Monoids

with examples using Scalaz and Cats

based on

Scaa witn Cats

i 1 Noel Welsh ond Dave Gurnell CATEGORY THEORY
Bt o BiaaR Functional a1 B, N
Programming FOR PROGRAMMERS
for Mortals »Haskell ST
with Scalaz Programming
from first principles
Sam Halliday oo™
@fommil

Pure functional programming

compiled by Runar Ol Bamason

without fear or frustration

Bartosz Milewski

underscore

Part 1

slides by . 4 @philip_schwarz

What is a monoid?

Let’s consider the algebra of string concatenation. We can add "foo" + "bar" to get "foobar", and the empty string is an identity element for that
operation. That is, if we say (s + "") or (+ s), the result is always s.

val s = "foo" + "bar"
= foobar

assert(s == s +

assert(+ s)

Functional Programming in

Furthermore, if we combine three strings by saying (r + s + t), the operation is associative —it doesn’t matter
whether we parenthesize it: ((r + s) + t) or(r + (s + t)).

val (r,s,t) = ("foo","bar","baz")
= foo
= bar

Paul Chiusano
Rinar Bjarnason

= baz Functional Programming in Scala
(by Paul Chiusano and Runar Bjarnason)

u @pchiusano @runarorama
assert(((+s)+ t) (r+ (s+t)))

assert(((+s)+ t) “foobarbaz")

The exact same rules govern integer addition. It’s associative, since (x + y) + z isalwaysequaltox + (y + 2)

assert(((+y)+z)=(x+(y+2z)))

assert(((

Functional Programming in

Paul Chiusano
Rinar Bjarnason

assert (S == S +) Functional Programming in Scala
(by Paul Chiusano and Runar Bjarnason)
assert(s == +s) u@pchlusano @runarorama

Ditto for integer multiplication

assert(((

assert(((

whose identity element is 1

assert(s ==

assert(s ==

Functional Programming in

Paul Chiusano
Rinar Bjarnason

Functional Programming in Scala

(by Paul Chiusano and Runar Bjarnason)
u @pchiusano @runarorama

The Boolean operators && and | | are likewise associative

(p,q,r) = (true,false,true)
= true

false

true

assert(((plla) [l r)y="CpIll Callr)))

assert(((p [l) || r) ==true)

assert(((p & g)& r)=(p & (& r)))

assert(((p & g) && r) == false)

and they have identity elements true and false, respectively

val s = true
= true

Functional Programming in Scala
assert(s (by Paul Chiusano and Runar Bjarnason)
u @pchiusano @runarorama

assert(s

assert(s

assert(s ==

These are just a few simple examples, but algebras like this are virtually everywhere. The term for this kind of algebra is monoid.
The laws of associativity and identity are collectively called the monoid laws.

A monoid consists of the following:
* Some type A

* An associative binary operation, op, that takes two values of type A and combines them into one: op (op(x,y), 2z) == op(x, op(y,z)) forany
choiceof x: A, y: A, z: A
« Avalue, zero: A,thatis an identity for that operation: op (x, zero) == x andop(zero, x) == x forany x: A

An example instance of this trait is the String monoid:

val stringMonoid = new Monoid[String] {
def op(al: String, a2: String) = al +_a2
val zero = ""

We can express this with a Scala trait:

trait Monoid[A] {
def op(al: A, a2: A): A
def zero: A

String concatenation function

List concatenation also forms a monoid:

def listMonoid[A] = new Monoid[List[A]] {

Paul Chiusano

e def op(al: List[A], a2: List[A]) = al +# a2

Functional Programming in Scala val zero = Nil)
(by Paul Chiusano and Runar Bjarnason) }

u @pchiusano @runarorama

List function returning a new list containing the elements from the left
hand operand followed by the elements from the right hand operand

Monoid instances for integer addition and multiplication as well as the Boolean operators

val intAddition: Monoid[Int] = new Monoid[Int] { val booleanOr: Monoid[Boolean] = new Monoid[Boolean] {
def op(x: Int, y: Int) = x + y def op(x: Boolean, y: Boolean) = x || vy
val zero = 0 val zero = false

} }

val intMultiplication: Monoid[Int] = new Monoid[Int] { val booleanAnd: Monoid[Boolean] = new Monoid[Boolean] {
def op(x: Int, y: Int) = x * vy def op(x: Boolean, y: Boolean) = x && y
val zero =1 val zero = true

} }

Just what is a monoid, then? It’s simply a type A and an implementation of Monoid[A] that satisfies the laws.

