used to combine errors by
concatenating their lists of error
messages.

When <*> is used to apply a function to its
argument then if both the function and the
argument are failed validations then <*> returns a
failed Validation whose error is the combination
of the errors of the two validations.

This is a validation Applicative instance for Error.

We are going to use a
Traverse instance for List.

opaque type CheckNumber = Int
object CheckNumber:
 def apply(n: Int): Validation[Error,CheckNumber] =
 if n < 1
 Failure(Error(List(s"CheckNumber cannot be less than 1: $n")))
 else if n > 1000000
 Failure(Error(List(s"CheckNumber cannot be greater than 1,000,000: $n")))
 else
 Success(n)
 def unsafe(n: Int): CheckNumber = n

opaque type PaymentAmount = Float
object PaymentAmount:
 def apply(n: Float): Validation[Error,PaymentAmount] =
 if n < 0
 Failure(Error(List(s"PaymentAmount cannot be negative: $n")))
 else if n > 1000000
 Failure(Error(List(s"PaymentAmount cannot be greater than 1,000,000: $n")))
 else
 Success(n)
 def unsafe(n: Float): PaymentAmount = n

enum CardType:
 case Visa, Mastercard

enum Currency :
 case EUR, USD

case class CreditCardInfo(
 cardType: CardType,
 cardNumber: CardNumber
)

enum PaymentMethod:
 case Cash
 case Check(checkNumber: CheckNumber)
 case Card(creditCardInfo: CreditCardInfo)

opaque type CardNumber = String
object CardNumber:
 def apply(n: String): Validation[Error,CardNumber] =
 if n < "111111"
 Failure(Error(List(s"CardNumber cannot be less than 111111: $n")))
 else if n > "999999"
 Failure(Error(List(s"CardNumber cannot be greater than 999999: $n")))
 else
 Success(n)
 def unsafe(n: String): CardNumber = n

On this slide we have just changed the
Simple type constructors so that rather
than returning an Either[String,X]
they return a Validation[Error,X].

case class Payment private (
 amount: PaymentAmount,
 currency: Currency,
 method: PaymentMethod
)
import errorValidationApplicative._
object Payment {

 def apply(amount: Validation[Error,PaymentAmount],
 currency: Currency,
 checkNumber: Validation[Error,CheckNumber])
 : Validation[Error,Payment] =
 map2(amount, checkNumber)(
 (amt, checkNo) =>
 Payment(amt, currency, PaymentMethod.Check(checkNo))
)

 def apply(amount: Validation[Error,PaymentAmount],
 currency: Currency)
 : Validation[Error,Payment] =
 map(amount)(amt => Payment(amt, currency, PaymentMethod.Cash))

 def apply(amount: Validation[Error,PaymentAmount],
 currency: Currency,
 card: CardType,
 cardNumber: Validation[Error,CardNumber])
 : Validation[Error,Payment] =
 map2(amount, cardNumber)(
 (amt, cardNo) =>
 Payment(amt, currency, PaymentMethod.Card(CreditCardInfo(card, cardNo)))
)

 def unsafe(amount: PaymentAmount, currency: Currency, method: PaymentMethod): Payment =
 Payment(amount, currency, method)
}

On this slide we have firstly changed the Payment
constructors so that where they take or return an
Either[String,X] they instead take or return a
Validation[Error,X].

Secondly, since we have stopped using the
Either monad and started using a Validation
Applicative, instead of using a for comprehension
to process input Validations and return a
Validation, we now use map and map2 to do that.

Here we import the interface
provided by the Validation
Applicative for Error, so that
we have access to its map and
map2 functions.

We have also added an ‘unsafe’
constructor to be used in test code.

