
Monoids
with	examples	using	Scalaz	and	Cats

Part	II	- based	on

@philip_schwarzslides	by



import scalaz.Scalaz._

assert( (2.some |+| 3.some) == 5.some ) // optionMonoid combines options by combining their contents
assert( (2.some.first |+| 3.some.first) == 2.some.first) // optionFirst lets the first non-zero option win
assert( (2.some.last |+| 3.some.last) == 3.some.last ) // optionLast lets the last non-zero option win

import cats.implicits._
import cats.Monoid

val monoid: Monoid[Option[Int]] = cats.kernel.instances.option.catsKernelStdMonoidForOption[Int]
assert( monoid.empty == None)
assert( monoid.combine(Option(2),Option(3)) == Option(5) )
assert( (Option(2) |+| Option(3)) == Option(5) ) // using the |+| alias for the monoid’s combine function

import cats.MonoidK

val monoidK: MonoidK[Option] = cats.instances.option.catsStdInstancesForOption
assert( monoidK.empty == None)
assert( monoidK.combineK(Option(2),Option(3)) == Option(2))
assert( (Option(2) <+> Option(3)) == Option(2) ) // using the <+> alias for the monoidk’s combineK function

In Part 1 I said that while in Scalaz there are three Option monoids, i.e. optionFirst, optionLast and optionMonoid, in Cats there is just one Option monoid
and it has the same name and behaviour as the Scalaz optionMonoid. I would like to correct that before we move on.

Remember	how	in	Scalaz,	the	op of	the	optionMonoid combines	the	content	of	its	Option arguments,	the	op of	optionFirst lets	the	first	non-zero	Option win,	
and	the	op of	optionLast lets	the	last	non-zero	Option win?

And	remember	how	in	Cats the	op of	optionMonoid combines	the	content	of	its	Option arguments,	just	like	in	Scalaz?

(Btw, as we see above, what in the Cats documentation is called optionMonoid, in the Cats codebase is called catsKernelStdMonoidForOption)

Well, in Cats it is also possible to get a monoid that behaves like the Scalaz optionFirst monoid. Rather than being an instance of
catsKernelStdMonoidForOption[A] i.e. a Monoid[Option[A]] with a combine function with alias |+|, it is catsStdInstancesForOption, i.e. a
MonoidK[Option] with a combineK function with alias <+>:

The	idea	is	that	while	in	the	first	case	we	have	a	Monoid[A]	where	A is	Option[B]	and	B has	a	Semigroup,	in	the	second	case	we	have	a	MonoidK[F[_]]	
where	F is	Option.	The	K in	MonoidK and	combineK stands	for	Kind,	as	in	Higher-Kinded types.

@philip_schwarz



scala> :kind -v cats.Monoid
cats.Monoid's kind is F[A]
* -> *
This is a type constructor: a 1st-order-kinded type.

scala> :kind -v cats.MonoidK
cats.MonoidK's kind is X[F[A]]
(* -> *) -> *
This is a type constructor that takes type constructor(s): a higher-kinded type.

scala>

import simulacrum.typeclass

/**
* MonoidK is a universal monoid which operates on kinds.
*
* This type class is useful when its type parameter F[_] has a
* structure that can be combined for any particular type, and which
* also has an "empty" representation. Thus, MonoidK is like a Monoid
* for kinds (i.e. parametrized types).
*
* A MonoidK[F] can produce a Monoid[F[A]] for any type A.
*
* Here's how to distinguish Monoid and MonoidK:
*
*  - Monoid[A] allows A values to be combined, and also means there
*    is an "empty" A value that functions as an identity.
*
*  - MonoidK[F] allows two F[A] values to be combined, for any A.  It
*    also means that for any A, there is an "empty" F[A] value. The
*    combination operation and empty value just depend on the
*    structure of F, but not on the structure of A.
*/

@typeclass trait MonoidK[F[_]] extends SemigroupK[F] { …

import simulacrum.typeclass

/**
* SemigroupK is a universal semigroup which operates on kinds.
*
* This type class is useful when its type parameter F[_] has a
* structure that can be combined for any particular type. Thus,
* SemigroupK is like a Semigroup for kinds (i.e. parametrized
* types).
*
* A SemigroupK[F] can produce a Semigroup[F[A]] for any type A.
*
* Here's how to distinguish Semigroup and SemigroupK:
*
*  - Semigroup[A] allows two A values to be combined.
*
*  - SemigroupK[F] allows two F[A] values to be combined, for any A.
*    The combination operation just depends on the structure of F,
*    but not the structure of A.
*/

@typeclass trait SemigroupK[F[_]] { …

While catsKernelStdMonoidForOption is aMonoid[Option[A]], where A has a Semigroup, catsStdInstancesForOption is aMonoidK[Option].

So while the combine function of the former knows how to combine the contents of the options it operates on, i.e. by using the Semigroup’s combine function, the
combineK function of the latter knows nothing about the type of the contents of the options it operates on and so can only combine the options using their orElse
function, which results in the first non-zero option winning.

WhileMonoid is a type constructor taking a type, e.g. Option[Int],MonoidK is a
type constructor that takes a type constructor, e.g. Option.

WhileMonoid is a 1st-order-kinded type,MonoidK is a higher-kinded type.

@philip_schwarz



For List, the Semigroup instance’s combine operation and the SemigroupK instance’s combineK operation are both list concatenation.

From	https://typelevel.org/cats/typeclasses/semigroupk.html:

However for Option, the Semigroup’s combine and the SemigroupK’s combineK operation differ.
Since Semigroup operates on fully specified types, a Semigroup[Option[A]] knows the concrete type
of A and will use Semigroup[A].combine to combine the inner As.
Consequently, Semigroup[Option[A]].combine requires an implicit Semigroup[A].
…
In contrast, SemigroupK[Option] operates on Option where the inner type is not fully specified and can be
anything (i.e. is “universally quantified”). Thus, we cannot know how to combine two of them. Therefore, in
the case of Option the SemigroupK[Option].combineK method has no choice but to use the orElse method
of Option

assert( (List(1,2) |+| List(3,4) ) == List(1,2,3,4) )
assert( (List(1,2) <+> List(3,4) ) == List(1,2,3,4) )

val one = Option(1) 
val two = Option(2) 
val n: Option[Int] = None 
 
assert( (one |+| two) == Some(3)) 
assert( (one <+> two) == one) 
 
assert( (n |+| two) == two) 
assert( (n <+> two) == two) 
 
assert( (two |+| n) == two) 
assert( (two <+> n) == two) 
 
assert( (n |+| n) == n) 
assert( (n <+> n) == n) 

There	is	inline	syntax	available	for	both Semigroup and SemigroupK.	Here	we	are	following	the	convention	from	scalaz,	that |+| is	the	operator	from	
Semigroup and	that <+> is	the	operator	from SemigroupK (called Plus in	scalaz).

assert( (Set("foo","bar") |+| Set("baz")) == Set("foo","bar","baz"))
assert( (Set("foo","bar") <+> Set("baz")) == Set("foo","bar","baz"))

i.e. in the case of List or Set, the behaviour of both Semigroup[A].combine and
SemigroupK[F[_]].combineK does not rely on the type of the contents of the List or Set.



Plus is Semigroup but for type constructors, and PlusEmpty is the equivalent
of Monoid (they even have the same laws) whereas IsEmpty is novel and allows us to
query if an F[A] is empty:

import simulacrum.typeclass
import simulacrum.{op}

@typeclass trait Plus[F[_]] {
@op("<+>") def plus[A](a: F[A], b: =>F[A]): F[A]

}
@typeclass trait PlusEmpty[F[_]] extends Plus[F] {

def empty[A]: F[A]
}
@typeclass trait IsEmpty[F[_]] extends PlusEmpty[F] {

def isEmpty[A](fa: F[A]): Boolean
}

<+> is the TIE Interceptor, and now we are almost out of TIE Fighters.

Sam	Halliday

@fommil

Plus

Although it may look on the surface as if <+> behaves like |+|:

scala> List(2,3) |+| List(7)
res0: List[Int] = List(2, 3, 7)

scala> List(2,3) <+> List(7)
res1: List[Int] = List(2, 3, 7)

It is best to think of it as operating only at the F[_] level, never
looking into the contents.

