
Ad	hoc	Polymorphism	
using	Type	Classes

wholly	based	on	‘How	to	write	like	Cats’,	a	great	talk	by	Monty	West

@philip_schwarzslides	by

Monty	West
https://www.linkedin.com/in/monty-west/

How	to	write	like	Cats	by	Monty	West https://github.com/MontyWest/tech-talk-typeclass

https://www.slideshare.net/pjschwarz

The talk is going to focus on, firstly, subtype polymorphism, the classic OOP approach to functionality and stuff, and
we are going to move from that, we are going to show that briefly, and then we are going to change it to ad hoc
polymorphism using type classes.

And we are going to do this all in the scope of sorting, sorting a list of something, in this case Ints, but your humble
sort function, so it should be familiar ground for most people.

And it is all going to be live coding, as well, so I have definitely set myself up for failure on my first talk, but wish me
luck.

def sortInts(ls: List[Int]): List[Int]

Monty	West
https://www.linkedin.com/in/monty-west/

Ok,	so,	first	of	all,	five	points	for	whoever	can	name	the sort.

Yes,	Quicksort.	So	I	have	this	sort,	it	just	sorts Ints,	kind	of	useful,	but	I	have	this	new	class	that	I	want	to	use, in	a	
List say,	a Person class,	and	I	have	defined	this	myself.	

So	how	do	I	sort	Persons?

package object ops {
def sortInts(ls: List[Int]): List[Int] = ls match {

case Nil => Nil
case _ :: Nil => ls
case x :: xs =>

sortInts(xs.filter(a => a < x)) ++ List(x) ++ sortInts(xs.filterNot(a => a < x))
}

}

final case class Person(age: Int, name: String)

Monty	West

Obviously we could just define a sort function for persons, but it wouldn’t be useful for anything else so as we are all
good programmers, we want to be more generic,we want to be able to apply this sort function to an A, an A type.

So this kind of looks like this:

Done, right? Finished, great! So not quite: we don’t know how to compare As together, we don’t have this less than
operation. We don’t have anything like that. The compiler doesn’t know what A is, it can’t infer that.

Monty	West
https://www.linkedin.com/in/monty-west/

So how would we approach this in a sort of subtype polymorphism way?

Well, the first thing we do is we add an interface, so I am going to add a trait. I am going to call it
Orderable, and the intention of this trait is to be a supertype of whatever we want to order. So in
this case it is going to be As but we’ll add it to the Person class, and what it needs to be able to do is
compare to another instance of A…

I am also going to have a quick helper because we saw it just there, we are going to add a less than
function as well, and it is just going to return a Boolean, and that is going to just use our compare
function.

That should be familiar. That’s pretty much how the Comparable interface in Java works.

trait Orderable[A] {

/**
* this < other : negative
* this = other : 0
* this > other : positive
*
* @param other
* @return
*/

def compare(other: A): Int

def <(other: A): Boolean = compare(other) < 0

}

Monty	West

So we are going to use this in our sort.

we	import	Orderable and	we	introduce	a	type	bound for	our	A

And	that	should	compile,	so	now,	anything	that	is Orderable can	be	sorted	by	this	function.

Monty	West
https://www.linkedin.com/in/monty-west/

So we have to make our Person class Orderable and we do that by extending and implementing
Orderable:

We have a choice to make here about how we sort Persons. I am just going to choose age because it
is the easiest one to use but it is noteworthy that we have to make a choice, we have to define the
way we want to order Persons and put it on the actual class.

So	in	this	case	it	is	going	to	be	this:

The	other	thing	to	notice	here	is	that	we	use	‘this’,	this	is	how	we	compare	two	things,	we	have	access	
to	our	current and	then	we	have	another	one passed	into	this	function.

final case class Person(age: Int, name: String) extends Orderable[Person] {

/**
* this < other : negative
* this = other : 0
* this > other : positive
*
* @param other
* @return
*/

override def compare(other: Person): Int = ???

}

override def compare(other: Person): Int = this.age - other.age

sbt:tech_talk-typeclass> run

@ personLs
res0: List[Person] = List(Person(23, "alice"), Person(35, "bob"), Person(21, "charlie"))

@

Welcome to the Ammonite Repl 1.6.3e-cats / Compile / compileIncremental 0s
(Scala 2.12.8 Java 1.8.0_112)
If you like Ammonite, please support our development at www.patreon.com/lihaoyi
@

@ ops.sort(personLs)
res1: List[Person] = List(Person(21, "charlie"), Person(23, "alice"), Person(35, "bob"))

@

OK,	so	let’s	actually	use	this,	let’s	hope	this	all	compiles.	So	I	am	going	to	run.

so	I	have	pre-prepared	a	list	of	persons hereMonty	West

and	now	I	can	call	my	sort	function	with	this	list	and	it	should	sort	them

Cool,	job	done.

Monty	West
https://www.linkedin.com/in/monty-west/

So the problem here is that I also have an Int List and say I want to sort that, I want to use my
generic sort because I only want to maintain one function and obviously I can’t do that because Int
is not implementing my interface and if I pass it in it will give me a big error:

So that’s not great and also we can’t go and fix this. We can’t go into the Int class of Scala/Java and
add this Orderable trait and implement it.We don’t really have any option to, we can’t order Ints.

The other thing is, if we want to change the sort of Persons, if we want to sort by name for
example, or if we want to reverse the sort, we have to actually go into the implementation of
Person and change that comparison function, which is annoying, to have to go all the way down
into our actual class that’s just holding data and change something.