Stated tersely, a monoid is a type together with a binary operation (op) over that type, satisfying associativity and having an
identity element (zero).

What does this buy us? Just like any abstraction, a monoid is useful to the extent that we can write useful generic code assuming
only the capabilities provided by the abstraction. Can we write any interesting programs, knowing nothing about a type other
than that it forms a monoid? Absolutely!

A companion booklet to
Functional Programming in Scala

compiled by Rinar Oli Bjamason

(by Runar Bjarnason)

@runarorama

Functional Programming in Scala

(by Paul Chiusano and Runar Bjarnason)
u @pchiusano @runarorama

Here is a very simple, contrived example of a generic function called combine that operates on any three values of a type A for which an\
implicit monoid is available.

It takes each of three pairs of values and produces a combined value for the pair by applying the monoid’s binary operation to the pair’s
u @philip_schwarz \ elements, returning a tuple of the resulting combined values.)

def combine[A](a: A, b: A, c: A)(implicit m: Monoid[A]): (A,A,A) =
(m.op(a,b), m.op(a,c), m.op(b,c))

7

If we now revisit some of the monoid instances we defined earlier and declare them
to be implicit, we can then invoke our generic combine function multiple times, each
time passing in values of a different type, and each time implicitly passing in a monoid
instance associated with that type.

implicit val stringMonoid

implicit def listMonoid[A]

implicit val intAddition‘)
_—

new Monoid[String] ..
new Monoid[List[A]] ..
new Monoid[Int] ..

aSSer‘t(Combine(lla")Ilbll)llcll) J— Ilabll”llacll,llbcll))

assert(\ combine(List(1,2),List(3,4),List(5,6))¢== (List(1,2,3,4),List(1,2,5,6),List(3,4,5,6)))
assert(combine(1,2,3),== (3,4,5))

What about Scalaz? Scalaz provides a predefined Monoid trait whose binary operation is called append, rather than op,

and provides predefined implicit instances, e.g. for String, List and integer addition. So all we have to do is add a couple
of imports and we can then define combine as follows:

import scalaz.Scalaz.
import scalaz._

def combine[A](a: A, b: A, c: A)(implicit m: Monoid[A]): (A,A,A) =
(m.append(a,b), m.append(a,c), m.append(b,c))

P
trait Monoid[A] { In Scalaz the binary operation is called append, rather than op and it is not defined in the

def op(al: A, a2: A): A Monoid trait, but in the Semigroup trait, which the Monoid trait extends.

: A, : : L
def zero: A
trait Semigroup[F] { self => trait Monoid[F] extends Semigroup[F] { self =>
def append(fl1: F, f2: => F): F def zero: F
FP in Scala

final class SemigroupOps[F]..(implicit val F: Semigroup[F]) .. {] _

final def |+|(other: => F): F = F.append(self, other) ::d thT_ SemlgfroupOp; ::\ais def.m:js

final def mappend(other: => F): F = F.append(self, other) reeta Ia-STS|O appen da _._are infix

final def -(other: => F): F = F.append(self, other) operators: [+1, Mmappend, -

(So our combine function can just take an implicit | | def combine[A](a: A, b: A, c: A)(implicit sg: Semigroup[A]): (A,A,A) = ???
Semigroup rather than an implicit Monoid

(sg.append(a,b), sg.append(a,c), sg.append(b,c))

and we can write the body of (al+| b, al+|] c, b |+] c)
our combine function in any of
the following ways: (a+b,a+c, b+c)