// turn a list of successful payment validations into
// a succesful validation of a list of payments
val successfulValidationOfPayments : Validation[Error,List[Payment]] =
 listTraverse.sequence(successfulPaymentValidations)(errorValidationApplicative)

val expectedSuccessfulValidationOfPayments : Validation[Error,List[Payment]] =
 Success(List(Payment.unsafe(PaymentAmount.unsafe(10.0),
 Currency.USD,
 PaymentMethod.Check(CheckNumber.unsafe(15))),
 Payment.unsafe(PaymentAmount.unsafe(20.0),
 Currency.EUR,
 PaymentMethod.Card(CreditCardInfo(CardType.Visa,
 CardNumber.unsafe("123")))),
 Payment.unsafe(PaymentAmount.unsafe(30.0),
 Currency.EUR,
 PaymentMethod.Cash)))

assert(successfulPaymentValidations
 == expectedSuccessfulPaymentValidations)

assert(successfulValidationOfPayments
 == expectedSuccessfulValidationOfPayments)

val successfulPaymentValidations: List[Validation[Error,Payment]] =
 List(Payment(PaymentAmount(10), Currency.USD, CheckNumber(15)),
 Payment(PaymentAmount(20), Currency.EUR, CardType.Visa, CardNumber("123")),
 Payment(PaymentAmount(30), Currency.EUR))

val expectedSuccessfulPaymentValidations: List[Validation[Error,Payment]] =
 List(Success(Payment.unsafe(PaymentAmount.unsafe(10.0),
 Currency.USD,
 PaymentMethod.Check(CheckNumber.unsafe(15)))),
 Success(Payment.unsafe(PaymentAmount.unsafe(20.0),
 Currency.EUR,
 PaymentMethod.Card(CreditCardInfo(CardType.Visa,
 CardNumber.unsafe("123"))))),
 Success(Payment.unsafe(PaymentAmount.unsafe(30.0),
 Currency.EUR,
 PaymentMethod.Cash)))

The top test is new and operates purely on successful
payment validations. See the next slide for an existing
test which also deals with failed payment validations.

The bottom test shows off how useful the sequence
function of Traverse can be to turn a collection of
payment validations into a validated collection of
payments. The only reason why I am explicitly passing
the errorValidationApplicative to sequence is
to remind you that it is being passed in.

@philip_schwarz

val successfulAndUnsuccessfulPaymentValidations: List[Validation[Error,Payment]] =
 List(Payment(PaymentAmount(10), Currency.USD, CheckNumber(15)),
 Payment(PaymentAmount(-10), Currency.USD, CheckNumber(2_000_000)),
 Payment(PaymentAmount(20), Currency.EUR, CardType.Visa, CardNumber("123")),
 Payment(PaymentAmount(-20), Currency.EUR, CardType.Visa, CardNumber("005")),
 Payment(PaymentAmount(30), Currency.EUR),
 Payment(PaymentAmount(-30), Currency.EUR))

val expectedSuccessfulAndUnsuccessfulPaymentValidations
 : List[Validation[Error,Payment]] =
 List(Success(Payment.unsafe(PaymentAmount.unsafe(10.0),
 Currency.USD,
 PaymentMethod.Check(CheckNumber.unsafe(15)))),
 Failure(Error(List("PaymentAmount cannot be negative: -10.0",
 "CheckNumber cannot be greater than 1,000,000: 2000000"))),
 Success(Payment.unsafe(PaymentAmount.unsafe(20.0),
 Currency.EUR,
 PaymentMethod.Card(CreditCardInfo(CardType.Visa,CardNumber.unsafe("123"))))),
 Failure(Error(List("PaymentAmount cannot be negative: -20.0",
 "CardNumber cannot be less than 111111: 005"))),
 Success(Payment.unsafe(PaymentAmount.unsafe(30.0),
 Currency.EUR,
 PaymentMethod.Cash)),
 Failure(Error(List("PaymentAmount cannot be negative: -30.0"))))

// turn a list of partly failed payment validations into a failed validation of a list of payments
val failedValidationOfPayments : Validation[Error,List[Payment]] =
 listTraverse.sequence(successfulAndUnsuccessfulPaymentValidations)(errorValidationApplicative)

val expectedFailedValidationOfPayments : Validation[Error,List[Payment]] =
 Failure(Error(List("PaymentAmount cannot be negative: -10.0",
 "CheckNumber cannot be greater than 1,000,000: 2000000",
 "PaymentAmount cannot be negative: -20.0",
 "CardNumber cannot be less than 111111: 005",
 "PaymentAmount cannot be negative: -30.0")))

assert(successfulAndUnsuccessfulPaymentValidations
 == expectedSuccessfulAndUnsuccessfulPaymentValidations)

assert(failedValidationOfPayments
 == expectedFailedValidationOfPayments)

On this slide we revisit the previous two tests but
include failed validations. This showcases how the
Validation Applicative for Error is able to return
Validation failures informing us of all constraint
violations, rather than just one (the first one).