Plus has the convention that it should ignore failures and
“pick the first winner”. <+> can therefore be used as a
mechanism for early exit (losing information) and failure-
handling via fallbacks:

scala> Option(1) |+| Option(2)
res2: Option[Int] = Some(3)

scala> Option(1) <+> Option(2)
res3: Option[Int] = Some(1)

scala> Option.empty[Int] <+> Option(1)
res4: Option[Int] = Some(1)

scalaz.Plus corresponds	to	
cats.SemigroupK and	
scalaz.PlusEmpty corresponds	
to	cats.MonoidK.



Following that correction regarding Option monoids in Cats, I would like to look at amonoid that is a bit
different from the examples we have seen so far, i.e. the monoid for endofunctions, which is interesting
and which we’ll anyway need a couple of times later on.

@philip_schwarz



EXERCISE 10.3

A function having the same argument and return type is sometimes called an endofunction. 2 Write a monoid for endofunctions.

def endoMonoid[A]: Monoid[A => A]

2 The Greek prefix endo- means within, in the sense that an endofunction’s codomain is within its domain.

Again we are limited in the number of ways we can combine values with op since it should compose functions of type A => A for
any choice of A. And again there is more than one possible implementation. There is only one possible zero though.

There is a choice of implementation here as well. Do we implement it as f compose g or f andThen g? We have to pick one. We
can then get the other one using the dual construct.

A Companion booklet to 
FP in Scala

def endoMonoid[A] = new Monoid[A => A] {
def op(f: A => A, g: A => A) = f compose g
val zero = (a: A) => a

}

def dual[A](m: Monoid[A]) = new Monoid[A] {
def op(x: A, y: A): A = m.op(y, x)
val zero = m.zero

}

// example of monoid laws in action
scala> assert( op(inc, op(twice, square))(3) == op(op(inc, twice), square)(3) )
scala> assert( op(inc, zero)(3) == inc(3) )
scala> assert( op(zero, inc)(3) == inc(3) )

FP in Scala

scala> assert( op(inc, twice)(3) == inc(twice(3))) // the monoid’s op composes functions
scala> assert( op(inc, twice)(3) == 7)

scala> assert( op(twice, inc)(3) == twice(inc(3))) // try the other way round
scala> assert( op(twice, inc)(3) == 8)

scala> assert( op(zero, op(inc, twice))(3) == 7)   // identity element zero does nothing
scala> assert( op(twice, op(inc, zero))(3) == 8)

scala> assert( op(inc, twice)(3) == inc(twice(3))) // the op of the monoid is compose
scala> assert( dop(inc, twice)(3) == twice(inc(3))) // the op of the dual monoid is andThen

// the endofunction monoid’s zero is the identity function
scala> zero(3)
res0: Int = 3

val intEndoMonoid = endoMonoid[Int]
val intEndoMonoidDual = dual(intEndoMonoid)

val op = intEndoMonoid.op _
val dop = intEndoMonoidDual.op _
val zero = endoMonoid[Int].zero

val inc: Int => Int = x => x + 1
val twice: Int => Int = x => x + x
val square: Int => Int = x => x * x



What about in Scalaz? Is there a monoid for endofunctions? Can we compose two endofunctions f and g using f |+| g ?
Can we expect f |+| zero to result in f, if zero is themonoid’s identity?

In	Scalaz,	by	default,	if	you	have	functions	f:A=>B and	g:A=>B,	then	f|+|g combines	the	two	functions	using	a	different	monoid than	the	endofunction
monoid we	just	looked	at.	From	scalaz/example/EndoUsage.scala:

“there	already	exists	a	Monoid instance	for	any	Function1where	there	exists	a	monoid for	the	codomain”.	

Note: Function1[A,B] is	just	the	real	object	type	behind	the	syntactic	sugar of	function	type	A=>B.		If	we	look	at	the	code	in	scalaz/std/Function.scala	
we	find	out	the	following:

if for	B,	the	codomain	of	A=>B,	there	exists	a	Semigroup (B,	op)
then for	A=>B,	there	exists	a	Semigroup (A=>B,	op2)
where op2 takes	two	functions	f:	A=>B and	g:	A=>B and	returns	a	function	A=>B
such	that	given	n,	the	function	first	calls	both	f and	g with	n and	then	combines	the	results	using	op

e.g.

since for	Int,	the	codomain	of	Int=>Int,	there	exists	Semigroup (Int,	+)
then for	Int=>Int,	there	exists	Semigroup (Int=>Int,	append)
where append takes	two	functions	f:Int=>Int and	g:Int=>Int and	returns	a	function	Int=>Int 
such	that	given	n,	the	function	first	calls	both	f and	g with	n and	then	combines	the	results	using +

The	semigroup in	question	is	called	function1Semigroup.	Here	is	a	lambda	function	capturing	the	nature	of	this	semigroup’s	append function

val append: (Int=>Int, Int=>Int) => (Int=>Int) = 
(f,g) => { n => { f(n) + g(n) } }



val inc: Int => Int = x => x + 1
val twice: Int => Int = x => x + x
val append = scalaz.std.function.function1Semigroup[Int,Int].append _
assert( append(inc,twice)(3) == inc(3) + twice(3) )
assert( append(inc,twice)(3) == 10 )

Using the function1Semigroup to combine Int=>Int functions inc and twice

Since the append function of a Semigroup has alias |+|, we can do the following

val f: Int => Int = inc |+| twice val f: Function1[Int,Int] = inc |+| twice

assert( f(3) == 10 ) 

We	saw	how	the	existence	of	a	Semigroup (B,	op)	implies	the	existence	of	a	Semigroup (A=>B,	append)

Similarly,	the	existence	of	a	Monoid (R,	op,	zero)	implies	the	existence	of	aMonoid	(A=>B,	append,	x	=>	zero)
The	zero of	the	second	monoid is	a	function	that	always	returns	the	zero of	the	first	monoid.

e.g.	the	existence	of	Monoid	(Int,	+,	0)	implies	the	existence	of	Monoid (Int=>Int,	|+|,	(x:Int)	=>	0)
The	zero of	the	second	monoid is	a	function	that	always	returns	0,	i.e.	the	zero of	the	first	monoid.

The	monoid	in	question	is	called	function1Monoid.

val zero = scalaz.std.function.function1Monoid[Int,Int].zero
assert( zero(3) == 0 ) // the zero function always returns 0
assert( (inc |+| twice |+| zero)(3) == 10 )

assert( (inc |+| twice)(3) == inc(3) + twice(3) )
assert( (inc |+| twice)(3) == 10 )



Another example of using function1Monoid

val toUpper: String => String = _.toUpperCase
val toLower: String => String = _.toLowerCase

assert( (toUpper |+| toLower)("Scala") == "SCALAscala")

val zero = scalaz.std.function.function1Monoid[String,String].zero

assert( zero("foo") == "") // the zero function always returns ““
assert( (toUpper |+| toLower |+| zero)("Scala") == "SCALAscala")

See how the |+| of Monoid(String => String, |+|, (x: String)=>””) delegates the task of
combining the results of toUpper and toLower to the |+| of Monoid(String,|+|,””), i.e. delegates to it
the task of concatenating “SCALA” and “scala”.



package scalaz
package std

sealed trait FunctionInstances1 {
implicit def function1Semigroup[A, R](implicit R0: Semigroup[R]): Semigroup[A => R] =

new Function1Semigroup[A, R] {
implicit def R = R0

}
…
}
sealed trait FunctionInstances0 extends FunctionInstances1 {

implicit def function1Monoid[A, R](implicit R0: Monoid[R]): Monoid[A => R] =
new Function1Monoid[A, R] {

implicit def R = R0
}

…
}
…
private trait Function1Semigroup[A, R] extends Semigroup[A => R] {

implicit def R: Semigroup[R]

def append(f1: A => R, f2: => A => R) = a => R.append(f1(a), f2(a))
}

private trait Function1Monoid[A, R] extends Monoid[A => R] with Function1Semigroup[A, R] {
implicit def R: Monoid[R]
def zero = a => R.zero

}
…

A quick look at where and how function1Semigroup and function1Monoid are defined

Note how the Function1Semigroup‘s append function combines
two functions into a function that combines the two functions'
results using the semigroupal append function.

note how themonoid’s zero is a function that always returns the semigroup’s zero.

