
Writer	Monad
Learn	how	to	use	the	Writer	monad	to	log	(trace) the	execution	of	functions	

through	the	work	of	

Bartosz	Milewski

slides	by @philip_schwarz

Alvin	Alexander
@BartoszMilewski @alvinalexander

string logger;

bool negate(bool b) {
logger += "Not so! ";
return !b;

}

pair<bool, string> negate(bool b, string logger) {
return make_pair(!b, logger + "Not so! ");

}

pair<bool, string> negate(bool b) {
return make_pair(!b, "Not so! ");

}

bool negate(bool b) {
return !b;

}

Category Theory 3.2 – Kleisli Category @BartoszMilewski

Not a pure function – has side effects. In
modern programming, we try to stay away
from global mutable state as much as
possible. Fortunately for us, it’s possible to make
this function pure. You just have to pass the log
explicitly, in and out. Let’s do that by adding a
string argument, and pairing regular output with a
string that contains the updated log

Bartosz	Milewski’s	explanation	of	how	to	use	a	Writer monad to	model	the	side	effects	of	functions	that	log	or	trace	their	execution

This function is pure, it has no side effects, it returns the same pair every time it’s called with the same arguments, and it can be
memoized if necessary. However, considering the cumulative nature of the log, you’d have to memoize all possible histories that can
lead to a given call. There would be a separate memo entry for: negate(true, "It was the best of times. "); and
negate(true, "It was the worst of times. "); and so on.

It’s also not a very good interface for a library function. The callers are free to ignore the string in the return type, so that’s not a
huge burden; but they are forced to pass a string as input, which might be inconvenient.

Is there a way to do the same thing less intrusively? Is there a way to separate concerns? In this simple example, the main
purpose of the function negate is to turn one Boolean into another. The logging is secondary. Granted, the message that is
logged is specific to the function, but the task of aggregating the messages into one continuous log is a separate concern. We still
want the function to produce a string, but we’d like to unburden it from producing a log.

So here’s the compromise solution: The idea is that the log will be aggregated
between function calls.

pair<bool, string> isOdd(int n) {
pair<bool, string> p1 = isEven(n);
pair<bool, string> p2 = negate(p1.first);
return make_pair(p2.first, p1.second + p2.second);

}

pair<bool, string> isEven(int n) {
return make_pair(n % 2 == 0, "isEven ");

}
pair<bool, string> negate(bool b) {

return make_pair(!b, "Not so! ");
}

bool isEven(int n) {
return n % 2 == 0;

}

bool negate(bool b) {
return !b;

}

Category Theory 3.2 – Kleisli Category

@BartoszMilewski

Bartosz	Milewski’s	example	of	two	embellished	functions	and	how	to	compose	them

We want to modify these functions
so that they piggyback a message
string on top of their regular return
values.

We will “embellish” the return
values of these functions.

functions	we	want	
to	add	logging	to	

composing	the	
embellished	functions

embellished	functions

Writer<bool> isOdd(int n) {
Writer<bool> p1 = isEven(n);
Writer<bool> p2 = negate(p1.first);
return make_pair(p2.first, p1.second + p2.second);

}

Writer<bool> isEven(int n) {
return make_pair(n % 2 == 0, "isEven ");

}
Writer<bool> negate(bool b) {

return make_pair(!b, "Not so! ");
}

bool isEven(int n) {
return n % 2 == 0;

}

bool negate(bool b) {
return !b;

}

template<class A>
using Writer = pair<A, string>;

Category Theory 3.2 – Kleisli Category

@BartoszMilewski

Here we “embellish” the return values of functions isEven and
negate in a generic way by defining a template Writer that
encapsulates a pair whose first component is a value of
arbitrary type A and the second component is a String.

piggybacking a message string
on top of regular return values
using a Writer template.

Category Theory 3.2 – Kleisli Category

@BartoszMilewski

Now imagine a whole program written in this
style. It’s a nightmare of repetitive, error-prone
code. But we are programmers. We know how to
deal with repetitive code: we abstract it! This is,
however, not your run of the mill abstraction —
we have to abstract function composition itself.