@ ops.sort(intLs)
cmd2.sc:1: inferred type arguments [Int] do not conform to method sort's type
parameter bounds [A <: mw.domain.Orderable[A]]
val res2 = ops.sort(intLs)

^
cmd2.sc:1: type mismatch;
found : List[Int]
required: List[A]

val res2 = ops.sort(intLs)
^

Compilation Failed

@

final case class Person(age: Int, name: String)
extends Orderable[Person] {

/**
* this < other : negative
* this = other : 0
* this > other : positive
*
* @param other
* @return
*/

override def compare(other: Person): Int =
this.age - other.age

}

import mw.domain.Orderable

package object ops {

def sortInts(ls: List[Int]): List[Int] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs => sortInts(xs.filter(a => a < x)) ++ List(x) ++ sortInts(xs.filterNot(a => a < x))

}

def sort[A <: Orderable[A]](ls: List[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs => sort(xs.filter(a => a < x)) ++ List(x) ++ sort(xs.filterNot(a => a < x))

}
}

trait Orderable[A] {

/**
* this < other : negative
* this = other : 0
* this > other : positive
*
* @param other
* @return
*/

def compare(other: A): Int

def <(other: A): Boolean = compare(other) < 0

}

final case class Person(age: Int, name: String) extends Orderable[Person] {

/**
* this < other : negative
* this = other : 0
* this > other : positive
*
* @param other
* @return
*/

override def compare(other: Person): Int = this.age - other.age

}

val personLs =
List(

Person(23, "alice"),
Person(35, "bob"),
Person(21, "charlie")

);

val intLs =
List(-5, 8, 10, 2, 5);

@philip_schwarz

Recap	- Version	1 of	
the	code:	Subtype
Polymorphism

@ ops.sort(personLs)

Monty	West

So, what can we do about it?

This is where I am going to introduce type classes and ad hoc polymorphism.

So I am just going to delete all that . So let’s go all of the way back to when we
had this, this sort of like failed generic sort with nothing on it.

package object ops {

def sortInts(ls: List[Int]): List[Int] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs => sortInts(xs.filter(a => a < x)) ++ List(x) ++ sortInts(xs.filterNot(a => a < x))

}

def sort[A](ls: List[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs => sort(xs.filter(a => a < x)) ++ List(x) ++ sort(xs.filterNot(a => a < x))

}
}

final case class Person(age: Int, name: String)

val personLs =
List(

Person(23, "alice"),
Person(35, "bob"),
Person(21, "charlie")

);

val intLs =
List(-5, 8, 10, 2, 5);

@philip_schwarz

Recap	- back	to	an	
intermediate	version of	
the	code	with	a	generic	
sort	that	doesn’t	
compile.

So I am going to reintroduce the Orderable trait, with some slight differences.

So instead of just taking one other of whatever, I am trying to compare, it is going to take two, it is going to take both in, so
it is going to look like this, I won’t write that comment again, that took too long, and I will also put the less than on just for
our sort function:

So very similar to last time. This time we are passing in both parameters. The intention here is that this won’t be
implemented by our Person class, so we won’t have access to ‘this’, so we have to pass them both in.

trait Orderable[A] {

def compare(l: A, r: A): Int

def <(l: A, r: A): Boolean = compare(l, r) < 0

}

trait Orderable[A] {

/**
* this < other : negative
* this = other : 0
* this > other : positive
*
* @param other
* @return
*/

def compare(other: A): Int

def <(other: A): Boolean = compare(other) < 0

}

Monty	West

Monty	West

So how are we going to use this Orderable trait in our sort function?

So we don’t. Our A is not going to be a Orderable any more, we are not going to get that for free from our A, so the
only option we really have is to pass this in explicitly, so we are going to need some instance of this class, in order to
use it, and we are going to pass it in a separate parameter list.

And also,we don’t get this nice syntax anymore, we are going to have to do something like this, which is a bit clunky

and also, this is still not compiling…

…because	I	have	two	parameter	lists	and	so I	have	to	pass	through	this Orderable instance	each	time	as	well

So	this	is	getting	worse	and	worse really.	OK,	so	but	we	have	a	sort,	it	is	compiling.Monty	West

Monty	West
https://www.linkedin.com/in/monty-west/

The next stage is to somehow create this Orderable instance for Person.

This isn’t going to be a supertype of Person, in fact we don’t need to change the Person class at all.
You just need somewhere else where you put an instance of this thing. A common place to see such
instances is in the companion object of Person and this will be relevant later when we start
introducing implicits, so I am just going to do that for now and I am going to explain why later. I am just
going to put in a val and call it personOrderable, and now we just need to implement this interface,
so we are going to do the same we did last time, we are going to use age, so it is going to be left age
minus right age:

And this all compiles.

Welcome to the Ammonite Repl 1.6.3
(Scala 2.12.8 Java 1.8.0_112)
If you like Ammonite, please support our development at www.patreon.com/lihaoyi
@ personLs
res0: List[Person] = List(Person(23, "alice"), Person(35, "bob"), Person(21, "charlie"))

@

sbt:tech_talk-typeclass> run

@ ops.sort(personLs)(Person.personOrderable)
res1: List[Person] = List(Person(21, "charlie"), Person(23, "alice"), Person(35, "bob"))

@

@ ops.sort(intLs)(???)

So	now	we	are	able	to	go	back	to	our	shell	and	do	exactly	what	we	did	last	time.

there it is, and hopefully we should be able to do what we did last time,
and sort persons, but we need to pass in this instance. So it’s a bit clunky,

Monty	West

There we go, that sorts nicely. So we’ve got the sort, and we’ve removed the subtyping part,
but we’ve changed the call site signature, it’s a bit clunky now, you have to remember
where things are,we still can’t sort Ints, we don’t have an instance to put here:

OK,	so	we	have	out	person list

So	this	is	the	same,	but	potentially	worse.	Like,	we’ve	got	a	clunky	call	site

we	definitely	had	some	nastiness	of	the	syntax	in	the	actual	sort	function

yes,	it’s	not	great	is	it?