Note that since sequence is defined in terms of the
map2 function of the applicative that it is being passed,
the sequence function benefits from the ability of said
map2 function to combine failed validations and so the
end result of sequencing is a single failure whose Error
informs us of all constraint violations.

val successfulAndUnsuccessfulPaymentValidations: List[Validation[Error,Payment]] =
List(Payment(PaymentAmount(10), Currency.USD, CheckNumber(15)),

Payment(PaymentAmount(-10), Currency.USD, CheckNumber(2_000_000)),
Payment(PaymentAmount(20), Currency.EUR, CardType.Visa, CardNumber("123")),
Payment(PaymentAmount(-20), Currency.EUR, CardType.Visa, CardNumber("005")),
Payment(PaymentAmount(30), Currency.EUR),
Payment(PaymentAmount(-30), Currency.EUR))

val expectedSuccessfulAndUnsuccessfulPaymentValidations
: List[Validation[Error,Payment]] =

List(Success(Payment.unsafe(PaymentAmount.unsafe(10.0),
Currency.USD,
PaymentMethod.Check(CheckNumber.unsafe(15)))),

Failure(Error(List("PaymentAmount cannot be negative: -10.0",
"CheckNumber cannot be greater than 1,000,000: 2000000"))),

Success(Payment.unsafe(PaymentAmount.unsafe(20.0),
Currency.EUR,
PaymentMethod.Card(CreditCardInfo(CardType.Visa,CardNumber.unsafe("123"))))),

Failure(Error(List("PaymentAmount cannot be negative: -20.0",
"CardNumber cannot be less than 111111: 005"))),

Success(Payment.unsafe(PaymentAmount.unsafe(30.0),
Currency.EUR,
PaymentMethod.Cash)),

Failure(Error(List("PaymentAmount cannot be negative: -30.0"))))

// turn a list of partly failed payment validations into a failed validation of a list of payments
val failedValidationOfPayments : Validation[Error,List[Payment]] =

listTraverse.sequence(successfulAndUnsuccessfulPaymentValidations)(errorValidationApplicative)

val expectedFailedValidationOfPayments : Validation[Error,List[Payment]] =
Failure(Error(List("PaymentAmount cannot be negative: -10.0",

"CheckNumber cannot be greater than 1,000,000: 2000000",
"PaymentAmount cannot be negative: -20.0",
"CardNumber cannot be less than 111111: 005",
"PaymentAmount cannot be negative: -30.0")))

assert(successfulAndUnsuccessfulPaymentValidations
== expectedSuccessfulAndUnsuccessfulPaymentValidations)

assert(failedValidationOfPayments
== expectedFailedValidationOfPayments)

On this slide we revisit the previous two tests but
include failed validations. This showcases how the
Validation Applicative for Error is able to return
Validation failures informing us of all constraint
violations, rather than just one (the first one).

Note that since sequence is defined in terms of the
map2 function of the applicative that it is being passed,
the sequence function benefits from the ability of said
map2 function to combine failed validations and so the
end result of sequencing is a single failure whose Error
informs us of all constraint violations.

The next eight slides conclude this slide deck. What they do is simplify the program that we have just
seen by using a simpler Validation and a simpler Applicative that doesn’t rely on a Semigroup. The
Validation and Applicative are from chapter 12 of Functional Programming in Scala and more
specifically from Exercise 6 of that chapter.