Writer<bool> isOdd(int n) {
Writer<bool> p1 = isEven(n);
Writer<bool> p2 = negate(p1.first);
return make_pair(p2.first, p1.second + p2.second);

}

If we want to abstract this composition as a higher order function in C++, we have to use a template parameterized
by three types corresponding to three objects in our category. It should take two embellished functions that are
composable according to our rules, and return a third embellished function:

template<class A, class B, class C>
function<Writer<C>(A)> compose(function<Writer(A)> m1,function<Writer<C>(B)> m2)
{

return [m1, m2](A x) {
auto p1 = m1(x);
auto p2 = m2(p1.first);
return make_pair(p2.first, p1.second + p2.second);

};
}

Writer<bool> process(string s) {
return compose<string, string, bool>(isEven, negate)(s);

}

Now we can go back to our earlier example and implement the composition of isEven and negate using this new template:

The particular monad that I used as the basis of the category in this post is called the writer monad and it’s used for logging
or tracing the execution of functions. It’s also an example of a more general mechanism for embedding effects in
pure computations

So it turns out, this is really a miracle, I would say, that everything that can be computed using impure functions, state,
exceptions, input/output et cetera, they can all be converted into pure calculation as long as you replace regular functions
with these functions that return embellished results.

So all these side effects can be translated into some kind of embellishment of the result of a function, and the function
remains a pure function, but it produces more than the result, it produces a result that’s hidden, embellished,
encapsulated in some way, in some weird way.

So this is the interesting part: you have a computation that normally an imperative programmer would implement as an
impure function and the functional programmer comes along and says I can implement this as a pure function, it’s just that
the output type will be a little bit different.

And it works. And this still has nothing to do with the monad.

It just says: impure computation that we do in imperative programming can be transformed into pure computations in
functional programming, but they return these embellished results.

And where does the monad come in? Monads come in when we say ok, but I have these gigantic function that starts with
some argument a and produces this embellished result, and do I have to just write them inline, for a 1000 lines of code, to
finally produce this result?

No, I want to split it into pieces, chop it into little pieces. I want to chop a function that produces side effects into 100
functions that produce side effects and combine them, compose them.

So this is where monads come in. The monad says, well you can take this gigantic computation, pure computation, and
split it into smaller pieces and then when you want to finally compose this stuff, well then use the monad.

So this is what the monad does: it just glues together, it lets you split your big computation into smaller computations and
glue them together.

Category	Theory	10.1:	Monads

@BartoszMilewski

So this is what the monad does:
it just glues together, it lets you
split your big computation into
smaller computations and glue
them together.

Life is good when the output of one function matches the input of another

def f(a: Int): Int = ???
def g(a: Int): Int = ???

def f(a: Int): Int = a * 2
def g(a: Int): Int = a * 3
val x = g(f(100))
println(x)

A new problem

def f(a: Int): (Int, String) = ???
def g(a: Int): (Int, String) = ???

f and g are functions which, in addition to returning their result (the Int), return some
information (the String). e.g. in a rules engine, the information returned by a function
could be a logical explanation of how it came up with its result.

The hard part of functional programming involves how you glue together all of your pure
functions to make a complete application. Because this process feels like you’re writing “glue” code, I
refer to this process as “gluing,” and as I learned, a more technical term for this is called “binding.”
This process is what the remainder of this book is about…in Scala/FP this binding process involves
the use of for expressions.

Because the output of f is a perfect match to the input of g, you can write this code:

Next, imagine a slightly more complicated set of requirements where f and g still take an Int as input, but
now they return a String in addition to an Int. With this change their signatures look like this:

Because f(100) is 200 and g of 200 is 600, this code prints 600. So far, so good.

Alvin	Alexander								@alvinalexander

def f(a: Int): (Int, String) = {
val result = a * 2
(result, s"\nf result: $result.")

}

def g(a: Int): (Int, String) = {
val result = a * 3
(result, s"\ng result: $result.")

}

// get the output of `f`
val (fInt, fString) = f(100)
// plug the Int from `f` as the input to `g`
val (gInt, gString) = g(fInt)
// create the total "debug string" by manually
// merging the strings from f and g
val debug = fString + " " + gString
println(s"result: $gInt, debug: $debug")

The code prints this output:

result: 600, debug:
f result: 200.
g result: 600.

Alvin	Alexander								@alvinalexander

While it’s nice to get a log message back from the functions, this also creates a problem: I can no longer use the
output of f as the input to g because g takes an Int input parameter, but f now returns (Int, String)

Here is an example of how we can solve the problem manually:

While this approach works for this simple case, imagine what your code will look like
when you need to string many more functions together. That would be an awful lot
of manually written (and error-prone) code. We can do better.

val fResult = f(100)
val gResult = bind(g, fResult)
val hResult = bind(h, gResult)

def f(a: Int): (Int, String) = {
val result = a * 2
(result, s"\nf result: $result.")

}
def g(a: Int): (Int, String) = {

val result = a * 3
(result, s"\ng result: $result.")

}
def h(a: Int): (Int, String) = {

val result = a * 4
(result, s"\nh result: $result.")