@philip_schwarz



What about Cats? Does it have the equivalent of function1Semigroup and function1Monoid?
Yes, they are catsKernelSemigroupForFunction1 and catsKernelMonoidForFunction1.

val inc: Int => Int = x => x + 1
val twice: Int => Int = x => x + x

import scalaz.std.anyVal.intInstance
import scalaz.std.function.function1Semigroup

val op = function1Semigroup[Int,Int].append _

assert( op(inc,twice)(3) == inc(3) + twice(3) )
assert( op(inc,twice)(3) == 10 )

val f: Int => Int = 
inc |+| twice

val f: Function1[Int,Int] = 
inc |+| twice

assert( f(3) == 10 ) 

import scalaz.std.function.function1Monoid

val zero = function1Monoid[Int,Int].zero
assert( zero(3) == 0 ) // the zero function always returns 0
assert( (inc |+| twice |+| zero)(3) == 10 )

import scalaz.syntax.semigroup._ // for |+|

assert( (inc |+| twice)(3) == inc(3) + twice(3) )
assert( (inc |+| twice)(3) == 10 )

val inc: Int => Int = x => x + 1
val twice: Int => Int = x => x + x

import cats.instances.int.catsKernelStdGroupForInt
import cats.instances.function.catsKernelSemigroupForFunction1

val op = catsKernelSemigroupForFunction1[Int,Int].combine _

assert( op(inc,twice)(3) == inc(3) + twice(3) )
assert( op(inc,twice)(3) == 10 )

import cats.instances.function.catsKernelMonoidForFunction1

val zero = catsKernelMonoidForFunction1[Int,Int].empty
assert( zero(3) == 0 ) // the zero function always returns 0
assert( (inc |+| twice |+| zero)(3) == 10)

val f: Int => Int = 
inc |+| twice

val f: Function1[Int,Int] = 
inc |+| twice

assert( f(3) == 10 ) 

import cats.syntax.semigroup._ // for |+|

assert( (inc |+| twice)(3) == inc(3) + twice(3) )
assert( (inc |+| twice)(3) == 10 )



So back to this question: in Scalaz, is there amonoid for endofunctions?
Can we compose two endofunctions f and g using f |+| g ?
Can we expect f |+| zero to result in f if zero is themonoid’s identity?

/** Endomorphisms.  They have special properties 
* among functions, so are captured in this 
* newtype.
* 
* @param run The captured function.
*/

final case class Endo[A](run: A => A) {
final def apply(a: A): A = run(a)

/** Do `other`,then call myself with its result.*/
final def compose(other: Endo[A]): Endo[A] = 

Endo.endo(run compose other.run)

/** Call `other` with my result. */
final def andThen(other: Endo[A]): Endo[A] = 

other compose this
}

object Endo extends EndoInstances {
…

/** Alias for `Monoid[Endo[A]].zero`. */
final def idEndo[A]: Endo[A] = endo[A](a => a)

…

“The scala Endo class is a class which wraps functions from A ⇒ A for some A. This class exists in order to supply some special typeclass instances, since functions
where the domain and the codomain are the same type have some special properties.”

/** Endo forms a monoid where `zero` is the identity endomorphism
* and `append` composes the underlying functions. */

implicit def endoInstance[A]: Monoid[Endo[A]] = 
new Monoid[Endo[A]] {

def append(f1: Endo[A], f2: => Endo[A]) = f1 compose f2
def zero = Endo.idEndo

}

val inc: Int => Int = x => x + 1
val twice: Int => Int = x => x + x

assert( (Endo(inc) |+| Endo(twice))(3) == inc(twice(3)))
assert( (Endo(inc) |+| Endo(twice))(3) == 7)

assert( (inc.endo |+| twice.endo)(3) == inc(twice(3)))
assert( (inc.endo |+| twice.endo)(3) == 7)

val f: Endo[Int] = inc.endo |+| twice.endo
assert( f(3) == 7 ) 

val zero = scalaz.Endo.endoInstance[Int].zero
assert( zero(3) == 3 ) // zero is the identity function 
assert( (inc.endo |+| twice.endo |+| zero)(3) == 7 )



To select the dual of the endoInstance monoid, which combines endofunctions using andThen rather than compose, we use the Dual tag

scala> val inc: Int => Int = x => x + 1
inc: Int => Int = $$Lambda$3950/177761611@5e763013

scala> inc.endo // select the endomonoid
res0: scalaz.Endo[Int] = Endo($$Lambda$3950/177761611@5e763013)

scala> Dual(inc.endo) // tag the inc endofunction with Dual in order to select the dual of the endomonoid
res1: scalaz.Endo[Int] @@ scalaz.Tags.Dual = Endo($$Lambda$3950/177761611@5e763013)

scala> unwrap(Dual(inc.endo)) // get rid of the Dual tag
res2: scalaz.Endo[Int] = Endo($$Lambda$3950/177761611@5e763013)

val inc: Int => Int = x => x + 1
val twice: Int => Int = x => x + x

val incComposeTwice = inc.endo |+| twice.endo // combine functions using compose 
assert( incComposeTwice(3) == inc(twice(3)))
assert( incComposeTwice(3) == 7)

val incAndThenTwice = unwrap( Dual(inc.endo) |+| Dual(twice.endo) ) // combine functions using andThen
assert( incAndThenTwice(3) == twice(inc(3)))
assert( incAndThenTwice(3) == 8)

And how to remove the Dual
tag by using unwrap.

How to select the dual of the
endomonoid by using the
Dual tag.

import scalaz._
import scalaz.Dual._
import scalaz.Scalaz._
import scalaz.Tag.unwrap

First using the endoInstance
monoid to combine functions
using compose.

And then using the dual
monoid to combine functions
using andThen.



What about Cats? Does it have the equivalent of the scalaz endoInstance monoid?

While in Scalaz, Endo is a case class with compose and andThen functions, in Cats, Endo is just a type alias: type Endo[A] = A => A..

Remember earlier when we used a MonoidK[Option] to combine two options in first-non-zero-option-wins fashion? In the Scaladoc for MonoidK it said that “A
MonoidK[F] can produce aMonoid[F[A]] for any type A”. Given aMonoidK[F]m, we can get aMonoid[F[Foo]] by callingm.algebra[Foo].

In Cats there is a predefinedMonoidK[Endo] called catsStdMonoidKForFunction1, so one thing we can do is call its algebramethod for Int to get aMonoid[F[Int]], which
we can then use to combine endofunctions using its combinemethod and using its |+| alias.

What we can also do is just use catsStdMonoidKForFunction1 itself, which being aMonoidK[Endo], provides a combineK method for combining Endos and a <+> alias for
this combineK function.

import cats.Endo

val inc: Endo[Int] = x => x + 1
val twice: Endo[Int] = x => x + x

implicit val endomonoid: cats.Monoid[Endo[Int]] =
cats.instances.function.catsStdMonoidKForFunction1.algebra[Int]

assert( endomonoid.combine(inc, twice)(3) == 7)

import cats.syntax.semigroup._ // for |+|
assert( (inc |+| twice)(3) == 7)

val zero = endomonoid.empty
assert( (inc |+| twice |+| zero)(3) == 7)

import cats.Endo

val inc: Endo[Int] = x => x + 1
val twice: Endo[Int] = x => x + x

implicit val endomonoidK: cats.MonoidK[Endo] =   
cats.instances.function.catsStdMonoidKForFunction1

assert( endomonoidK.combineK(inc, twice)(3) == 7)

import cats.syntax.semigroupk._ // for <+>
assert( (inc <+> twice)(3) == 7)

val zero = endomonoidK.empty[Int]
assert( (inc <+> twice <+> zero)(3) == 7)

import cats.Endo

val inc: Endo[Int] = x => x + 1
val twice: Endo[Int] = x => x + x

import cats.instances.function._ // for catsStdMonoidKForFunction1
import cats.syntax.semigroupk._ // for <+> of SemigroupK
assert( (inc <+> twice)(3) == 7)

val zero = cats.MonoidK[Endo].empty[Int]
assert( (inc <+> twice <+> zero)(3) == 7)

If	we	just	want	to	use	the	
monoidK’s	combineK
function	through	alias	<+>
then	we	can	just	do	this:

The behaviour of both the following functions depends on
the structure of Endo, but not on the structure of Int:
• the combineK function ofMonoidK[Endo]
• the combine function of the Monoid[F[Int]] created from

MonoidK[Endo]



Following that look at endomonoids, I would like look at how to fold lists using monoids.