I am not going to provide any commentary. On each slide you’ll see some code from the current
program together with alternative code that replaces it to produce a simplified version of the program.

trait Applicative[F[_]] extends Functor[F] {
 def map2[A,B,C](fa: F[A], fb: F[B])(f: (A,B) => C): F[C]
 def unit[A](a: => A): F[A]
 def map[A,B](fa: F[A])(f: A => B): F[B] =
 map2(fa,unit(()))((a,_) => f(a))
}

trait Applicative[F[_]] extends Functor[F] {
 def <*>[A,B](fab: F[A => B],fa: F[A]): F[B]
 def unit[A](a: => A): F[A]
 def map[A,B](fa: F[A])(f: A => B): F[B] =
 <*>(unit(f),fa)
 def map2[A,B,C](fa: F[A], fb: F[B])(f: (A,B) => C): F[C] =
 <*>(map(fa)(f.curried), fb)
}

trait Semigroup[A] {
 def <>(lhs: A, rhs: A): A
}

sealed trait Validation[+E, +A]
case class Failure[E](head: E, tail: Vector[E] = Vector())
 extends Validation[E, Nothing]
case class Success[A](a: A)
 extends Validation[Nothing, A]

case class Error(error:List[String])

sealed trait Validation[+E, +A]
case class Failure[E](error: E)
 extends Validation[E, Nothing]
case class Success[A](a: A)
 extends Validation[Nothing, A]

def validationApplicative[E]: Applicative[[α] =>> Validation[E,α]] =
new Applicative[[α] =>> Validation[E,α]] {

def unit[A](a: => A) = Success(a)
 def map2[A,B,C](fa: Validation[E,A], fb: Validation[E,B])(f: (A,B) => C): Validation[E,C] =
 (fa, fb) match {
 case (Success(a), Success(b)) => Success(f(a, b))
 case (Failure(h1, t1), Failure(h2, t2)) => Failure(h1, t1 ++ Vector(h2) ++ t2)
 case (e@Failure(_, _), _) => e
 case (_, e@Failure(_, _)) => e
 }
}
val errorValidationApplicative: Applicative[[α] =>> Validation[String,α]] =

validationApplicative[String]

def validationApplicative[E](implicit sg:Semigroup[E]): Applicative[[α] =>> Validation[E,α]] =
new Applicative[[α] =>> Validation[E,α]] {

def unit[A](a: => A) = Success(a)
 def <*>[A,B](fab: Validation[E,A => B], fa: Validation[E,A]): Validation[E,B] =
 (fab, fa) match {
 case (Success(ab), Success(a)) => Success(ab(a))
 case (Failure(err1), Failure(err2)) => Failure(sg.<>(err1,err2))
 case (Failure(err), _) => Failure(err)
 case (_, Failure(err)) => Failure(err)
 }
}
val errorValidationApplicative: Applicative[[α] =>> Validation[Error,α]] =
 validationApplicative[Error]

opaque type CheckNumber = Int
object CheckNumber:
 def apply(n: Int): Validation[String,CheckNumber] =
 if n < 1
 Failure("CheckNumber cannot be less than 1: $n")
 else if n > 1000000
 Failure(s"CheckNumber cannot be greater than 1,000,000: $n")
 else
 Success(n)
 def unsafe(n: Int): CheckNumber = n

opaque type CardNumber = String
object CardNumber:
 def apply(n: String): Validation[String,CardNumber] =
 if n < "111111"
 Failure(s"CardNumber cannot be less than 111111: $n")
 else if n > "999999"
 Failure(s"CardNumber cannot be greater than 999999: $n")
 else
 Success(n)
 def unsafe(n: String): CardNumber = n

opaque type PaymentAmount = Float
object PaymentAmount:
 def apply(n: Float): Validation[String,PaymentAmount] =
 if n < 0
 Failure(s"PaymentAmount cannot be negative: $n")
 else if n > 1000000
 Failure(s"PaymentAmount cannot be greater than 1,000,000: $n")
 else
 Success(n)
 def unsafe(n: Float): PaymentAmount = n