J J

(a mappend b, a mappend c, b mappend c)

trait Monoid[A] {
def op(al: A, a2: A): A
def zero: A

}

FP in Scala

trait Semigroup[F] { self =>
def append(fl: F, f2: => F): F

SCNALNZ

trait Monoid[F] extends Semigrou
def zero: F

p[F] { self => z

final class SemigroupOps[F]..(implicit val F: Semigroup[F]) .. {

final def |+|(other: => F): F

= F.append(self, other)

implicit val
def op(al:
val zero =

}

stringMonoid: Monoid[String] = new Monoid[String] {
String, a2: String) = al + a2

trait StringInstances {
implicit object stringInstance

extends Monoid[String] with ..

implicit def
def op(al:
val zero =

}

listMonoid[A]: Monoid[List[A]] = new Monoid[List[A]] {
List[A], a2: List[A]) = al ++ a2
Nil

trait ListInstances extends List

implicit def listMonoid[A]: Monoid[List[A]] = ..

InstancesO {

implicit val

def op(x:

val zero

intAddition: Monoid[Int] = new Monoid[Int] {
Int, y: Int) = x +y
=0

trait AnyValInstances {

implicit val intInstance: Monoid[Int] with ..

import scalaz.Scalaz._
import scalaz._

def f[A](a: A, b: A, c: A)(implicit m: Monoid[A]): (A,A,A) =
(m.op(a, b), m.op(a, c), m.op(b, c))

def f[A](a: A, b: A, c: A)(implicit m: Monoid[A]): (A,A,A) =

(al+|l b, al+] c, bl+] c)

aSSer\t(-F(llall,llbll)llcll) —= (llabll,llacll,llbcll))

assert(f(1,2,3) == (3,4,5))

assert(f(List(1,2), List(3,4), List(5,6)) == (List(1, 2, 3, 4),List(1, 2, 5, 6),List(3, 4, 5, 6)))

Appendable Things

import simulacrum.typeclass
import simulacrum.{op}

@typeclass trait Semigroup[A] {
@op("|+|") def append(x: A, y: => A): A

def multiplyl(value: A, n: Int): A
}

@typeclass trait Monoid[A] extends Semigroup[A] {
def zero: A

def multiply(value: A, n:Int): A =
if (n <= 0) zero else multiplyl(value, n - 1)
}

|+| is known as the TIE Fighter operator.
There is an Advanced TIE Fighter in an
upcoming section, which is very exciting.

A Semigroup should exist for a type if two elements can be
combined to produce another element of the same type. The
operation must be associative, meaning that the order of
nested operations should not matter, i.e.

(a [+] b) |+] c ==a [+] (b |+] ¢)

(1 [+ 2) [+] 3 ==1 [+] (2 [+] 3)

A Monoid is a Semigroup with a zero element (also
called empty or identity). Combining zero with any other
a should give a.

a |+| zero == a
a |+|] @ == a

There are implementations of Monoid for all the primitive
numbers, but the concept of appendable things is useful
beyond numbers.

scala> "hello" |+| " " |+| "world!"
res: String = "hello world!”

scala> List(1, 2) |+| List(3, 4)
res: List[Int] = List(1, 2, 3, 4)

@typeclass trait Band[A] extends Semigroup[A]

Band has the law that the append operation of the same
two elements is idempotent, i.e. gives the same value.
Examples are anything that can only be one value,
such as Unit, least upper bounds, or a Set. Band
provides no further methods yet users can make use of
the guarantees for performance optimisation.