So in the following two slides, as background, we look at FPiS to recap on how to fold lists in the first place.

@philip_schwarz



def sum(ints: List[Int]): Int = 
ints match {

case Nil => 0
case Cons(x, xs) => x + sum(xs)

}

def foldRight[A,B](as: List[A], z: B)(f: (A, B) => B): B =
as match {

case Nil => z
case Cons(x, xs) => f(x, foldRight(xs, z)(f))

}

Functional Programming in Scala
(by	Paul	Chiusano	and	Runar	Bjarnason)

@pchiusano  @runarorama

def sum(ns: List[Int]) =
foldRight(ns, 0)((x,y) => x + y)

def product(ns: List[Double]) =
foldRight(ns, 1.0)(_ * _)

sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]

Note how similar these two definitions are. They’re operating on different types (List[Int]versus List[Double]), but aside from this, the only differences are the value to return
in the case that the list is empty (0 in the case of sum, 1.0 in the case of product), and the operation to combine results (+ in the case of sum, * in the case of product).

Whenever you encounter duplication like this, you can generalize it away by pulling subexpressions out into function arguments…
Let’s do that now. Our function will take as arguments the value to return in the case of the empty list, and the function to add an element to the result in the case of a nonempty list.

def foldRightViaFoldLeft[A,B](l: List[A], z: B)(f: (A,B) => B): B =
foldLeft(reverse(l), z)((b,a) => f(a,b))

foldRight is not specific to any one type of
element, and we discover while generalizing
that the value that’s returned doesn’t have to
be of the same type as the elements of the list!

@annotation.tailrec
def foldLeft[A,B](l: List[A], z: B)(f: (B, A) => B): B = l match {

case Nil => z
case Cons(h,t) => foldLeft(t, f(z,h))(f)

}

def product(ds: List[Double]): Double = 
ds match {

case Nil => 1.0
case Cons(x, xs) => x * product(xs)

}

scala> sum(Cons(1,Cons(2,Cons(3,Nil))))
res0: Int = 6
scala> product(Cons(1.0,Cons(2.5,Cons(3.0,Nil))))
res1: Double = 7.5
scala>

Implementing foldRight via foldLeft is useful
because it lets us implement foldRight tail-
recursively, which means it works even for large lists
without overflowing the stack.

Our implementation of foldRight is not tail-recursive
and will result in a StackOverflowError for large
lists (we say it’s not stack-safe). Convince yourself that
this is the case, and then write another general list-
recursion function, foldLeft, that is tail-recursive

foldRight(Cons(1, Cons(2, Cons(3, Nil))), 0)((x,y) => x + y) 
1 + foldRight(Cons(2, Cons(3, Nil)), 0)((x,y) => x + y) 
1 + (2 + foldRight(Cons(3, Nil), 0)((x,y) => x + y)) 
1 + (2 + (3 + (foldRight(Nil, 0)((x,y) => x + y)))) 
1 + (2 + (3 + (0))) 
6 



footnotes

9 In the Scala standard library, foldRight is a method on List and its arguments are curried similarly for better type inference.

10 Again, foldLeft is defined as a method of List in the Scala standard library, and it is curried similarly for better type inference, so  you can write 
mylist.foldLeft(0.0)(_ + _).

FP in Scala

assert( List(1,2,3,4).foldLeft(0)(_+_) == 10 )
assert( List(1,2,3,4).foldRight(0)(_+_) == 10 )

assert( List(1,2,3,4).foldLeft(1)(_*_) == 24 )
assert( List(1,2,3,4).foldRight(1)(_*_) == 24 )

assert( List("a","b","c","d").foldLeft("")(_+_) == "abcd" )
assert( List("a","b","c","d").foldRight("")(_+_) == "abcd" )



After that refresher on foldLeft and foldRight we can now turn
to where FPiS explains that we can fold lists using monoids.

@philip_schwarz



Folding lists with monoids

Monoids have an intimate connection with lists. If you look at the signatures of foldLeft and foldRight on List,
you might notice something about the argument types:

def foldRight[B](z: B)(f: (A, B) => B): B
def foldLeft[B](z: B)(f: (B, A) => B): B

What happens when A and B are the same type?

def foldRight(z: A)(f: (A, A) => A): A
def foldLeft(z: A)(f: (A, A) => A): A

The components of a monoid fit these argument types like a glove. So if we had a list of Strings, we could simply pass
the op and zero of the stringMonoid in order to reduce the list with the monoid and concatenate all the strings:

Note that it doesn’t matter if we choose foldLeft or foldRight when folding with a monoid3; we should get the same result. This is precisely because the
laws of associativity and identity hold. A left fold associates operations to the left, whereas a right fold associates to the right, with the identity element on the
left and right respectively:

scala> val words = List("Hic", "Est", "Index")
words: List[String] = List(Hic, Est, Index)
scala> val s = words.foldRight(stringMonoid.zero)(stringMonoid.op)
s: String = HicEstIndex
scala> val t = words.foldLeft(stringMonoid.zero)(stringMonoid.op)
t: String = HicEstIndex
scala>

scala> words.foldLeft("")(_ + _) == (("" + "Hic") + "Est") + "Index"
res0: Boolean = true

scala> words.foldRight("")(_ + _) == "Hic" + ("Est" + ("Index" + ""))
res1: Boolean = true

3 Given that both foldLeft and foldRight
have tail-recursive implementations.

Functional Programming in Scala
(by	Paul	Chiusano	and	Runar	Bjarnason)

@pchiusano  @runarorama

trait Monoid[A] {
def op(a1: A, a2: A): A
def zero: A

}
val stringMonoid: Monoid[String] = new Monoid[String] {

def op(a1: String, a2: String) = a1 + a2
val zero = ""

} String concatenation	function



We can write a general function concatenate that folds a list with a monoid:

def concatenate[A](as: List[A], m: Monoid[A]): A =
as.foldLeft(m.zero)(m.op)

But what if our list has an element type that doesn’t have a Monoid instance? Well, we can always map over the list to turn it 
into a type that does:

def foldMap[A, B](as: List[A], m: Monoid[B])(f: A => B): B =
as.foldLeft(m.zero)((b, a) => m.op(b, f(a)))

Notice that this function does not require the use of map at all.
Functional Programming in Scala
(by	Paul	Chiusano	and	Runar	Bjarnason)

@pchiusano  @runarorama

assert( concatenate( List(1,2,3), intMonoid ) == 6 )
assert( concatenate( List("a","b","c"), stringMonoid ) == "abc" )
assert( concatenate( List(List(1,2),List(3,4),List(5,6)), listMonoid[Int]) == List(1,2,3,4,5,6) )
assert( concatenate( List(Some(2), None, Some(3), None, Some(4)), optionMonoid[Int]) == Some(2) )

assert( foldMap( List("1","2","3"), intMonoid )(_ toInt) == 6)
assert( foldMap( List(1, 2, 3), stringMonoid )(_ toString) == "123")
assert( foldMap( List("12","34","56"), listMonoid[Int])(s => (s toList) map (_ - '0')) == List(1,2,3,4,5,6) )
assert( foldMap(List(Some(2), None, Some(3), None, Some(4)), optionMonoid[String])(_ map (_ toString)) == Some("2") )

Let’s give concatenate and foldMap a
try using monoids for Int, String, List,
and Option.

val intMonoid = new Monoid[Int] {
def op(x: Int, y: Int) = x + y
val zero = 0

}

val stringMonoid = new Monoid[String] {
def op(a1: String, a2: String) = a1 + a2
val zero = ""

}

def listMonoid[A] = new Monoid[List[A]] {
def op(a1: List[A], a2: List[A]) = a1 ++ a2
val zero = Nil

}

def optionMonoid[A] = new Monoid[Option[A]] {
def op(x: Option[A], y: Option[A]) = x orElse y
val zero = None