opaque type CheckNumber = Int
object CheckNumber:
 def apply(n: Int): Validation[Error,CheckNumber] =
 if n < 1
 Failure(Error(List(s"CheckNumber cannot be less than 1: $n")))
 else if n > 1000000
 Failure(Error(List(s"CheckNumber cannot be greater than 1,000,000: $n")))
 else
 Success(n)
 def unsafe(n: Int): CheckNumber = n

opaque type PaymentAmount = Float
object PaymentAmount:
 def apply(n: Float): Validation[Error,PaymentAmount] =
 if n < 0
 Failure(Error(List(s"PaymentAmount cannot be negative: $n")))
 else if n > 1000000
 Failure(Error(List(s"PaymentAmount cannot be greater than 1,000,000: $n")))
 else
 Success(n)
 def unsafe(n: Float): PaymentAmount = n

opaque type CardNumber = String
object CardNumber:
 def apply(n: String): Validation[Error,CardNumber] =
 if n < "111111"
 Failure(Error(List(s"CardNumber cannot be less than 111111: $n")))
 else if n > "999999"
 Failure(Error(List(s"CardNumber cannot be greater than 999999: $n")))
 else
 Success(n)
 def unsafe(n: String): CardNumber = n

case class Payment private (
 amount: PaymentAmount,
 currency: Currency,
 method: PaymentMethod
)
import errorValidationApplicative._
object Payment {
 def apply(amount: Validation[String,PaymentAmount],
 currency: Currency,
 checkNumber: Validation[String,CheckNumber])
 : Validation[String,Payment] =
 map2(amount, checkNumber)(
 (amt, checkNo) =>
 Payment(amt, currency, PaymentMethod.Check(checkNo))
)
 def apply(amount: Validation[String,PaymentAmount],
 currency: Currency)
 : Validation[String,Payment] =
 map(amount)(amt => Payment(amt, currency, PaymentMethod.Cash))
 def apply(amount: Validation[String,PaymentAmount],
 currency: Currency,
 card: CardType,
 cardNumber: Validation[String,CardNumber])
 : Validation[String,Payment] =
 map2(amount, cardNumber)(
 (amt, cardNo) =>
 Payment(amt,
 currency,
 PaymentMethod.Card(CreditCardInfo(card, cardNo)))
)
 def unsafe(amount: PaymentAmount,
 currency: Currency,
 method: PaymentMethod): Payment =
 Payment(amount, currency, method)
}

case class Payment private (
 amount: PaymentAmount,
 currency: Currency,
 method: PaymentMethod
)
import errorValidationApplicative._
object Payment {
 def apply(amount: Validation[Error,PaymentAmount],
 currency: Currency,
 checkNumber: Validation[Error,CheckNumber])
 : Validation[Error,Payment] =
 map2(amount, checkNumber)(
 (amt, checkNo) =>
 Payment(amt, currency, PaymentMethod.Check(checkNo))
)
 def apply(amount: Validation[Error,PaymentAmount],
 currency: Currency)
 : Validation[Error,Payment] =
 map(amount)(amt => Payment(amt, currency, PaymentMethod.Cash))
 def apply(amount: Validation[Error,PaymentAmount],
 currency: Currency,
 card: CardType,
 cardNumber: Validation[Error,CardNumber])
 : Validation[Error,Payment] =
 map2(amount, cardNumber)(
 (amt, cardNo) =>
 Payment(amt,
 currency,
 PaymentMethod.Card(CreditCardInfo(card, cardNo)))
)
 def unsafe(amount: PaymentAmount,
 currency: Currency,
 method: PaymentMethod): Payment =
 Payment(amount, currency, method)
}

val successfulPaymentValidations: List[Validation[String,Payment]] =
 List(Payment(PaymentAmount(10), Currency.USD, CheckNumber(15)),
 Payment(PaymentAmount(20), Currency.EUR, CardType.Visa, CardNumber("123")),
 Payment(PaymentAmount(30), Currency.EUR))