Functional
Programming
for Mortals
with Scalaz

Sam Halliday
@fommil

Sam Halliday
] @fommil

Here is a simplified version of the Monoid definition from Cats w _F-' w SCALA WITH CATS
trait Monoid[A] { - — . . - —t Noe,l Welsh ond Duv?:\(‘f?rmll
def combine(x: A, y: A): A In Cats the binary operation is called neither op nor e iy R R T
def empty: A ’ .append, but rather combine and the identity value ': - ._j+ ':|
} is not called zero but empty. + - _.I
In addition to providing the combine and empty operations, monoids must formally obey several laws. m — '.ﬂmr
For all values x, y, and z, in A, combine must be associative and empty must be an identity element
def associativeLaw[A](x: A, y: A, z: A)(implicit m: Monoid[A]): Boolean = Integer subtraction, for example, is not a
{ monoid because subtraction is not associative
m.combine(x, m.combine(y, z)) == m.combine(m.combine(x, y), z)
}
underscore
def identityLaw[A](x: A)(implicit m: Monoid[A]): Boolean = {
(m.combine(x, m.empty) == x) & & (m.combine(m.empty, x) == Xx) by Noel Welsh and Dave Gurnell
}

u @noelwelsh @davegurnell

A semigroup is just the combine part of a monoid. While many semigroups are also monoids, there are some
data types for which we cannot define an empty element. For example, we have just seen that sequence
concatenation and integer addition are monoids. However, if we restrict ourselves to non-empty sequences and

import cats.Monoid
import cats.instances.int._

positive integers, we are no longer able to define a sensible empty element. Cats has a NonEmptyList data type Monoid[Int].combine(32, 10)
that has an implementation of Semigroup but no implementation of Monoid. : =42
- . - - Monoid[Int] .empty
A more accurate (though still simplified) In Cats, as in Scalaz, the binary operation is - : _—
defined in Semigroup rather than in Monoid. \

definition of Cats’ Monoid is:

As we know, Monoid extends Semigroup. If we
don’t need empty we can equivalently write:

import cats.Monoid

trait Semigroup[A] { import cats.instances.string._
def combine(x: A, y: A): A

} Monoid[String] .combine("Hi ", "there") import cats.Semigroup
: = Hi there import cats.instances.string.

trait Monoid[A] extends Semigroup[A] {
def empty: A Monoid[String].empty
} — nn

Semigroup[String] .combine("Hi ", "there")

= Hi there

final class SemigroupOps[A: Semigroup](lhs: A) { SCALA WITH CATS
In Cats (as in Scalaz) SemigroupOps defines def |+] (r.‘hs: A): A = macro Ops.binop[A, A] Noel Welsh end Dave Gurnell
infix operator aliases for Semigroup’s def combine(rhs: A): A = macro Ops.binop[A, A] % AN
associative operation, i.e. combine (append). def combineN(rhs: Int): A = macro Ops.binop[A, A]

}

Given context and an expression, this method rewrites the tree

import cats.Monoid to call the "desired" method with the lhs and rhs parameters.

import cats.instances.string._// for String Monoid
import cats.instances.int._ // for Int Monoid

stringResult = "Hi " Monoid[String] .empty
: = Hi there

underscore

by Noel Welsh and Dave Gurnell

val intResult Monoid[Int].empty E2 @noelwelsh @davegurnell
. — 3

Cats provides syntax for the combine method in the form of the |+| operator. Because combine technically comes
from Semigroup, we access the syntax by importing from cats.syntax.semigroup

import cats.syntax.semigroup._ // for |+|

val stringResult = "Hi " Monoid[String] .empty
: = Hi there

val intResult =1 Monoid[Int] .empty

/we saw the three infix operator aliases that Scalaz
provides for Semigroup’s append function

\

u@philip_schwarz final class SemigroupOps[F]..(implicit val F: Semigroup[F]) .. {
final def |+|(other: => F): F F. append (self, other)

final def mappend(other: => F): F = F. append (self, other)

final def --(other: => F): F F. append (self, other)

And we looked at |+ |, aka the TIE Fighter operator.

What about mappend?

Monoid is an embarrassingly simple but amazingly powerful concept. It's the concept behind basic arithmetics:
Both addition and multiplication form a monoid. Monoids are ubiquitous in programming. They show up as strings,
lists, foldable data structures, futures in concurrent programming, events in functional reactive programming, and so on.