So	can	we	address	this	and	still	unlock	some	goodness	out	of	it?

def sort[A](ls: List[A])(order: Orderable[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs =>

sort(xs.filter(a => order.<(a,x)))(order) ++ List(x) ++ sort(xs.filterNot(a => order.<(a,x)))(order)
}

Monty	West

@ ops.sort(personLs)(Person.personOrderable)

final case class Person(age: Int, name: String)

trait Orderable[A] {

def compare(l: A, r: A): Int

def <(l: A, r: A): Boolean = compare(l, r) < 0

}

import mw.domain.Orderable

package object ops {

def sortInts(ls: List[Int]): List[Int] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs => sortInts(xs.filter(a => a < x)) ++ List(x) ++ sortInts(xs.filterNot(a => a < x))

}

def sort[A](ls: List[A])(order: Orderable[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs => sort(xs.filter(a => order.<(a,x)))(order) ++ List(x) ++ sort(xs.filterNot(a => order.<(a,x)))(order)

}
}

val personLs =
List(

Person(23, "alice"),
Person(35, "bob"),
Person(21, "charlie")

);

val intLs =
List(-5, 8, 10, 2, 5);

final case class Person(age: Int, name: String)

object Person {

val personOrderable: Orderable[Person] = new Orderable[Person] {
override def compare(l: Person, r: Person): Int = l.age - r.age

}
}

@ ops.sort(personLs)(Person.personOrderable)

@philip_schwarz

Recap	- Version	2 – same	as	Version	1,	but	potentially	worse.	Clunky	call	site and	nastiness	in	the	syntax of	the	sort	function.

The first thing I want to address is this call site problem. How can we get around passing this thing explicitly, and
that’s the clue I suppose. I am going to introduce some implicits here.

So in our sort function, I am going to make this second parameter list implicit

And this does two things for us, it allows for the Orderable instance to be passed in implicitly, so from implicit scope,
wherever you are calling it from. It also means it is added to the implicit scope of this function, so we no longer need
this second parameter list here:

And everything will still compile.

Monty	West

So	if	we	run	this	again	we’ll	see	that	we	can	just	sort	persons exactly	like	we	did	with	
subtype polymorphism with	no	extra	like	additions	to	the	call.	

Monty	West

And in	order	to	make	these Orderable instances	available	in	implicit	scope,	we	
can	make	them	implicit	where	they	are	defined.	So	we	can	make	this val implicit:

Because	of	implicit	magic this	all	works	right,	don’t	worry,	I	will	explain.

Like that. So the reason this works is that one of the places where it
will look for implicits when it is trying to find one is the companion
object of the A, of the class that is parameterising the function.

@ ops.sort(personLs)
res0: List[Person] = List(Person(21, "charlie"), Person(23, "alice"), Person(35, "bob"))

@

def sort[A](ls: List[A])
(implicit order: Orderable[A]): List[A]

trait Orderable[A] {

def compare(l: A, r: A): Int

def <(l: A, r: A): Boolean = compare(l, r) < 0

}

final case class Person(age: Int, name: String)

object Person {

implicit val personOrderable: Orderable[Person] = new Orderable[Person] {
override def compare(l: Person, r: Person): Int = l.age - r.age

}
}

import mw.domain.Orderable

package object ops {

def sortInts(ls: List[Int]): List[Int] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs => sortInts(xs.filter(a => a < x)) ++ List(x) ++ sortInts(xs.filterNot(a => a < x))

}

def sort[A](ls: List[A])(implicit order: Orderable[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs => sort(xs.filter(a => order.<(a,x))) ++ List(x) ++ sort(xs.filterNot(a => order.<(a,x)))

}
}

val personLs =
List(

Person(23, "alice"),
Person(35, "bob"),
Person(21, "charlie")

);

val intLs =
List(-5, 8, 10, 2, 5);

@ ops.sort(personLs)

@philip_schwarz

Recap	- Version	2b – Using	implicit personOrderable

Monty	West
https://www.linkedin.com/in/monty-west/

That’s one problem out of the way.We’ve got the call site back as in subtype polymorphism and we are
probably like equal now, interfaces, in terms of whoever is using this.

So is there any advantage of this approach?

Well the first one is that we can use our generic sort for Ints now, even though we don’t own the Int
class, we can define an instance, we didn’t have to change Person, so now we can do the same for Int.

Obviously, because we don’t own the Int class, we can’t add a companion object of Int, so one place
you’ll commonly see this is in, if you do own the type class itself, you’ll see this on the companion
object of the type class. And again we are going to make it implicit.

@ ops.sort(personLs)

Monty	West

OK,	so	this	tiny	piece	of	code	will	allow	us	to	go	back	to	our	shell	and	sort	Ints	exactly	like	we	did	with Persons,	
which	we	couldn’t	do	before	with	subtype polymorphism.	We’d	have	to	write	some	kind	of	wrapper	around Ints.

@ intLs
res1: List[Int] = List(-5, 8, 10, 2, 5)

@

sbt:tech_talk-typeclass> run

@ ops.sort(intLs)
res2: List[Int] = List(-5, 2, 5, 8, 10)

@

And	then	if	I	show	you	my	Int	List

and	then	call	sort

And the reason this works is because somewhere else it will look for implicit resolution and
when you call this function it [the implicit Orderable instance] is on the companion object of
the type class of that parameter list.

def sort[A](ls: List[A])
(implicit order: Orderable[A]): List[A]

trait Orderable[A] {

def compare(l: A, r: A): Int

def <(l: A, r: A): Boolean = compare(l, r) < 0

}

object Orderable {

implicit val intOrderable: Orderable[Int] = new Orderable[Int] {

override def compare(l: Int, r: Int): Int = l - r

}

}

final case class Person(age: Int, name: String)

object Person {

implicit val personOrderable: Orderable[Person] = new Orderable[Person] {
override def compare(l: Person, r: Person): Int = l.age - r.age

}
}

import mw.domain.Orderable

package object ops {

def sortInts(ls: List[Int]): List[Int] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs => sortInts(xs.filter(a => a < x)) ++ List(x) ++ sortInts(xs.filterNot(a => a < x))

}

def sort[A](ls: List[A])(implicit order: Orderable[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs => sort(xs.filter(a => order.<(a,x))) ++ List(x) ++ sort(xs.filterNot(a => order.<(a,x)))

}
}

val personLs =
List(

Person(23, "alice"),
Person(35, "bob"),
Person(21, "charlie")

);

val intLs =
List(-5, 8, 10, 2, 5);

@ ops.sort(intLs)@ ops.sort(personLs)

@philip_schwarz

Recap	- Version	2c
Using	implicit
personOrderable
and	implicit
intOrderable.