}

// bind, a HOF
def bind(fun: (Int) => (Int, String), tup: (Int, String)): (Int, String) =
{

val (intResult, stringResult) = fun(tup._1)
(intResult, tup._2 + stringResult)

}

val fResult = f(100)
val gResult = bind(g, fResult)
val hResult = bind(h, gResult)
println(s"result: ${hResult._1}, debug: ${hResult._2}")

result: 2400, debug:
f result: 200.
g result: 600.
h	result:	2400.

val (fInt, fString) = f(100)
val (gInt, gString) = g(fInt)
val (hInt, hString) = h(gInt)
val debug = fString + " " + gString + " " + hString
println(s"result: $hInt, debug: $debug")

val fResult = f(100)
val gResult = bind(g, fResult)
val hResult = bind(h, gResult)
println(s"result: ${hResult._1}, debug: ${hResult._2}")

Alvin	Alexander								@alvinalexander

Because Scala supports higher-order functions (HOFs), you can improve this situation by writing a bind function to glue f and g
together a little more easily. For instance, with a properly written bind function you can write code like this to glue together f, g,
and h (a new function that has the same signature as f and g):

What can we say about bind at this point? First, a few good
things:

• It’s a useful higher-order function (HOF)
• It gives us a way to bind/glue the functions f, g, and h
• It’s simpler and less error-prone than the code at the end of

the previous lesson

type Writer[A] = (A, String)

object Writer {
def apply[A](a:A, log:String) = (a, log)

}

def f(a: Int): Writer[Int] = {
val result = a * 2
Writer(result, s"\nf result: $result.")

}

def g(a: Int): Writer[Int] = {
val result = a * 3
Writer(result, s"\ng result: $result.")

}

def h(a: Int): Writer[Int] = {
val result = a * 4
Writer(result, s"\nh result: $result.")

}

// bind, a HOF
def bind[A,B,C](fun: A => Writer[B], tup: Writer[A]): Writer[B] =
{

val (intResult, stringResult): Writer[B] = fun(tup._1)
Writer(intResult, tup._2 + stringResult)

}

val fWriter: Writer[Int] = f(100)
val gWriter: Writer[Int] = bind(g, fWriter)
val hWriter: Writer[Int] = bind(h, gWriter)
println(s"result: ${hWriter._1}, debug: ${hWriter._2}")

Adapting	Alvin	Alexander’s	example	by	introducing	Bartosz	Milewski’s Writer type	alias	for	(A,String)

result:	2400,	debug:	
f	result:	200.
g	result:	600.
h	result:	2400.

// bind is very similar to flatMap – we can go from one to the
// other with a few simple changes
def bind[A,B](fun: A => Writer[B], tup: Writer[A]): Writer[B]

// (1) swap parameters
def bind[A,B](tup: Writer[A], fun: A => Writer[B]): Writer[B]

// (2) rename tup and fun to ma and f
def bind[A,B](ma: Writer[A], f: A => Writer[B]): Writer[B]

// (3) replace Writer with F
def bind[A,B](ma: F[A], f: A => F[B]): F[B]

// (4) rename bind to flatMap
def flatMap[A,B](ma: F[A])(f: A => F[B]): F[B]

Just like flatMap firstmaps and then flattens

def flatMap[A,B](ma: F[A])(f: A => F[B]): F[B] = flatten(map(ma)(f))

Bind first maps the given function onto the given Writer, i.e. applies the function to the
writer’s value component, and then flattens, in that it returns a Writer[A] rather than a
Writer[Writer[A]].

Also like flatMap, bind carries out the extra logic, required to compose functions
embellished with logging (functions returning a Writer). In this case the extra logic, is the
concatenation of two log strings.

type Writer[A] = (A,String)

object Writer {
def apply[A](a:A, log:String) = (a,log)

}

Taking	Alvin	Alexander’s	sample	f,g,h functions	and	his	bind function,	and	adding	Bartosz	Milewski’s	Writer type	alias	and	his	compose function	

def compose[A,B,C](f: A => Writer[B], g: B => Writer[C]): A => Writer[C] =
(a:A) => {

val (fVal, fLog) = f(a)
val (gVal, gLog) = g(fVal)
Writer(gVal, fLog + gLog)

}

def bind[A,B,C](fun: A => Writer[B], tup: Writer[A]): Writer[B] =
{

val (intResult, stringResult): Writer[B] = fun(tup._1)
Writer(intResult, tup._2 + stringResult)

}

def f(a: Int): Writer[Int] = {
val result = a * 2
Writer(result, s"\nf result: $result.")

}

def g(a: Int): Writer[Int] = {
val result = a * 3
Writer(result, s"\ng result: $result.")

}

def h(a: Int): Writer[Int] = {
val result = a * 4
Writer(result, s"\nh result: $result.")