In Haskell we can define a type class for monoids — a type for which there is a neutral element called mempty and a
binary operation called mappend:

class Monoid m where
mempty :: m
mappend :: m ->m ->m

As an example, let’s declare String to be a monoid by providing the implementation of mempty and mappend (this is, in
fact, done for you in the standard Prelude):

instance Monoid String where
mempty = mn
mappend = (++)

Here, we have reused the list concatenation operator (++), because a String is just a list of characters.

A word about Haskell syntax: Any infix operator can be turned into a two-argument function by surrounding it with
parentheses. Given two strings, you can concatenate them by inserting ++ between them:

"Hello " ++ "world!”
or by passing them as two arguments to the parenthesized (++):

(++) "Hello " "world!"

CATEGORY THEORY

FOR PROGRAMMERS

- —

Bartosz Milewski

u @BartoszMilewski

In Scalaz, mappend is
defined in Semigroup.

In Haskell, mappend is
defined in Monoid.

Monoid
A monoid is a binary associative operation with an identity.

For lists, we have a binary operator, (++), that joins two lists together. We can also use a function, mappend, from the
Monoid type class to do the same thing:

Prelude> mappend [1, 2, 3] [4, 5, 6]
[1, 2, 3, 4, 5, 6]

For lists, the empty list, [], is the identity value:

mappend [1..5] []
mappend [] [1..5]

[1..5]
[1..5]

We can rewrite this as a more general rule, using mempty from the Monoid type class as a generic identity value (more
on this later):

X
X

mappend x mempty
mappend mempty x

In plain English, a monoid is a function that takes two arguments and follows two laws: associativity and identity.
Associativity means the arguments can be regrouped (or reparenthesized, or reassociated) in different orders and give
the same result, as in addition. Identity means there exists some value such that when we pass it as input to our function,
the operation is rendered moot and the other value is returned, such as when we add zero or multiply by one. Monoid is

the type class that generalizes these laws across types.

NX-Haskell

Programming

from first principles

Christopher Allen
Julie Moronuki

Pure functional programming

without fear or frustration

By Christopher Allen
and Julie Moronuki

u @bitemyapp @argumatronic

Again, in Haskell,
mappend is defined
in Monoid

The type class Monoid is defined:

class Monoid m where

mempty :: m

mappend :: m ->m ->m

mconcat :: [m] -> m

mconcat = foldr mappend mempty

mappend is how any two values that inhabit your type can be joined
together. mempty is the identity value for that mappend operation. There
are some laws that all Monoid instances must abide, and we’ll get to those
soon. Next, let’s look at some examples of monoids in action!

Examples of using Monoid

The nice thing about monoids is that they are familiar; they’re all over the
place. The best way to understand them initially is to look at examples of
some common monoidal operations and remember that this type class
abstracts the pattern out, giving you the ability to use the operations over a
larger range of types.

List
One common type with an instance of Monoid is List. Check out how
monoidal operations work with lists:

Prelude> mappend [1, 2, 3] [4, 5, 6]

[1,2,3,4,5,6]

Prelude> mconcat [[1..3], [4..6]]

[1,2,3,4,5,6]

Prelude> mappend "Trout" " goes well with garlic"

"Trout goes well with garlic"

»Haskell

Programming

By Christopher Allen
and Julie Moronuki

u @bitemyapp @argumatronic

Pure functional programming

without fear or frustration

This should look familiar, because we’ve certainly seen this before:

Prelude> (++) [1, 2, 3] [4, 5, 6]
[1,2,3,4,5,6]

Prelude> (++) "Trout" " goes well with garlic"
"Trout goes well with garlic"

Prelude> foldr (++) [] [[1..3], [4..6]]
[1,2,3,4,5,6]

Prelude> foldr mappend mempty [[1..3], [4..6]]
[1J2)3)4)5)6]

Our old friend (++)! And if we look at the definition of Monoid for
lists, we can see how this all lines up:

instance Monoid [a] where

mempty = []
mappend = (++)

For other types, the instances would be different, but the ideas
behind them remain the same.