Monty	West

Cool. So where have we got to? Ah, it’s worth noting that if you don’t own the typeclass itself, if you don’t own this
trait, then you can’t obviously add it to the companion object of the trait, so occasionally you will see something like
this, where you have to define an instance for something you don’t own, with a typeclass that you also don’t own. And
sometimes you’ll see this in an instances package with a companion object, I just thought I’d quickly show you that,

package object instances {

implicit val intOrderable: Orderable[Int] = new Orderable[Int] {
override def compare(l: Int, r: Int): Int = l - r

}
}

@ intLs
res0: List[Int] = List(-5, 8, 10, 2, 5)

@

@ ops.sort(intLs)
cmd1.sc:1: could not find implicit value for parameter order: mw.domain.Orderable[Int]
val res1 = ops.sort(intLs)

^
Compilation Failed

@

Welcome to the Ammonite Repl 1.6.3e-cats / Compile / compileIncremental 0s
(Scala 2.12.8 Java 1.8.0_112)
If you like Ammonite, please support our development at www.patreon.com/lihaoyi
@

And	we	can	still	do	what	we	did	before,	but	there	is	a	slight	gotcha here,	I’ll	just	quickly	show.	So	we’ve	still	got	our	Int	List

And	if	we	call	our	sort	function,	everything	should	work,	everything	implicit	magic	correct,	so	no:

The	reason	is	that	we	haven’t	
imported	this	instances package.
So	we	don’t	have	this	nice	
companion	object	automatically	
found	by	the	implicit	resolution.

Monty	West

So	all	we	need	to	do	is	import	this	instances package

And	this	is	a	common	pattern	you’ll	see.	And	now	that	will	sort:

@ import mw.domain.instances._
import mw.domain.instances._

@

@ ops.sort(intLs)
res2: List[Int] = List(-5, 2, 5, 8, 10)

@

So,	cool,	so	now	we	can	use	our	generic	sort	function	that	we	have	defined,	with	the	
type	class	that	we	have	defined,	for	a	type	that	we	haven’t	defined	and	we	don’t	own.	

So	slightly	more	functionality	there	over	subtype polymorphism.

trait Orderable[A] {

def compare(l: A, r: A): Int

def <(l: A, r: A): Boolean = compare(l, r) < 0
}

import mw.domain.Orderable

package object ops {

def sortInts(ls: List[Int]): List[Int] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs => sortInts(xs.filter(a => a < x)) ++ List(x) ++ sortInts(xs.filterNot(a => a < x))

}

def sort[A](ls: List[A])(implicit order: Orderable[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs => sort(xs.filter(a => order.<(a,x))) ++ List(x) ++ sort(xs.filterNot(a => order.<(a,x)))

}
}

val personLs =
List(

Person(23, "alice"),
Person(35, "bob"),
Person(21, "charlie")

);

val intLs =
List(-5, 8, 10, 2, 5);

package object instances {

implicit val intOrderable: Orderable[Int] = new Orderable[Int] {
override def compare(l: Int, r: Int): Int = l - r

}
}

final case class Person(age: Int, name: String)

object Person {

implicit val personOrderable: Orderable[Person] = new Orderable[Person] {
override def compare(l: Person, r: Person): Int = l.age - r.age

}
}

@ import mw.domain.instances._
import mw.domain.instances._

@ ops.sort(intLs)

@ ops.sort(personLs)
@philip_schwarz

Recap	- Version	2d – still	using	implicit personOrderable and	implicit intOrderable,	even	if	not	owning Orderable

Monty	West

What we have done here is something that is quite common in FP generally, which is, we have taken a concept, such as
subtype polymorphism, and we turned it into a value. And the benefit we gain from that is a higher level of abstraction,
we can now take these values and we can compose them, we can transform them, we can create new values. And that can
unlock quite a nice level of abstraction as I said, and also, reduce some of this boilerplate, we can get some nice
functionality out of it.

So the first one I want to talk about is what if we want to reverse the order of any of these? So in our Orderable trait,
what if we want to reverse an order? How can we go about that? Does this approach do this better than subtype
polymorphism?

So what we can do is we can take an Orderable instance in a function and we can transform it and we can return it out the
other side. And we can do that to provide some kind of reverse functionality. So if I define this function, and it is going to
take in an Orderable and it is going to take it in implicitly and it is going to spit out an Orderable. And this is suprisingly
easy to define. We have this orderable for A already, sowe just have to compare them in the opposite order.

so this will take a sort and reverse that sort, return an instance that does the reverse sort of what we passed in, implicitly.

Monty	West

So	how	can	we	use	this?	We	don’t	need	to	make	any	changes	
anywhere	else.	If	we	go	back	to	the	shell,	so	our	person	list

Welcome to the Ammonite Repl 1.6.3
(Scala 2.12.8 Java 1.8.0_112)
If you like Ammonite, please support our development at www.patreon.com/lihaoyi
@ personLs
res0: List[Person] = List(Person(23, "alice"), Person(35, "bob"), Person(21, "charlie"))

@

@ ops.sort(personLs)
res1: List[Person] = List(Person(21, "charlie"), Person(23, "alice"), Person(35, "bob"))

@

so	if	I	sort	the	normal	way,	as	defined	in	the	
personOrderable	instance,	we	get	this	way.	

And now I can do two different ways of applying this reverse. I can do, because the sort function
still has this second parameter list, even though it is implicit, we can pass it in explicitly

So this is me passing it in explicitly. What is happening is that this reverse function itself finds the
initial person orderable and just … and … another one that is explicitly passed in. So there is some
interesting resolution here but not at the sort of function level, at the Orderable reverse.

@ ops.sort(personLs)(Orderable.reverse)
res2: List[Person] = List(Person(35, "bob"), Person(23, "alice"), Person(21, "charlie"))

@

@ implicit val reverse: Orderable[Person] = Orderable.reverse
reverse: Orderable[Person] = mw.domain.Orderable$$anon$1@610dd9c4

@

@ ops.sort(personLs)
java.lang.NullPointerException

mw.domain.Orderable$$anon$1.compare(Orderable.scala:26)
…

And	that	has	reversed	the	order.	The	other	way	we	can	do	reverse	is	in	this	scope,	we	
can	override	that	implicit.	So	if	we	define	an	implicit	value	here,	let’s	call	it	reverse.

And the type inference in Scala will be clever enough to know that I want the reverse of a Person, just by
the type parameter on the actual value. And now if I call just normal sort person, it will have the reverse.

