
Category Theory 9.1: Natural transformations

A	summary	of	Natural	Transformations based	on	two	pages	of	the	book	on	the	left	and	on	Bartosz	Milewski’s	great	lecture	on	the	subject	

Doesn’t	mention	programming

Relates	the	subject	to	programming	and	shows	examples

https://youtu.be/2LJC-XD5Ffo

Bartosz	Milewski
https://twitter.com/BartoszMilewski

A B
f

FA FB
F(f)

GA GB
G(f)

F

G

C1

C1 and C2 are categories and ∘	denotes their composition operations.
F and G are functors from C1 to C2 which map each C1 object to a C2 object and map each C1 arrow to a C2 arrow
A natural transformation 𝜏	from F to G (either both covariant of both contravariant) is
a family of arrows 𝜏𝑋: FX→	GX of C2 indexed by the object X of C1 such that for each arrow f: A→	B of C1, the appropriate square
in C2 commutes (depending on the variance)

Natural	Transformation

𝜏A 𝜏B
G(f)∘ 𝜏A

𝜏B∘F(f)

C2
𝜏

F G

natural	transformation	
𝜏	from	F to	G

𝜏A
FA GA

GB
𝜏B

GZ
𝜏Z
…… …FA FB

F(f)

GA GB
G(f)

𝜏A 𝜏B
F(f)∘ 𝜏A

𝜏B∘G(f)

FB

FZ

covariant contravariant

the	square	commutes
G(f)∘ 𝜏A= 𝜏B∘F(f)

𝜏
F G

Naturality	
Condition

A B
f

F[A]
f
↑F

f
↑G

𝜏A 𝜏B
f
↑G
∘ 𝜏A

𝜏B∘f↑F

𝜏
F G

natural	transformation	
𝜏	from	F to	G

𝜏A
F[A] G[A]
F[B]

𝜏B

F[Z]
𝜏Z
…… …

F[A] F[B]
f
↑F

G[A] G[B]
f
↑G

𝜏A 𝜏B

F[B]

G[A] G[B]

G[B]

G[Z]
F(f)∘ 𝜏A

𝜏B∘G(f)

F

G

C1	=	C2	=	Scala	types	and	functions
• objects:	types
• arrows:	functions
• composition	operation:		compose function,	denoted	here	by	∘
• identity	arrows:	identity	function	T	=>	T

Functor F from	C1	to	C2	consisting	of	
• type	constructor	F that	maps	type	A	to	F[A]	
• a	map function	from	function	f:A=>B	to	function	f

↑F	
:F[A]	=>	F[B]	

Functor G from	C1	to	C2	consisting	of	
• type	constructor	G that	maps	type	A	to	G[A]	
• a	map function	from	function	f:A=>B	to	function	f

↑G	
:G[A]	=>	G[B]	

F[A] is	type	A	lifted	into	context	F
f
↑F		
is	function	f	lifted	into	context	F

Generic	Scala	Example:	Natural	Transformation	between	two	Functors	from	the	category	of	‘Scala	types	and	functions’	to	itself

the	square	commutes
f
↑G
	∘ 𝜏A = 𝜏B ∘	f↑F

mapG f ∘ 𝜏A = 𝜏B ∘ mapF

𝜏
F G

covariant contravariant

map lifts	f	into	F
f
↑F		
is	map f

C1 = C2 = types	and	functions Naturality	
Condition

So that’s what a natural transformation is in Category Theory. But now you are
asking me the question what does it have to do with programming? We already
know what a functor is. We mostly talk about endofunctors. So we know what an
endofunctor is.

So a natural transformation would be a family of morphisms between two
endofunctors. Morphisms here are functions. So it is a family of functions. A
family of functions that is parametrized by a type is called a polymorphic
function. So a natural transformation is a polymorphic function.

So suppose that we have two endofunctors F and G. So a natural
transformation will go from Fa to Ga. So if we define (natural transformation)
alpha it would be a function that goes from functor Fa to functor Ga.

alpha :: Fa→ Ga

So it is a function from Fa to Ga. If a is a lowercase letter for a type that means
alpha is polymorphic in that type, but in Haskell we can actually say ’for all’,

alpha :: foarall a.Fa→ Ga

It is not mandatory, we can write a polymorphic function without forall, but if
we want to stress the fact that this is defined for all types a we can use the
‘explicit forall’ extension.

Bartosz	Milewski
https://twitter.com/BartoszMilewski

https://youtu.be/2LJC-XD5Ffo	
Category Theory 9.1: Natural transformations

There is a subtle difference between this definition and our categorical definition.

The subtle difference is that in this form, in Haskell, we are assuming parametric
polymorphism, meaning if we want to define this function we’ll have to use one single
formula for all a.

We cannot say do this thing for integers and a different thing for booleans, we cannot do
that when we use parametric polymorphism.