}



import scalaz.Monoid
import scalaz.std.anyVal.intInstance
import scalaz.std.string.stringInstance
import scalaz.std.option.optionMonoid
import scalaz.syntax.semigroup._

import cats.Monoid
import cats.instances.int._
import cats.instances.string._
import cats.instances.option._
import cats.syntax.semigroup._

assert( concatenate(List(2, 3, 4)) == 9)
 
assert( concatenate(List("2", "3", "4")) == "234")

assert( concatenate(List(Some(2), None, Some(3), None, Some(4))) == Some(9))

assert( concatenate(List(Some("2"), None, Some("3"), None, Some("4"))) == Some("234"))

Modifying the definition of concatenate to leverage the predefined implicitmonoids in Scalaz and Cats.
The same could be done for foldMap.

def concatenate[A](as: List[A], m: Monoid[A]): A =
as.foldLeft(m.zero)(m.op)

def concatenate[A: Monoid](as: List[A]): A =
as.foldLeft(Monoid[A].zero)(_ |+| _)

FP in Scala

def concatenate[A: Monoid](as: List[A]): A =
as.foldLeft(Monoid[A].empty)(_ |+| _)



EXERCISE 10.6

Hard: The foldMap function can be implemented using either foldLeft or foldRight. But you can also write foldLeft
and foldRight using foldMap! Try it.

Notice that the type of the function that is passed to foldRight is (A,B)=>B, which can be curried to A=>(B=>B). This is
a strong hint that we should use the endofunction monoid B=>B to implement foldRight. The implementation of foldLeft
is then just the dual. Don’t worry if these implementations are not very efficient.

A Companion booklet to 
FP in Scala

FP in Scala

The function type (A,B)=>B, when curried, is A=>(B=>B). And of course,
B=>B is a monoid for any B (via function composition).

def foldRight[A, B](as: List[A])(z:B)(f:(A,B)=>B):B =
foldMap(as, endoMonoid[B])(f.curried)(z)

Folding to the left is the same except we flip the arguments to the function f to
put the B on the correct side. Then we have to also “flip” the monoid so that it
operates from left to right.

def foldLeft[A, B](as: List[A])(z:B)(f:(B,A)=>B):B =
foldMap(as, dual(endoMonoid[B]))(a => b => f(b, a))(z) 

def foldMap[A, B](as:List[A],m:Monoid[B])(f:A=>B):B =
as.foldLeft(m.zero)((b, a) => m.op(b, f(a)))

def endoMonoid[A] = new Monoid[A=>A]{
def op(f:A=>A, g:A=>A) = f compose g
val zero = (a: A) => a

}

def dual[A](m:Monoid[A]) = new Monoid[A]{
def op(x:A, y:A): A = m.op(y, x)
val zero = m.zero

}

assert( foldLeft(List(1,2,3,4))(0)(add) == 10) 
assert(foldRight(List(1,2,3,4))(0)(add) == 10) 

 
assert( foldLeft(List(1,2,3,4))(0)(_+_) == 10) 
assert(foldRight(List(1,2,3,4))(0)(_+_) == 10) 

 
assert( foldLeft(List(1,2,3,4))(1)(multiply) == 24) 
assert(foldRight(List(1,2,3,4))(1)(multiply) == 24) 

 
assert( foldLeft(List(1,2,3,4))(1)(_*_) == 24) 
assert(foldRight(List(1,2,3,4))(1)(_*_) == 24) 

def foldMap[A, B](as: List[A], m: Monoid[B])(f: A => B): B = 
as.foldLeft(m.zero)((b, a) => m.op(b, f(a))) 

 
def foldRight[A, B](as: List[A])(z: B)(f: (A, B) => B): B = 

foldMap(as, endoMonoid[B])(f.curried)(z) 
 

def foldLeft[A, B](as: List[A]) (z: B)(f: (B, A) => B): B = 
foldMap(as, dual(endoMonoid[B]))(a => b => f(b, a))(z)

val add: (Int,Int) => Int = _ + _ 
val multiply: (Int,Int) => Int = _ * _ 



scala> foldRight(List(1,2,3))(0)(add)
res10: Int = 6

// unroll, i.e. replace function invocation with function body, substituting formal params with actual params
scala> foldMap(List(1,2,3),endoMonoid[Int])(add.curried)(0)
res11: Int = 6

// unroll
scala> foldLeft(List(1,2,3))(endoMonoid[Int].zero)((b,a)=>(endoMonoid[Int].op(b,add.curried(a))))(0)
res12: Int = 6

// substitute endoMonoid[Int].zero and endoMonoid[Int].op with identity function and compose function
scala> foldLeft(List(1,2,3))(identity[Int] _)((b,a)=>(b compose add.curried(a)))(0)
res13: Int = 6

// unroll
scala> foldLeft(List(2,3))((identity[Int] _) compose add.curried(1))((b,a)=>(b compose add.curried(a)))(0)
res14: Int = 6

// substitute identity[Int] and add.curried(1) with aliases I and add1 (for succinctness)
scala> foldLeft(List(2,3))(I compose add1)((b,a)=>(b compose add.curried(a)))(0)
res15: Int = 6

// unroll
scala> foldLeft(List(3))(I compose add1 compose add2)((b,a)=>(b compose add.curried(a)))(0)
res16: Int = 6

// unroll
scala> foldLeft(Nil)(I compose add1 compose add2 compose add3)((b,a)=>(b compose add.curried(a)))(0)
res17: Int = 6

// unroll
scala> (I compose add1 compose add2 compose add3)(0)
res18: Int = 6

scala> val add: (Int,Int) => Int = _+_
add: (Int, Int) => Int = …

scala> val I = identity[Int] _
I: Int => Int = …

scala> val add1 = add.curried(1)
add1: Int => Int = …

scala> val add2 = add.curried(2)
add2: Int => Int = …

scala> val add3 = add.curried(3)
add3: Int => Int = …

To better understand the implementation of foldRight in terms of foldMap, the
endomonoid and currying, let’s work through the example of folding a list of integers.

def foldRight[A,B](as: List[A])(z:B)(f:(A,B)=>B):B =   
foldMap(as, endoMonoid[B])(f.curried)(z)

def foldMap[A,B](as:List[A],m:Monoid[B])(f:A=>B):B =
as.foldLeft(m.zero)((b, a) => m.op(b, f(a)))

Initially the value of the foldLeft accumulator
is the identity endofunction, but then at each
step it gets composed with a new
endofunction that adds the next list element
to its argument. E.g. when the next list
element is 2, then foldLeft composes
accumulator value (identity compose add1)
with add2. When the list is empty, foldLeft
just returns its second argument, i.e. the
accumulator.



Great, in that exercise we got a chance to use the endofunction
monoid that we looked at earlier.

Now let’s move on to Foldable, an abstraction for things that
can be folded over, with and without using amonoid.

@philip_schwarz



Foldable data structures

In chapter 3, we implemented the data structures List and Tree, both of which could be folded. In chapter 5, we wrote
Stream, a lazy structure that also can be folded much like a List can, and now we’ve just written a fold for IndexedSeq.

When we’re writing code that needs to process data contained in one of these structures, we often don’t care about the shape
of the structure (whether it’s a tree or a list), or whether it’s lazy or not, or provides efficient random access, and so forth.

For example, if we have a structure full of integers and want to calculate their sum, we can use foldRight:

ints.foldRight(0)(_ + _)

Looking at just this code snippet, we shouldn’t have to care about the type of ints. It could be a Vector, a Stream, or a 
List, or anything at all with a foldRight method. We can capture this commonality in a trait:

Functional Programming in Scala
(by	Paul	Chiusano	and	Runar	Bjarnason)

@pchiusano  @runarorama

trait Foldable[F[_]] {

def foldRight[A,B](as: F[A])(z: B)(f: (A,B) => B): B

def foldLeft[A,B](as: F[A])(z: B)(f: (B,A) => B): B

def foldMap[A,B](as: F[A])(f: A => B)(mb: Monoid[B]): B

def concatenate[A](as: F[A])(m: Monoid[A]): A = 
foldLeft(as)(m.zero)(m.op)

}

Here we’re abstracting over a type constructor F, much like we did with the
Parser type in the previous chapter. We write it as F[_], where the
underscore indicates that F is not a type but a type constructor that takes
one type argument. Just like functions that take other functions as arguments
are called higher-order functions, something like Foldable is a higher-
order type constructor or a higher-kinded type .7

7 Just like values and functions have types, types and type constructors
have kinds. Scala uses kinds to track how many type arguments a type
constructor takes, whether it’s co- or contravariant in those arguments, and
what the kinds of those arguments are.