Oh,	not	quite	…<comment	from	audience>… ah	ok,	I’ll	skip	that	for	
now,	but	you	can	do	that,	I	have	obviously	just	forgotten	how	to.

Monty	West

trait Orderable[A] {

def compare(l: A, r: A): Int

def <(l: A, r: A): Boolean = compare(l, r) < 0
}

object Orderable {

implicit val intOrderable: Orderable[Int] = (l: Int, r: Int) => l - r

def reverse[A](implicit order: Orderable[A]): Orderable[A] = new Orderable[A] {
override def compare(l: A, r: A): Int = order.compare(r, l)

}

}

import mw.domain.Orderable

package object ops {

def sortInts(ls: List[Int]): List[Int] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs => sortInts(xs.filter(a => a < x)) ++ List(x) ++ sortInts(xs.filterNot(a => a < x))

}

def sort[A](ls: List[A])(implicit order: Orderable[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs => sort(xs.filter(a => order.<(a,x))) ++ List(x) ++ sort(xs.filterNot(a => order.<(a,x)))

}
}

val personLs =
List(

Person(23, "alice"),
Person(35, "bob"),
Person(21, "charlie")

);

val intLs =
List(-5, 8, 10, 2, 5);

final case class Person(age: Int, name: String)

object Person {

implicit val personOrderable: Orderable[Person] = new Orderable[Person] {
override def compare(l: Person, r: Person): Int = l.age - r.age

}
}

@ ops.sort(personLs) @ ops.sort(personLs)(Orderable.reverse)

@philip_schwarz

Recap	- Version	2e -
reversing an	ordering

Monty	West
https://www.linkedin.com/in/monty-west/

So, something else we can do is, so the slight problem here is this boilerplate

it is annoying. This whole like create a new instance every time. What we can do instead of that is
take an orderable instance of something that we know how to order and then transform it into
something that we don’t know how to order yet. So how about this? I’ll explain in a second.

So we know how to order Bs, we have an instance for this Orderable[B], and we have a function
that takes us from the thing we want to be able to order to that B. And again, this is pretty easy to
implement. We take our Orderable instance for B and we apply that function to each A that we
passed in:

What this allows us to do is reduce a lot of boilerplate and also make our code very readable.

final case class Person(age: Int, name: String)

object Person {
implicit val personOrderable: Orderable[Person] = new Orderable[Person] {

/** *
* l < r : negative
* l = r : zero
* l > r : positive
*/

override def compare(l: Person, r: Person): Int = l.age - r.age
}

}

def by[A,B](f: A => B)(implicit order: Orderable[B]): Orderable[A]

override def compare(l: A, r: A): Int = order.compare(f(l), f(r))

So if we go back to our Person class, we know how to order Ints, we have seen Ints
already, so instead of this

And that compiles, because we know how
to sort Ints, that is available on the
Orderable companion object in implicit
scope, and now we are just saying we
want to order persons by age and we
already know how to sort ints so we don’t
need to redefine them.

Monty	West now we would just call Orderable.by, and this takes a function,
so I am going to take a person and I am going to pull off the age

final case class Person(age: Int, name: String)

object Person {
implicit val personOrderable: Orderable[Person] = new Orderable[Person] {

override def compare(l: Person, r: Person): Int = l.age - r.age
}

}

final case class Person(age: Int, name: String)

object Person {
implicit val personOrderable: Orderable[Person] =

Orderable.by(person => person.age)(intOrderable)
}

object Orderable {
implicit val intOrderable: Orderable[Int] = …
…

def by[A,B](f: A => B)(implicit order: Orderable[B]): Orderable[A] = new Orderable[A] {
override def compare(l: A, r: A): Int = order.compare(f(l), f(r))

}
}

A =	Person;	B =	Int

object Orderable {

implicit val intOrderable: Orderable[Int] =
(l: Int, r: Int) => l - r

…
}

Monty	West

And	also	if	we	use	a	bit	more Scala sugar here	this	becomes	really	readable	right?

final case class Person(age: Int, name: String)

object Person {
implicit val personOrderable: Orderable[Person] = Orderable.by(_.age)

}

Orderable	by	age.	It’s	great.	
If	we	then	go	back	and	we create	an	Orderable instance	for	String,	just	use	the	Java	or	what	ever	Scala	does:

implicit val stringOrderable: Orderable[String] =
(l: String, r: String) => l.compareTo(r)

Then	we	can	show	how	we	can	change	a	sort	on	the	fly.	Again	start	with	a	person list.	

@ personLs
res0: List[Person] = List(Person(23, "alice"), Person(35, "bob"), Person(21, "charlie"))
@

So if we want to sort by name, just in this scope, just for this bit, we have a default sort that does by age, that
we defined in the Person class, but instead we want to sort by name for some reason,

@ implicit val nameOrderable: Orderable[Person] = Orderable.by(_.name)
nameOrderable: Orderable[Person] = mw.domain.Orderable$$anon$2@6041e4ac
@ ops.sort(personLs)
res2: List[Person] = List(Person(23, "alice"), Person(35, "bob"), Person(21, "charlie"))

That was sorted by name rather than by age. So we are able to change the way we use these
type classes, choose the implementation, in the scope that we want to call it on, which again we
would not be able to do with subtype polymorphism. We can change things on the fly. It may
not be the best example here, because I don’t know why you would really want to change that
sort often, but this can be very useful, this extra functionality over subtype polymorphism.

trait Orderable[A] {
def compare(l: A, r: A): Int
def <(l: A, r: A): Boolean = compare(l, r) < 0

}

object Orderable {
implicit val intOrderable: Orderable[Int] = (l: Int, r: Int) => l - r
implicit val stringOrderable: Orderable[String] = (l: String, r: String) => l.compareTo(r)

def reverse[A](implicit order: Orderable[A]): Orderable[A] = new Orderable[A] {
override def compare(l: A, r: A): Int = order.compare(r, l)

}

def by[A,B](f: A => B)(implicit order: Orderable[B]): Orderable[A] = new Orderable[A] {
override def compare(l: A, r: A): Int = order.compare(f(l), f(r))