val expectedSuccessfulPaymentValidations: List[Validation[String,Payment]] =
 List(Success(Payment.unsafe(PaymentAmount.unsafe(10.0),
 Currency.USD,
 PaymentMethod.Check(CheckNumber.unsafe(15)))),
 Success(Payment.unsafe(PaymentAmount.unsafe(20.0),
 Currency.EUR,
 PaymentMethod.Card(CreditCardInfo(CardType.Visa,
 CardNumber.unsafe("123"))))),
 Success(Payment.unsafe(PaymentAmount.unsafe(30.0),
 Currency.EUR,
 PaymentMethod.Cash)))

val successfulPaymentValidations: List[Validation[Error,Payment]] =
 List(Payment(PaymentAmount(10), Currency.USD, CheckNumber(15)),
 Payment(PaymentAmount(20), Currency.EUR, CardType.Visa, CardNumber("123")),
 Payment(PaymentAmount(30), Currency.EUR))

val expectedSuccessfulPaymentValidations: List[Validation[Error,Payment]] =
 List(Success(Payment.unsafe(PaymentAmount.unsafe(10.0),
 Currency.USD,
 PaymentMethod.Check(CheckNumber.unsafe(15)))),
 Success(Payment.unsafe(PaymentAmount.unsafe(20.0),
 Currency.EUR,
 PaymentMethod.Card(CreditCardInfo(CardType.Visa,
 CardNumber.unsafe("123"))))),
 Success(Payment.unsafe(PaymentAmount.unsafe(30.0),
 Currency.EUR,
 PaymentMethod.Cash)))

assert(successfulPaymentValidations
 == expectedSuccessfulPaymentValidations)

// turn a list of successful payment validations into
// a succesful validation of a list of payments
val successfulValidationOfPayments : Validation[Error,List[Payment]] =
 listTraverse.sequence(successfulPaymentValidations)(errorValidationApplicative)

val expectedSuccessfulValidationOfPayments : Validation[Error,List[Payment]] =
 Success(List(Payment.unsafe(PaymentAmount.unsafe(10.0),
 Currency.USD,
 PaymentMethod.Check(CheckNumber.unsafe(15))),
 Payment.unsafe(PaymentAmount.unsafe(20.0),
 Currency.EUR,
 PaymentMethod.Card(CreditCardInfo(CardType.Visa,
 CardNumber.unsafe("123")))),
 Payment.unsafe(PaymentAmount.unsafe(30.0),
 Currency.EUR,
 PaymentMethod.Cash)))

assert(successfulValidationOfPayments
 == expectedSuccessfulValidationOfPayments)

// turn a list of successful payment validations into
// a succesful validation of a list of payments
val successfulValidationOfPayments : Validation[String,List[Payment]] =
 listTraverse.sequence(successfulPaymentValidations)(errorValidationApplicative)

val expectedSuccessfulValidationOfPayments : Validation[String,List[Payment]] =
 Success(List(Payment.unsafe(PaymentAmount.unsafe(10.0),
 Currency.USD,
 PaymentMethod.Check(CheckNumber.unsafe(15))),
 Payment.unsafe(PaymentAmount.unsafe(20.0),
 Currency.EUR,
 PaymentMethod.Card(CreditCardInfo(CardType.Visa,
 CardNumber.unsafe("123")))),
 Payment.unsafe(PaymentAmount.unsafe(30.0),
 Currency.EUR,
 PaymentMethod.Cash)))

val successfulAndUnsuccessfulPaymentValidations
 : List[Validation[Error,Payment]] =
 List(
 Payment(PaymentAmount(10), Currency.USD, CheckNumber(15)),
 Payment(PaymentAmount(-10), Currency.USD, CheckNumber(2_000_000)),
 Payment(PaymentAmount(20), Currency.EUR, CardType.Visa, CardNumber("123")),
 Payment(PaymentAmount(-20), Currency.EUR, CardType.Visa, CardNumber("005")),
 Payment(PaymentAmount(30), Currency.EUR),
 Payment(PaymentAmount(-30), Currency.EUR)
)