EXERCISE 10.12

Implement Foldable[List], Foldable[IndexedSeq], and Foldable[Stream]. Remember that foldRight, foldLeft,
and foldMap can all be implemented in terms of each other, but that might not be the most efficient implementation.

A Companion booklet to 
FP in Scala

FP in Scala

trait Foldable[F[_]] {

def foldRight[A, B](as: F[A])(z: B)(f: (A, B) => B): B =
foldMap(as)(f.curried)(endoMonoid[B])(z)

def foldLeft[A, B](as: F[A])(z: B)(f: (B, A) => B): B =
foldMap(as)(a => (b: B) => f(b, a))(dual(endoMonoid[B]))(z)

def foldMap[A, B](as: F[A])(f: A => B)(mb: Monoid[B]): B =
foldRight(as)(mb.zero)((a, b) => mb.op(f(a), b))

def concatenate[A](as: F[A])(m: Monoid[A]): A =
foldLeft(as)(m.zero)(m.op)  

}

object ListFoldable extends Foldable[List] {
override def foldRight[A, B](as:List[A])(z:B)(f:(A,B)=>B) =
as.foldRight(z)(f)

override def foldLeft[A, B](as:List[A])(z:B)(f:(B,A)=>B) =
as.foldLeft(z)(f)

override def foldMap[A, B](as:List[A])(f:A=>B)(mb:Monoid[B]):B =
foldLeft(as)(mb.zero)((b, a) => mb.op(b, f(a)))

}

object IndexedSeqFoldable extends Foldable[IndexedSeq] {…}

object StreamFoldable extends Foldable[Stream] {
override def foldRight[A, B](as:Stream[A])(z:B)(f:(A,B)=>B) =
as.foldRight(z)(f)

override def foldLeft[A, B](as:Stream[A])(z:B)(f:(B,A)=>B) =
as.foldLeft(z)(f)

}

assert( ListFoldable.foldLeft(List(1,2,3))(0)(_+_) == 6)
assert( ListFoldable.foldRight(List(1,2,3))(0)(_+_) == 6)

assert( ListFoldable.concatenate(List(1,2,3))(intMonoid) == 6)
assert( ListFoldable.foldMap(List("1","2","3"))(_ toInt)(intMonoid) == 6)

assert( StreamFoldable.foldLeft(Stream(1,2,3))(0)(_+_) == 6)
assert( StreamFoldable.foldRight(Stream(1,2,3))(0)(_+_) == 6)

assert( StreamFoldable.concatenate(Stream(1,2,3))(intMonoid) == 6)
assert( StreamFoldable.foldMap(Stream("1","2","3"))(_ toInt)(intMonoid) == 6)

assert( ListFoldable.foldLeft(List("a","b","c"))("")(_+_) == "abc")
assert( ListFoldable.foldRight(List("a","b","c"))("")(_+_) == "abc")

assert( ListFoldable.concatenate(List("a","b","c"))(stringMonoid) == "abc")
assert( ListFoldable.foldMap(List(1,2,3))(_ toString)(stringMonoid) == "123")

assert( StreamFoldable.foldLeft(Stream("a","b","c"))("")(_+_) == "abc")
assert( StreamFoldable.foldRight(Stream("a","b","c"))("")(_+_) == "abc")

assert( StreamFoldable.concatenate(Stream("a","b","c"))(stringMonoid) == "abc")
assert( StreamFoldable.foldMap(Stream(1,2,3))(_ toString)(stringMonoid) == "123")

Using	the	methods	of	ListFoldable 
and	StreamFoldable to	fold	
Lists/Streams	of	Ints	and	Strings.

The	default	implementation	of	foldRight
and	foldLeft use	endoMonoid and	its	
dual respectively.



Next we look at an example of introducing the
Monoid and Foldable abstractions in existing
business logic.

@philip_schwarz



4.1.2 Using functional patterns to make domain models parametric
Here’s a sample use case from our domain of personal banking that implements
backoffice functionality.4 Clients perform transactions in the form of debits and
credits, all of which are logged in the system for auditing and other analytical
requirements. You’ve seen how to manage a client balance as an attribute of an
account. Here you’ll consider only transactions and balances and try to
implement functionality that allows back-office users to compute various
aggregates on transactions executed on a client account. More specifically,
you’ll implement the following behaviors in this part of our model:

§ Given a list of transactions, you’ll identify the highest-value debit
transaction that occurred during the day. Typically, these values may be
highlighted as exceptions for auditing purposes.

§ Given a list of client balances, you’ll compute the sum of all credit
balances.5

All implementations are simple from a domain logic point of view, because the
purpose of the implementation is to identify programming patterns in FP and
not come up with robust, industry-standard models.

IDENTIFYING THE COMMONALITY
So far, in all earlier examples you considered a simple representation of an amount
as BigDecimal. But in real-life banking, you always need to associate a currency
with any amount you specify. So it’s time to enrich this part of the model; here we
go with our new Money model that has both the amount and the currency tagged
with it. Not only that, but let’s say you ask how much money I have. I check my
wallet and say I have 120 U.S. dollars and 25 euros. This means our money
abstraction should be able to handle denominations in multiple currencies as well.
The following listing contains Money and the other base abstractions that you’ll
use to define the algebra of your module.

sealed trait TransactionType
case object DR extends TransactionType
case object CR extends TransactionType

sealed trait Currency
case object USD extends Currency
case object JPY extends Currency
case object AUD extends Currency
case object INR extends Currency

object common {
type Amount = BigDecimal

}

import common._

case class Money(m: Map[Currency, Amount]) {
def toBaseCurrency: Amount = ???

}

case class Transaction(
txid: String, 
accountNo: String, 
date: Date, 
amount: Money, 
txnType: TransactionType, 
status: Boolean

)

case class Balance(b: Money) @debasishg
Debasish	Ghosh

Functional	and	Reactive	
Domain	Modeling

debit

credit



Let’s say the behaviors that you’ll define belong to a particular module (for example, Analytics). Listing 
4.2 presents the algebra of the module along with a sample interpreter.

NOTE Some details of the implementation aren’t present in the following listing, but that shouldn’t 
prevent you from understanding its essence. The full runnable source can be found in the online code 
repository of the book.

trait Analytics[Transaction, Balance, Money] {

def maxDebitOnDay(txns: List[Transaction]): Money

def sumBalances(balances: List[Balance]): Money
}

object Analytics extends Analytics[
Transaction, Balance, Money] {

def maxDebitOnDay(txns: List[Transaction]): Money = 
txns.filter(_.txnType == DR).foldLeft(zeroMoney) { 

(a, txn) =>
if (gt(txn.amount, a)) valueOf(txn) else a

}

def sumBalances(balances: List[Balance]): Money = 
balances.foldLeft(zeroMoney) { (a, b) =>

a + creditBalance(b)
}

private def valueOf(txn: Transaction): Money = //..
private def creditBalance(b: Balance): Money = //..

}

In the implementation of the maxDebitOnDay and sumBalances behaviors,
do you see any similarities that you can refactor into more generic patterns?
Let’s list some here:

§ Both implementations fold over the collection to compute the core domain
logic.

§ The folds take a unit object of Money as the seed of the accumulator and
perform a binary operation on Money as part of the accumulation loop.
In maxDebitOnDay, the operation is a comparison; in sumBalances, it’s
an addition. They are different, but both are associative and binary.

I’m sure you see where we’re heading—the monoid land. This is the most
important part of this exercise: to look at the pattern and identify the algebra
that it fits into. It won’t be a direct fit every time. Sometimes you may have to
tweak your implementation to make it fit. But it’s all worth it. Instead of
implementing a bug-ridden variant of the existing algebra, you should always
reuse it. These patterns have been refined through the years by experts and field-
tested in various production implementations. The next step is to unify these two
seemingly different operations by using the algebra of a monoid.