}
}

import mw.domain.Orderable

package object ops {

def sortInts(ls: List[Int]): List[Int] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs => sortInts(xs.filter(a => a < x)) ++ List(x) ++ sortInts(xs.filterNot(a => a < x))

}

def sort[A](ls: List[A])(implicit order: Orderable[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs => sort(xs.filter(a => order.<(a,x))) ++ List(x) ++ sort(xs.filterNot(a => order.<(a,x)))

}
}

val personLs =
List(

Person(23, "alice"),
Person(35, "bob"),
Person(21, "charlie")

);

val intLs =
List(-5, 8, 10, 2, 5);

final case class Person(age: Int, name: String)

object Person {
implicit val personOrderable: Orderable[Person] =

Orderable.by(person => person.age)
}

@ implicit val nameOrderable: Orderable[Person] = Orderable.by(_.name)
@ ops.sort(personLs)

@philip_schwarz

Recap	- Version	2f
Orderable	instance	
creation without	
boilerplate and	on	
the	fly.

Monty	West
https://www.linkedin.com/in/monty-west/

So	the	last	problem	we	have is	that	our	sort	function itself	is	quite	clunky.	We’ve	got	this	second	parameter	list,	
we’ve	got	this horrible	syntax here	with	order,	is	there	anything	we	can	do	about	this?

Can	we	make	it	nicer	to	use	these type	classes?	And	yes,	the	good	news	there	is	that	we	can.

package object ops {

def sortInts(ls: List[Int]): List[Int] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs =>

sortInts(xs.filter(a => a < x)) ++ List(x) ++ sortInts(xs.filterNot(a => a < x))
}

def sort[A](ls: List[A])(implicit order: Orderable[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs =>

sort(xs.filter(a => order.<(a, x))) ++ List(x) ++ sort(xs.filterNot(a => order.<(a, x)))
}

}

Monty	West

So the first thing I’ll address is the syntax.What you’ll sometimes see is a syntax package.

And now I’ll have a package object, and we are going to use an implicit class, I think this pattern has a name, I think it is one of those
things in Scala that draws people in from Java, I think it is called pimp my library pattern or something similar, but we are going to use an
implicit class, and this will wrap any instance of A that we have an Orderable instance for, and allow us to add functions to it, so we
get that nice syntax we saw before.

So we are going to call this OrderableSyntax, and this is going to wrap a value A, but only if we have an Orderable instance for that A.
And the function we want is this less than. Now this sort of looks like our original subtype polymorphism where we just had an ‘other’
and a ‘this’, except that ‘this’ is passed in sort of explicitly and the class wraps around it

OK, so now if we go back to our sort

and we remember to import this, now we can us this nice syntax.

package object syntax {
implicit class OrderableSyntax[A](a: A)(implicit order:Orderable[A]) {

def <(other: A): Boolean = order.<(a, other)
}

}

def sort[A](ls: List[A])(implicit order: Orderable[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs =>

sort(xs.filter(a => order.<(a, x))) ++ List(x) ++ sort(xs.filterNot(a => order.<(a, x)))
}

import mw.domain.syntax._

def sort[A](ls: List[A])(implicit order: Orderable[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs =>

sort(xs.filter(a => a < x)) ++ List(x) ++ sort(xs.filterNot(a => a < x))
}

Monty	West

import mw.domain.syntax._

def sort[A](ls: List[A])(implicit order: Orderable[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs =>

sort(xs.filter(a => a < x)) ++ List(x) ++ sort(xs.filterNot(a => a < x))
}

This is starting to look a bit more like what we had before, this nice sort of, use of
these type classes can get back to the stage where it feels a lot like using
subtype polymorphism and the niceties you have there.

So the other thing we can do is we can get rid of this second parameter list. And there is
some Scala sugar that allows us to do this, and it’s called a context bound, and again it
looks a bit like a type bound, there is no arrow there, and we are not passing, there is no
like type parameter, but what this will do is this will find the Orderable instances for A
and add them to the implicit scope.

 def sort[A: Orderable](ls: List[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs =>

sort(xs.filter(a => a < x)) ++ List(x) ++ sort(xs.filterNot(a => a < x))
}

}

What it won’t do is give you an explicit value to call, so for example it seems pretty
obvious but we don’t have an order anymore, that doesn’t exist, but luckily we don’t
need it because we are not calling that explicitly, but there will be times in which you
need the instance to do something with, and to get around this and to keep this nice
sugar we can add something called a summoner.

Replacing	an	implicit	
Orderable[A]
parameter	with	a	
context	bound for	
Orderable

Monty	West
https://www.linkedin.com/in/monty-west/

And	this	is	going	to	look	something	like	this

I	am	not	going	to	explain	this	too	much,	but	you’ll	see	this	a	lot	on type	classes,	so	just	know	that	it	is	
available	to	you

there	you	go.	Now	what	this	allows	us	to	do	is	pull	it	out	of	implicit	scope	and	into	the	value,	and	the	
syntax	for	that	looks	like	this:

And	now	if	we	wanted	to	we	could	go	back	to	that	horrible	syntax,	which	looks	like	this:

object Orderable {

implicit val intOrderable: Orderable[Int] = (l: Int, r: Int) => l - r

object Orderable {

def apply[A](implicit order: Orderable[A]): Orderable[A] = order

implicit val intOrderable: Orderable[Int] = (l: Int, r: Int) => l - r

def sort[A: Orderable](ls: List[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs =>

val order = Orderable[A]
sort(xs.filter(a => a < x)) ++ List(x) ++ sort(xs.filterNot(a => a < x))

}

Introducing	a	
summoner for	
Orderable[A]

sort(xs.filter(a => order.<(a, x))) ++ List(x) ++ sort(xs.filterNot(a => order.<(a, x)))

@philip_schwarz

Recap	- Version	2g
• Use	context	bound to	

get	rid	of	2nd	
parameter	list	

• use	implicit	syntax	
class to	get	rid	of	
horrible	syntax

import mw.domain.Orderable
import mw.domain.syntax._
 
package object ops {
  
def sortInts(ls: List[Int]): List[Int] = ls match {
  case Nil => Nil

case _ :: Nil => ls
case x :: xs => sortInts(xs.filter(a => a < x)) ++ List(x) ++ sortInts(xs.filterNot(a => a < x))  