val expectedSuccessfulAndUnsuccessfulPaymentValidations
 : List[Validation[Error,Payment]] =
 List(
 Success(Payment.unsafe(PaymentAmount.unsafe(10.0),
 Currency.USD,
 PaymentMethod.Check(CheckNumber.unsafe(15)))),
 Failure(Error(List("PaymentAmount cannot be negative: -10.0",
 "CheckNumber cannot be greater than 1,000,000: 2000000"))),
 Success(Payment.unsafe(PaymentAmount.unsafe(20.0),
 Currency.EUR,
 PaymentMethod.Card(
 CreditCardInfo(CardType.Visa,
 CardNumber.unsafe("123"))))),
 Failure(Error(List("PaymentAmount cannot be negative: -20.0",
 "CardNumber cannot be less than 111111: 005"))),
 Success(Payment.unsafe(PaymentAmount.unsafe(30.0),
 Currency.EUR,
 PaymentMethod.Cash)),
 Failure(Error(List("PaymentAmount cannot be negative: -30.0")))
)

assert(successfulAndUnsuccessfulPaymentValidations
 == expectedSuccessfulAndUnsuccessfulPaymentValidations)

val successfulAndUnsuccessfulPaymentValidations
 : List[Validation[String,Payment]] =
 List(
 Payment(PaymentAmount(10), Currency.USD, CheckNumber(15)),
 Payment(PaymentAmount(-10), Currency.USD, CheckNumber(2_000_000)),
 Payment(PaymentAmount(20), Currency.EUR, CardType.Visa, CardNumber("123")),
 Payment(PaymentAmount(-20), Currency.EUR, CardType.Visa, CardNumber("005")),
 Payment(PaymentAmount(30), Currency.EUR),
 Payment(PaymentAmount(-30), Currency.EUR)
)

val expectedSuccessfulAndUnsuccessfulPaymentValidations
 : List[Validation[String,Payment]] =
 List(
 Success(Payment.unsafe(PaymentAmount.unsafe(10.0),
 Currency.USD,
 PaymentMethod.Check(CheckNumber.unsafe(15)))),
 Failure("PaymentAmount cannot be negative: -10.0",
 Vector("CheckNumber cannot be greater than 1,000,000: 2000000")),
 Success(Payment.unsafe(PaymentAmount.unsafe(20.0),
 Currency.EUR,
 PaymentMethod.Card(
 CreditCardInfo(CardType.Visa,
 CardNumber.unsafe("123"))))),
 Failure("PaymentAmount cannot be negative: -20.0",
 Vector("CardNumber cannot be less than 111111: 005")),
 Success(Payment.unsafe(PaymentAmount.unsafe(30.0),
 Currency.EUR,
 PaymentMethod.Cash)),
 Failure("PaymentAmount cannot be negative: -30.0")
)

assert(successfulAndUnsuccessfulPaymentValidations
 == expectedSuccessfulAndUnsuccessfulPaymentValidations)

// turn a list of partly failed payment validations into
// a failed validation of a list of payments
val failedValidationOfPayments : Validation[Error,List[Payment]] =
 listTraverse.sequence(successfulAndUnsuccessfulPaymentValidations)(errorValidationApplicative)

val expectedFailedValidationOfPayments : Validation[Error,List[Payment]] =
 Failure(Error(List("PaymentAmount cannot be negative: -10.0",
 "CheckNumber cannot be greater than 1,000,000: 2000000",
 "PaymentAmount cannot be negative: -20.0",
 "CardNumber cannot be less than 111111: 005",
 "PaymentAmount cannot be negative: -30.0")))

assert(failedValidationOfPayments
 == expectedFailedValidationOfPayments)

// turn a list of partly failed payment validations into
// a failed validation of a list of payments
val failedValidationOfPayments : Validation[String,List[Payment]] =
 listTraverse.sequence(successfulAndUnsuccessfulPaymentValidations)(errorValidationApplicative)

val expectedFailedValidationOfPayments : Validation[String,List[Payment]] =
 Failure(
 "PaymentAmount cannot be negative: -10.0",
 Vector("CheckNumber cannot be greater than 1,000,000: 2000000",
 "PaymentAmount cannot be negative: -20.0",
 "CardNumber cannot be less than 111111: 005",
 "PaymentAmount cannot be negative: -30.0")
)

to be continued