@debasishg
Debasish	Ghosh

Functional	and	Reactive	
Domain	Modeling

https://github.com/debasishg/frdomain



ABSTRACTING OVER THE OPERATIONS
The next step is to define an instance of Monoid for Money. Because you’ve defined
Money in terms of a Map, you need to first define Monoid[Map[K, V]] and then use
that to define Monoid[Money]. In fact, you need to define two instances of
Monoid[Money] because you have two different requirements of operation in
maxDebitOnDay and sumBalances; the former needs an instance based on comparison
of Money and the latter needs one for addition of Money. Here, for brevity, I’ll show the
latter one; the one based on comparison is a bit verbose and is implemented in the code base
in the online code repository.

final val zeroMoney: Money = 
Money(Monoid[Map[Currency, Amount]].zero)

implicit def MoneyAdditionMonoid = new Monoid[Money] {

val m = implicitly[Monoid[Map[Currency, Amount]]]

def zero = zeroMoney

def op(m1: Money, m2: Money) = Money(m.op(m1.m, m2.m))
} 

Listing4.3 shows the implementation of the Analytics module
that uses a monoid on Money.6 This is the first step toward
making your model more generic. The operation within the
fold is now an operation on a monoid instead of hardcoded
operations on domain-specific types.

trait Analytics[Transaction, Balance, Money] {

def maxDebitOnDay(txns: List[Transaction])(implicit m: Monoid[Money]): Money

def sumBalances(bs: List[Balance])(implicit m: Monoid[Money]): Money
}

object Analytics extends Analytics[Transaction, Balance, Money] {

def maxDebitOnDay(txns: List[Transaction])(implicit m: Monoid[Money]): Money = 
txns.filter(_.txnType == DR).foldLeft(m.zero) { (a, txn) =>

m.op(a, valueOf(txn))
}

def sumBalances(balances: List[Balance])(implicit m: Monoid[Money]): Money =
balances.foldLeft(m.zero) { (a, bal) => 

m.op(a, creditBalance(bal)) 
}

private def valueOf(txn: Transaction): Money = //..
private def creditBalance(b: Balance): Money = //..

} 

@debasishg
Debasish	Ghosh

Functional	and	Reactive	
Domain	Modeling



trait Analytics[Transaction, Balance, Money] {

def maxDebitOnDay(txns: List[Transaction])(implicit m: Monoid[Money]): Money

def sumBalances(bs: List[Balance])(implicit m: Monoid[Money]): Money
}

object Analytics extends Analytics[Transaction, Balance, Money] {

def maxDebitOnDay(txns: List[Transaction])(implicit m: Monoid[Money]): Money = 
txns.filter(_.txnType == DR).foldLeft(m.zero) { (a, txn) =>
m.op(a, valueOf(txn)) 

}

def sumBalances(balances: List[Balance])(implicit m: Monoid[Money]): Money =
balances.foldLeft(m.zero) { (a, bal) => 
m.op(a, creditBalance(bal))

}

private def valueOf(txn: Transaction): Money = //..
private def creditBalance(b: Balance): Money = //..

} 

trait Analytics[Transaction, Balance, Money] {

def maxDebitOnDay(txns: List[Transaction]): Money

def sumBalances(bs: List[Balance]): Money
}

object Analytics extends Analytics[Transaction, Balance, Money] {

def maxDebitOnDay(txns: List[Transaction]): Money = 
txns.filter(_.txnType == DR).foldLeft(zeroMoney) { (a, txn) =>
if (gt(txn.amount, a)) valueOf(txn) else a 

}

def sumBalances(balances: List[Balance]): Money = 
balances.foldLeft(zeroMoney) { (a, bal) =>
a + creditBalance(bal) 

}

private def valueOf(txn: Transaction): Money = //..
private def creditBalance(b: Balance): Money = //..

}

To	better	see	how	the	operation	within	the	fold	changed	from hardcoded	operations	on	domain-specific	types to an	
operation	on	a monoid,	here	is	the	code	before	and	after	the	changes,	with	the	modified	bits	highlighted.

Before After



ABSTRACTING OVER THE CONTEXT
In the preceding implementation, the first thing that stands out is that in both maxDebitOnDay and sumBalances, the action within
the fold is curiously similar. In both cases, you’ve abstracted over the operation of the monoid that you passed. Because of this
abstraction, the code is more generic and needs lesser knowledge of the specific domain elements.

If you squint hard at both functions, you can see another similarity. In both cases, you fold over a collection after mapping
through a function that generates a monoid.

def maxDebitOnDay(txns: List[Transaction])(implicit m: Monoid[Money]): Money = 
txns.filter(_.txnType == DR).foldLeft(m.zero) { (a, txn) =>

m.op(a, valueOf(txn))
}

def sumBalances(balances: List[Balance])(implicit m: Monoid[Money]): Money =
balances.foldLeft(m.zero) { (a, bal) => 

m.op(a, creditBalance(bal)) 
}

In summary, what you’re doing in both functions is, given a collection F[A], which can be folded over, you do a fold on F[A],
where either A is a monoid or can be mapped into one. The only property of the collection that you need is its ability to be folded
over. So you can make your collection still more generic (and less powerful) by defining it to be a Foldable[A] ; you don’t need
the richness of a List[A] to implement what you need here.

Here’s the algebra of your Foldable type constructor:

trait Foldable[F[_]] {
def foldl[A, B](as: F[A], z: B, f: (B, A) => B): B
def foldMap[A, B](as: F[A])(f: A => B)(implicit m: Monoid[B]): B =

foldl(as, m.zero, (b: B, a: A) => m.op(b, f(a)))
} 

For maxDebitOnDay, you map using valueOf, which is
Transaction=>Money, and for sumBalances you use
creditBalance, which is Balance=>Money.
And Money is a monoid.8 If the collection has elements that
themselves are monoids, you need not do any mapping (or rather
you can map with an identity function).

8 When I say A is a monoid, I mean that A is a type that has a monoid
instance defined.

@debasishg
Debasish	Ghosh

Balance => Money

Transaction => Money



trait Foldable[F[_]] {
def foldl[A,B](as: F[A], z: B, f: (B, A) => B): B
def foldMap[A,B](as:F[A])(f:A => B)(implicit m:Monoid[B]): B =

foldl(as, m.zero, (b: B, a: A) => m.op(b, f(a)))
} 

The function foldMap does exactly what I said before: folds over a collection F[A], where f: A=> B generates a monoid
B out of A. And f can be an identity if A is a monoid. So, given a Foldable[A], a type B that’s a monoid, and a mapping
function between A and B, you can package foldMap nicely into a combinator that abstracts your requirements of
maxDebitOnDay and sumBalances (and many other similar domain behaviors) without sacrificing the holy grail of
parametricity. And this is the second step toward making your model more generic using design patterns: You’ve abstracted
over the context, the type constructor of your abstraction.

def mapReduce[F[_],A,B](as: F[A])(f: A => B)(implicit fd: Foldable[F], m: Monoid[B]) = 
fd.foldMap(as)(f)

And now each of your module functions becomes as trivial as a one-liner:

object Analytics extends Analytics[Transaction, Balance, Money] {

def maxDebitOnDay(txns: List[Transaction])(implicit m: Monoid[Money]): Money =
mapReduce(txns.filter(_.txnType == DR))(valueOf)(implicit foldable)

def sumBalances(bs: List[Balance])(implicit m: Monoid[Money]): Money =
mapReduce(bs)(creditBalance)(implicit foldable)

}

The complete runnable code of this entire exercise can be found in the online code repository for the book.

implicit val listFoldable = new Foldable[List] {
def foldl[A,B](as: List[A], z:B, f: (B,A) => B) = 

as.foldLeft(z)(f)
}

@debasishg
Debasish	Ghosh

Balance => Money

Transaction => Money



What is the marketing buzzword for foldMap?
See the next slide.

@philip_schwarz



5.4.2 Foldable
Technically, Foldable is for data structures that can be walked to produce a summary value. However, this undersells the fact that it is a
one-typeclass army that can provide most of what you’d expect to see in a Collections API.

There are so many methods we are going to have to split them out, beginning with the abstract methods:

@typeclass trait Foldable[F[_]] {
def foldMap[A, B: Monoid](fa: F[A])(f: A => B): B
def foldRight[A, B](fa: F[A], z: =>B)(f: (A, =>B) => B): B
def foldLeft[A, B](fa: F[A], z: B)(f: (B, A) => B): B = ...