}

def sort[A:Orderable](ls: List[A]): List[A] = ls match {
  case Nil => Nil

case _ :: Nil => ls
case x :: xs => sort(xs.filter(a => a < x)) ++ List(x) ++ sort(xs.filterNot(a => a < x)) 

}
}

trait Orderable[A] {
def compare(l: A, r: A): Int
def <(l: A, r: A): Boolean = compare(l, r) < 0  

}
 
object Orderable {
 
implicit val intOrderable: Orderable[Int] = (l: Int, r: Int) => l - r
implicit val stringOrderable: Orderable[String] = (l: String, r: String) => l.compareTo(r)
  
def reverse[A](implicit order: Orderable[A]): Orderable[A] = new Orderable[A] {  

override def compare(l: A, r: A): Int = order.compare(r, l)
}
def by[A, B](f: A => B)(implicit order: Orderable[B]): Orderable[A] = new Orderable[A] {  

override def compare(l: A, r: A): Int = order.compare(f(l), f(r))
}  

}

final case class Person(age: Int, name: String)

object Person {
implicit val personOrder: Orderable[Person] =

Orderable.by (person => person.age)
}

val personLs =
List(

Person(23, "alice"),
Person(35, "bob"),
Person(21, "charlie")

);

val intLs =
List(-5, 8, 10, 2, 5);

package object syntax {
implicit class OrderableSyntax[A](a: A)(implicit order: Orderable[A]) {

def <(other: A): Boolean = order.<(a, other)  
}

}

Monty	West

Ok, so we have managed to get this to look, if I just undo that, a lot like what we
had before, with this nice syntax that we are all familiar with and happy with, this is
pretty readable.

def sort[A: Orderable](ls: List[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs =>

sort(xs.filter(a => a < x)) ++ List(x) ++ sort(xs.filterNot(a => a < x))
}

All	we	had	to	add	was	this context	bound.	For	the	person itself,	that	we	want	to	
sort,	we	had	to	add	this	couple	of	lines,	separate	to	the	class:

final case class Person(age: Int, name: String)

object Person {
implicit val personOrderable: Orderable[Person] = new Orderable[Person] {

/** *
* l < r : negative
* l = r : zero
* l > r : positive
*/

override def compare(l: Person, r: Person): Int = l.age - r.age
}

}

we	didn’t	have	to	change	the	class	at	all.

But what we did have to do a lot of was a lot of this stuff, like there is quite a lot of
code gone into this type class

trait Orderable[A] {

/***
* l < r : negative
* l = r : zero
* l > r : positive
*/

def compare(l: A, r: A): Int

def <(l: A, r: A): Boolean = compare(l, r) < 0
}

object Orderable {

implicit val intOrderable: Orderable[Int] = (l: Int, r: Int) => l - r

implicit val stringOrderable: Orderable[String] =
(l: String, r: String) =>

if (l == r) 0
else if (l < r) -1
else 1

def by[A, B](f: A => B)(implicit order: Orderable[B]): Orderable[A] =
(l: A, r: A) => order.compare(f(l), f(r))

def reverse[A](implicit order: Orderable[A]): Orderable[A] =
(l: A, r: A) => order.compare(r, l)

}

Monty	West

Monty	West

In our actual application code nothing much has changed.We haven’t change our class
and we haven’t changed our sort too much. So it would be great if we could get rid of
all this boilerplate, if we didn’t have to define this ourselves, so we just delete it.

trait Orderable[A] {

/***
* l < r : negative
* l = r : zero
* l > r : positive
*/

def compare(l: A, r: A): Int

def <(l: A, r: A): Boolean = compare(l, r) < 0
}

object Orderable {

implicit val intOrderable: Orderable[Int] = (l: Int, r: Int) => l - r

implicit val stringOrderable: Orderable[String] =
(l: String, r: String) =>

if (l == r) 0
else if (l < r) -1
else 1

def by[A, B](f: A => B)(implicit order: Orderable[B]): Orderable[A] =
(l: A, r: A) => order.compare(f(l), f(r))

def reverse[A](implicit order: Orderable[A]): Orderable[A] =
(l: A, r: A) => order.compare(r, l)

}

And	we	delete	syntax

package object syntax {

implicit class OrderableSyntax[A](a: A)(implicit order:Orderable[A]) {
def <(other: A): Boolean = order.<(a, other)

}

}

Monty	West

Obviously these	imports	are	not	going	to	work	now

@philip_schwarz

What Monty West has been doing all along, since he ditched subtype
polymorphism and switched to ad hoc polymorphism using type classes, is apply
ideas and techniques that are heavily exploited in the Cats library. That’s why his
talk contains the following slides:

Monty	West

So what if we still want to sort persons? What can we do if we want to use type
classes and stuff?

That’s where Cats comes in. So Cats’ version of Orderable is called Order, so if I
import cats.Order and in the context bound I replace Orderable with Order, and
now I don’t have this nice syntax,

import cats.Order
import cats.syntax.order._

package object ops {

def sortInts(ls: List[Int]): List[Int] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs =>

sortInts(xs.filter(a => a < x)) ++ List(x) ++ sortInts(xs.filterNot(a => a < x))
}

def sort[A: Order](ls: List[A]): List[A] = ls match {
case Nil => Nil
case _ :: Nil => ls
case x :: xs =>

sort(xs.filter(a => a < x)) ++ List(x) ++ sort(xs.filterNot(a => a < x))
}

}

Monty	West

But,	again,	Cats provides,	so	if	I	import cats.syntax.order._,	now	that	looks	exactly	the	
same,	and	this	is	actually	a	tiny	bit	of	code,	I’ve	got	two	imports	and	a	context	bound,	I	
mean,	and	we	can	do	this	sort	of	generic	sorting	

Monty	West

for	Person,	obviously	this	is	a	similar	problem,	we	don’t	have	our	Orderable any	more

we	need	to	import	it.

and	this	isn’t	defined	because	we	don’t	
have	the	Order instance	for	Age

Monty	West

but	again	Cats gives	you	a	lot	of	instances	for	free

Now that compiles and what we have done here is very little work.