}

val fgh = compose(compose(f, g), h)
val result: Writer[Int] = fgh(100)
println(s"result: ${result._1}, debug: ${result._2}")

val fWriter: Writer[Int] = f(100)
val gWriter: Writer[Int] = bind(g, fWriter)
val hWriter: Writer[Int] = bind(h, gWriter)
println(s"result: ${hWriter._1}, debug: ${hWriter._2}")

Kleisli	Composition	– composition	of	embellished	functions

val finalResult = for {
fResult <- f(100)
gResult <- g(fResult)
hResult <- h(gResult)

} yield hResult

Alvin	Alexander								@alvinalexander

If there’s anything bad to say about bind, it’s that it looks like it’s dying to be used in a for
expression, but because bind doesn’t have methods like map and flatMap, it won’t work that way.

For example, wouldn’t it be cool if you could write code that looked like this:

Now we’re at a point where we see that bind is better than what I started with, but not as
good as it can be. That is, I want to use f, g, and h in a for expression, but I can’t, because
bind is a function, and therefore it has no way to implement map and flatMap so it can work in
a for expression.

What to do?

Well, if we’re going to succeed we need to figure out how to create a class that does two things:
1. Somehow works like bind
2. Implements map and flatMap methods so it can work inside for expressions

case class Debuggable (value: Int, message: String) {

def map(f: Int => Int): Debuggable = {
val newValue = f(value)
Debuggable(newValue, message)

}

def flatMap(f: Int => Debuggable): Debuggable = {
val newValue: Debuggable = f(value)
Debuggable(newValue.value, message + "\n" + newValue.message)

}
}

def f(a: Int): Debuggable = {
val result = a * 2
val message = s"f: a ($a) * 2 = $result."
Debuggable(result, message)

}

def g(a: Int): Debuggable = {
val result = a * 3
val message = s"g: a ($a) * 3 = $result."
Debuggable(result, message)

}

def h(a: Int): Debuggable = {
val result = a * 4
val message = s"h: a ($a) * 4 = $result."
Debuggable(result, message)

}

val finalResult = for {
fResult <- f(100)
gResult <- g(fResult)
hResult <- h(gResult)

} yield hResult

println(s"value: ${finalResult.value}\n")
println(s"message: \n${finalResult.message}")

value: 2400

message:
f: a (100) * 2 = 200.
g: a (200) * 3 = 600.
h:	a	(600)	*	4	=	2400.

Alvin	Alexander								@alvinalexander
Instead of these functions returning a tuple,
they could return … something else …a type
that implements map and flatMap.

You could call it a TwoElementWrapper:

def f(a: Int): TwoElementWrapper(Int, String)
def g(a: Int): TwoElementWrapper(Int, String)
def h(a: Int): TwoElementWrapper(Int, String)

But that’s not very elegant. When you think about it, the
purpose of f, g, and h is to show how functions can
return “debug” information in addition to their primary
return value, so a slightly more accurate name is
Debuggable:

def f(a: Int): Debuggable(Int, String)
def g(a: Int): Debuggable(Int, String)
def h(a: Int): Debuggable(Int, String)

If Debuggable implements map and flatMap, this design
will let f, g, and h be used in a for expression.

Now all that’s left to do is to create Debuggable.

In Scala, a monad consists of a class with map and flatMap
methods, along with some form of a “lift” function.

In Scala, a class built like this is intended to be used in for
expressions.

case class Debuggable[A](value: A, log: List[String]) {

def map[B](f: A => B): Debuggable[B] = {
val nextValue = f(value)
Debuggable(nextValue, this.log)

}

def flatMap[B](f: A => Debuggable[B]): Debuggable[B] = {
val nextValue: Debuggable[B] = f(value)
Debuggable(nextValue.value, this.log ::: nextValue.log)

}

}

def f(a: Int): Debuggable[Int] = {
val result = a * 2
Debuggable(result, List(s"f: multiply $a * 2 = $result"))

}

finalResult.log.foreach(l => println(s"LOG: $l"))
println(s"Output is ${finalResult.value}")

val finalResult = for {
fRes <- f(100)
gRes <- g(fRes)
hRes <- h(gRes)

} yield s"result: $hRes"

LOG: f: multiply 100 * 2 = 200
LOG: g: multiply 200 * 3 = 600
LOG: h: multiply 600 * 4 = 2400
Output	is	result:	2400

Alvin	Alexander								@alvinalexander

The Writer monad

If you’re interested in where the Debuggable class comes from, it’s
actually an implementation of something known as the Writer monad in
Haskell.

As Learn You a Haskell for Great Good! states, “the Writer monad is
for values that have another value attached that acts as a sort of
log value. Writer allows us to do computations while making sure that
all the log values are combined into one log value that then gets
attached to the result.”