An instance of Foldable need only implement foldMap and foldRight to get all of the functionality in this typeclass, although methods are typically
optimised for specific data structures.

You might recognise foldMap by its marketing buzzword name, MapReduce. Given an F[A], a function from A to B, and a way to combine B
(provided by the Monoid, along with a zero B), we can produce a summary value of type B. There is no enforced operation order, allowing for
parallel computation.

foldRight does not require its parameters to have a Monoid, meaning that it needs a starting value z and a way to combine each element of the
data structure with the summary value. The order for traversing the elements is from right to left and therefore it cannot be parallelised.

foldLeft traverses elements from left to right. foldLeft can be implemented in terms of foldMap, but most instances choose to implement it 
because it is such a basic operation. Since it is usually implemented with tail recursion, there are no byname parameters.

The only law for Foldable is that foldLeft and foldRight should each be consistent with foldMap for monoidal operations. e.g. 
appending an element to a list for foldLeft and prepending an element to a list for foldRight. However, foldLeft and foldRight do not need to 
be consistent with each other: in fact they often produce the reverse of each other.

The simplest thing to do with foldMap is to use the identity function, giving fold (the natural sum of the monoidal elements), with left/right 
variants to allow choosing based on performance criteria:

def fold[A: Monoid](t: F[A]): A = ...
def sumr[A: Monoid](fa: F[A]): A = ...
def suml[A: Monoid](fa: F[A]): A = ...

…

Sam	Halliday

@fommil

You might rtecognize
foldMap by its marketing
name,MapReduce.



FPiS def foldMap[A, B](as: F[A])(f: A => B)(mb: Monoid[B]): B =
foldRight(as)(mb.zero)((a, b) => mb.op(f(a), b))

Scalaz def foldMap[A,B](fa: F[A])(f: A => B)(implicit F: Monoid[B]): B

Cats def foldMap[A, B](fa: F[A])(f: A => B)(implicit B: Monoid[B]): B =
foldLeft(fa, B.empty)((b, a) => B.combine(b, f(a)))

FPiS def foldRight[A, B](as: F[A])(z: B)(f: (A, B) => B): B =
foldMap(as)(f.curried)(endoMonoid[B])(z)

Scalaz def foldRight[A, B](fa: F[A], z: => B)(f: (A, => B) => B): B

Cats def foldRight[A, B](fa: F[A], lb: Eval[B])(f: (A, Eval[B]) => Eval[B]): Eval[B]

FPiS def foldLeft[A, B](as: F[A])(z: B)(f: (B, A) => B): B =
foldMap(as)(a => (b: B) => f(b, a))(dual(endoMonoid[B]))(z)

Scalaz def foldLeft[A, B](fa: F[A], z: B)(f: (B, A) => B): B = {
import Dual._, Endo._, syntax.std.all._
Tag.unwrap(foldMap(fa)((a: A) => 
Dual(Endo.endo(f.flip.curried(a))))(dualMonoid)) apply (z)

}

Cats def foldLeft[A, B](fa: F[A], b: B)(f: (B, A) => B): B

FPiS def concatenate[A](as: F[A])(m: Monoid[A]): A =
foldLeft(as)(m.zero)(m.op)

Scalaz def fold[M:Monoid](t:F[M]):M =        def sumr[A](fa:F[A])(implicit A:Monoid[A]):A =        def suml[A](fa:F[A])(implicit A: Monoid[A]): A = 
foldMap[M, M](t)(x => x) foldRight(fa, A.zero)(A.append)                       foldLeft(fa, A.zero)(A.append(_, _))

Cats def fold[A](fa: F[A])(implicit A: Monoid[A]): A = def combineAll[A: Monoid](fa: F[A]): A = 
foldLeft(fa, A.empty) { (acc, a) => A.combine(acc, a) } fold(fa)

fold

foldMap

foldRight

foldLeft

The	four	fundamental	functions	of	the	the	Foldable trait	in	FPiS,	Scalaz and	Cats

concatenate fold,suml,sumr fold,combineAll

foldMap foldMap foldMap

foldLeft foldLeft foldLeft

foldRight foldRight foldRight



import cats.Monoid
import cats.Foldable
import cats.instances.int._
import cats.instances.string._
import cats.instances.option._
import cats.instances.list._
import cats.syntax.foldable._

assert( List(1,2,3).combineAll == 6 )
assert( List("a","b","c").combineAll == "abc" )
assert( List(List(1,2),List(3,4),List(5,6)).combineAll == List(1,2,3,4,5,6) )
assert( List(Some(2), None, Some(3), None, Some(4)).combineAll == Some(9) )

assert( List("1","2","3").foldMap(_ toInt) == 6)
assert( List(1, 2, 3).foldMap(_ toString) == "123")
assert( List("12","34","56").foldMap( s => (s toList) map (_ - '0')) == List(1,2,3,4,5,6) )
assert( List(Some(2), None, Some(3), None, Some(4)).foldMap(_ toList) == List(2,3,4) )

// when we call fold on a List we call the fold in the Scala Standard library
List(1,2,3).fold(0)(_ + _)

// but when we call fold on a Foldable we call the Cats fold
def businessLogic[A:Monoid,F[_]: Foldable](foldable:F[A]): A =

/*...*/ foldable.fold /*...*/

def assertFoldEquals[A:Monoid,F[_]: Foldable](foldable:F[A], expectedValue:A) =
assert(foldable.fold == expectedValue)

assertFoldEquals(List(1,2,3), 6)
assertFoldEquals(List("a","b","c"), "abc")
assertFoldEquals(List(List(1,2),List(3,4),List(5,6)), List(1,2,3,4,5,6))
assertFoldEquals(List(Some(2), None, Some(3), None, Some(4)), Some(9))

Let’s take the fold and foldMap of Cats’ Foldable for a spin.

It is simpler to start off by using combineAll rather than fold because the latter clashes with the fold in the Scala standard library.



import scalaz.Monoid
import scalaz.Foldable
import scalaz.std.anyVal.intInstance
import scalaz.std.string.stringInstance
import scalaz.std.option.optionMonoid
import scalaz.std.list.listInstance
import scalaz.std.list.listMonoid
import scalaz.syntax.foldable.ToFoldableOps

assert( List(1,2,3).concatenate == 6 )
assert( List("a","b","c").concatenate == "abc" )
assert( List(List(1,2),List(3,4),List(5,6)).concatenate == List(1,2,3,4,5,6) )
assert( List(Some(2), None, Some(3), None, Some(4)).concatenate == Some(9) )

assert( List("1","2","3").foldMap(_ toInt) == 6)
assert( List(1, 2, 3).foldMap(_ toString) == "123")
assert( List("12","34","56").foldMap( s => (s toList) map (_ - '0')) == List(1,2,3,4,5,6) )
assert( List(Some(2), None, Some(3), None, Some(4)).foldMap(_ toList) == List(2,3,4) )

// when we call fold on a List we call the fold in the Scala Standard library
List(1,2,3).fold(0)(_ + _)

// but when we call fold on a Foldable we call the Scalaz fold
def businessLogic[A:Monoid,F[_]: Foldable](foldable:F[A]): A =

/*...*/ foldable.fold /*...*/

def assertFoldEquals[A:Monoid,F[_]: Foldable](foldable:F[A], expectedValue:A) =
assert(foldable.fold == expectedValue)

assertFoldEquals(List(1,2,3), 6)
assertFoldEquals(List("a","b","c"), "abc")
assertFoldEquals(List(List(1,2),List(3,4),List(5,6)), List(1,2,3,4,5,6))
assertFoldEquals(List(Some(2), None, Some(3), None, Some(4)), Some(9))

And here we do the same thing using Scalaz. The only differences with Cats are marked in yellow.

concatenate fold,suml,sumr fold,combineAll

foldMap foldMap foldMap

foldLeft foldLeft foldLeft

foldRight foldRight foldRight

Note that here we are using concatenate, which is a fold
alias defined in FoldableOps. This is similar to Cats
providing fold alias combineAll, except that in that case
the alias is defined in Foldable itself.

+



to	be	continued	in	part	3