We have added a couple of imports, context bounds, added a person instance to implicit
scope, a couple of imports and we have done, and we have done a generic sort.

And we have done it all without having to change our Person class. Our Person class can
be somewhere completely separate. And we don’t have to change that.

We can do this for types we don’t own, obviously we don’t own the Order type class itself,
Cats owns that, sowe can add this functionality anywhere.

@philip_schwarz

Recap	- Version	3	
Using	Cats

import cats.Order
import cats.syntax.order._
 
package object ops {
  
def sortInts(ls: List[Int]): List[Int] = ls match {
  case Nil => Nil

case _ :: Nil => ls
case x :: xs => sortInts(xs.filter(a => a < x)) ++ List(x) ++ sortInts(xs.filterNot(a => a < x))

 
}

def sort[A:Order](ls: List[A]): List[A] = ls match {
  case Nil => Nil

case _ :: Nil => ls
case x :: xs => sort(xs.filter(a => a < x)) ++ List(x) ++ sort(xs.filterNot(a => a < x)) 

}
}

import cats.Order
import cats.instances.int._

final case class Person(age: Int, name: String)

object Person {
implicit val personOrder: Order[Person] =

Order.by(_.age)
}

val personLs =
List(

Person(23, "alice"),
Person(35, "bob"),
Person(21, "charlie")

);

val intLs =
List(-5, 8, 10, 2, 5);

Monty	West
https://www.linkedin.com/in/monty-west/

I just want to quickly show, or explain what this has actually done for us. So what we can do is, we have
added functionality to the Person object, without changing it at all, so we are now able to compare
Persons.

Obviously this is quite a powerful approach and we could go on like this forever, we could add loads of
functionality to our classes without ever needing to change them, without them ever needing to be
anything other than value classes or just simple data classes, andmore than that, just a quick taste of the
sort of power you can get to, without any actual work, say we wanted to incorporate the name into the
sort, so if we import instances for string and tuple, what we can do is we can get this to return a tuple

So what this will do is it will
sort by age and if they are
the same it will sort by
name.

Again, very minimal code for
what is quite a lot of
functionality that we didn’t
have to define ourselves.
Again, we have added three
lines of code.

Monty	West

And another nice thing about Cats which I don’t think a lot of people really enjoy, is that if you can’t
remember where all these instances and syntax are, there is just this magic import you can do,
cats.implicits._, just makes everything compile.

And that’s basically the talk. I have ended up with five extra lines of code from where I started, so, a
very slow live code session, but unlocked quite a lot of functionality.

Question from the audience: “do you find that using the cats.implicits._ instead of the dedicated
imports affects the compiler?”

Answer: Yes, so adding this cats.implicits._ is expensive for you compiler, you will find the compiler will
go slower, it is good to remember where all these things are, but if you are really struggling,
cats.implicits._ can help, and especially when you get quite deep into all this stuff. Occasionally you’ll
find no hit and it just makes everything work, makes everything clean.

scala> :paste
// Entering paste mode (ctrl-D to finish)
import mw.domain._
import mw.domain.Person._
import mw.ops._
import cats.Order
import cats.Order._
import cats.implicits._
// Exiting paste mode, now interpreting.
…
scala> val personLs = List(Person(23, "dan"), Person(35, "bob"), Person(21, "charlie"), Person(23, "alice"))
personLs: List[mw.domain.Person] = List(Person(23,dan), Person(35,bob), Person(21,charlie), Person(23,alice))

scala> sort(personLs)
res0: List[mw.domain.Person] = List(Person(21,charlie), Person(23,alice), Person(23,dan), Person(35,bob))

scala> sort(personLs)(by(_.name))
res1: List[mw.domain.Person] = List(Person(23,alice), Person(35,bob), Person(21,charlie), Person(23,dan))

scala> sort(personLs)(by(_.age))
res2: List[mw.domain.Person] = List(Person(21,charlie), Person(23,dan), Person(23,alice), Person(35,bob))

scala> sort(personLs)(reverse(by(_.age)))
res3: List[mw.domain.Person] = List(Person(35,bob), Person(23,dan), Person(23,alice), Person(21,charlie))

scala> sort(personLs)(by((p:Person) => (p.age, p.name)))
res4: List[mw.domain.Person] = List(Person(21,charlie), Person(23,alice), Person(23,dan), Person(35,bob)) scala>	
sort(personLs)(by((p:Person)	=>	(p.age,p.name)))res8:	List[mw.domain.Person]	=	List(Person(21,charlie),	Person(23,alice),	Person(23,dan),	Person(35,bob)
scala> sort(personLs)(whenEqual(by(_.age), by(_.name)))
res5: List[mw.domain.Person] = List(Person(21,charlie), Person(23,alice), Person(23,dan), Person(35,bob))

scala> val intLs = List(-5, 8, 10, 2, 5)
intLs: List[Int] = List(-5, 8, 10, 2, 5)

scala> sort(intLs)
res6: List[Int] = List(-5, 2, 5, 8, 10)

scala> sort(intLs)(reverse(implicitly[Order[Int]]))
res7: List[Int] = List(10, 8, 5, 2, -5)

@philip_schwarz

Let’s	have	a	quick	go	
at	using	version	3	

Monty	West
https://www.linkedin.com/in/monty-west/

OK, so that’s the end of the live coding portion.

Let’s just go back and summarise where we got to.

So over subtype polymorphism, this sort of ad hoc polymorphism with type classes, we can add
functionality to types we don’t own, which can be very useful, we can change that functionality in different
scopes, so if we want to have a different sort function, a different way of doing toString is a similar one, then
we can do that in different scopes, again, a higher level of abstraction where we are able to compose these
instances, creating instances on the fly very easily, it makes them more applicable as well.

And I think the good thing here is it enables things like Cats. The Cats library just adds functionality to types
it doesn’t own, Order, that’s exactly what it does. That is not possible with subtype polymorphism
obviously. You’d have to go through and implement everything and what if you wanted to do this for Java
Time instant for example? The Cats library would be useless.

So this pattern enables stuff like Cats, which I think a lot of people find very useful. And yes, as we all like, it
does your work for you.