We could use ad hoc polymorphism, but then we would have to go to type classes, but in
this form, this means parametric polymorphism: one single formula for all. And this is much
stronger than the categorical definition, because we haven’t yet talked about the naturality
condition (𝛼a	∘	Ff =	Gf ∘ 𝛼b), the naturality square.

What would that mean. It would mean that…what is Ff? That’s the lifting of a function in
Haskell. That would be a lifting of the function f using the functor, capital F.

Lifting of a function is done through fmap. So the formula (𝛼a	∘	Ff =	Gf ∘ 𝛼b) translates into:

alpha ∘ fmap f = fmap f ∘ alpha

So this is the naturality condition written in Haskell, and in Haskell I don’t have to specify
that the first is alpha b and the second is alpha a. I mean I could do this for explanation.
These two fmaps are different fmaps. The first one is fmap for the functor F, which could
be completely different from the second which is fmap for the functor G.

alphab ∘ fmapF f = fmapG f ∘ alphaa

And instead of talking of this, I’ll give you an example in a moment. But what I want to say is
that because of parametric polymorphism, this is automatic. This is a theorem for free. I
don’t have to check it. I never have to check the naturality condition. If I defined a function
of type Fa → Ga, that is parametrically polymorphic, it is automatically a natural
transformation.

Bartosz	Milewski
https://twitter.com/BartoszMilewski

https://youtu.be/2LJC-XD5Ffo	
Category Theory 9.1: Natural transformations

So let’s pick two functors. Let’s pick the List functor and the Maybe functor…and let’s talk about safeHead. Now head is a function that takes a list and returns the first
element of the list. And it’s a bad function because it is not total: if the list is empty it just blows up. But we can define a safeHead.
…
I like this example because it shows you that category theory can be used in programming in a very practical way! If you look at this, it is actually an optimisation. If the
compiler knows about the naturality condition, it can do a clever thing. Applying an fmap to a list is expensive, so being able to do the naturality thing and applying
safeHead first and then fmap is cheaper. Of course not in Haskell, because Haskell is lazy. But in many cases these kinds of transformations that have a basis in category
theory can actually be used to optimise code.

Bartosz	Milewski
https://twitter.com/BartoszMilewski

https://youtu.be/2LJC-XD5Ffo	

Category	Theory	9.1:	
Natural	transformations

String
length

List[String] List[Int]
length

↑List

Option[String] Option[Int]

Concrete	Scala	Example:	safeHead - natural	transformation	𝜏	from	List functor	to	Option functor

safeHead[String] =	𝜏StringInt

length
↑Option

𝜏Int	=	safeHead[Int]
safeHead

↑List
∘length

↑Option

Option

𝜏
List Option

natural	transformation	𝜏	from	List to	Option

𝜏String
List[String] Option[String]

List[Int]
𝜏Int

List[Char]
𝜏Char
…… …

Option[Int]

Option[Char]
length∘safeHead

covariant

val length: String => Int = s => s.length

// a natural transformation
def safeHead[A]: List[A] => Option[A] = {

case head::_ => Some(head)
case Nil => None

}

the	square	commutes
length

↑List
	∘ safeHead = safeHead	∘	length

↑Option
(mapList length)			∘ safeHead = safeHead	∘	(mapOption length)

𝜏
List Option

F[A] is	type	A	lifted	into	context	F
f
↑F		
is	function	f	lifted	into	context	F

map lifts	f	into	F
f
↑F		
is	map f

C1 = C2 = types	and	functions

List

Naturality	
Condition

trait Functor[F[_]] {
def map[A, B](f: A => B): F[A] => F[B]

}

val listF = new Functor[List] {
def map[A,B](f: A => B): List[A] => List[B] = {

case head::tail => f(head)::map(f)(tail)
case Nil => Nil

}
}

val length: String => Int = s => s.length

def safeHead[A]: List[A] => Option[A] = {
case head::_ => Some(head)
case Nil => None

}

val mapAndThenTransform: List[String] => Option[Int] = safeHead compose (listF map length)
val transformAndThenMap: List[String] => Option[Int] = (optionF map length) compose safeHead

assert(mapAndThenTransform(List("abc", "d", "ef")) == transformAndThenMap(List("abc", "d", "ef")))
assert(mapAndThenTransform(List("abc", "d", "ef")) == Some(3))
assert(transformAndThenMap(List("abc", "d", "ef")) == Some(3))

assert(mapAndThenTransform(List()) == transformAndThenMap(List()))
assert(mapAndThenTransform(List()) == None)
assert(transformAndThenMap(List()) == None)

val optionF = new Functor[Option] {
def map[A,B](f: A => B): Option[A] => Option[B] = {

case Some(a) => Some(f(a))
case None => None

}
}

the square commutes

length
↑List

	∘ safeHead = safeHead	∘	length
↑Option

(mapList length)	∘ safeHead = safeHead	∘	(mapOption length)

𝜏
List Option

mapF lifts	f	into	F
so	f

↑F		
is	map f

Concrete	Scala	Example:	safeHead - natural	transformation	𝜏	from	List functor	to	Option functor

Naturality	
Condition