Semigroup

Mathematicians play with algebras like that creepy kid you knew in grade school who would pull legs off of insects.
Sometimes, they glue legs onto insects too, but in the case where we’re going from Monoid to Semigroup, we’re pulling
a leg off.

In this case, the leg is our identity. To get from a monoid to a semigroup, we simply no longer furnish nor require an
identity. The core operation remains binary and associative. With this, our definition of Semigroup is:

class Semigroup a where
(<») ::a ->a ->a

And we’re left with one law:
(a <> b) <> c =a <> (b <> c)

Semigroup still provides a binary associative operation, one that typically joins two things together (as in
concatenation or summation), but doesn’t have an identity value. In that sense, it’s a weaker algebra.

NonEmpty, a useful datatype

One useful datatype that can’t have a Monoid instance but does have a Semigroup instance is the NonEmpty list type.
It is a list datatype that can never be an empty list...

We can’t write a Monoid for NonEmpty because it has no identity value by design! There is no empty list to serve as an
identity for any operation over a NonEmpty list, yet there is still a binary associative operation: two NonEmpty lists
can still be concatenated.

A type with a canonical binary associative operation but no identity value is a natural fit for Semigroup.

»Haskell

Programming

from first principles

Christopher Allen
Julie Moronuki

Pure functional programming

without fear or frustration

By Christopher Allen
and Julie Moronuki

u @bitemyapp @argumatronic

ﬁ In Scalaz there is a predefined implicit NonEmptyList Semigroup]

implicit def nonEmptyListSemigroup[A]: Semigroup[NonEmptyList[A]] = new Semigroup[NonEmptyList[A]] {
def append(fl: NonEmptyList[A], f2: => NonEmptyList[A]) = f1 append f2

n @philip_schwarz | }

so if we write a function that operates on values of type A for which an implicit
Semigroup, is available e.g. a function foo that appends two such values

def foo[A](x: A, y: A)(implicit sg: Semigroup[A]) =
sg.append(x, y)

[we are then able to use the function to append two non-empty lists F '

foo(NonEmptyList(1l,2,3), NonEmptyList(4,5,6))
= NonEmpty[1,2,3,4,5,6]

and since we saw before that there are infix operator aliases for the append method
of a Semigroup, the body of foo can be written in any of the following ways

sg.append(x, y)
x |+ y

X -y

X mappend y

Strength can be weakness

When Haskellers talk about the strength of an algebra, they usually mean the number of operations it provides which in
turn expands what you can do with any given instance of that algebra without needing to know specifically what »Haskell
type you are working with. Programming

from first principles
Christopher Allen
Julie Moronuki

The reason we cannot and do not want to make all of our algebras as big as possible is that there are datatypes which
are very useful representationally, but which do not have the ability to satisfy everything in a larger algebra that could
work fine if you removed an operation or law.

Pure functional programming

without fear or frustration

This becomes a serious problem if NonEmpty is the right datatype for something in the domain you’re representing. If
you’re an experienced programmer, think carefully. How many times have you meant for a list to never be empty? To _

. . . . By Christopher Allen
guarantee this and make the types more informative, we use types like NonEmpty. and Julie Moronuki

u @bitemyapp @argumatronic
The problem is that NonEmpty has no identity value for the combining operation (mappend) in Monoid. So, we keep

the associativity but drop the identity value and its laws of left and right identity. This is what introduces the need
for and idea of Semigroup from a datatype.

The most obvious way to see that a monoid is stronger than a semigroup is to observe that it has a strict superset of
the operations and laws that Semigroup provides. Anything which is a monoid is by definition also a semigroup.

It is to be hoped that Semigroup will be made a superclass of Monoid in an upcoming version of GHC.

class Semigroup a => Monoid a where

. ﬁ actually Semigroup has been made a superclass of Monoid — see next slide]

< C ® Not Secure | hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#g:9 w ® B /- ®

class Semigroup a => Monoid a where

The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:

e x <> mempty = x
e mempty <> X = X
e X <> (y <> 2) = (x <> y) <> z|Semigroup law)

e mconcat = foldr '(<>)' mempty

The method names refer to the monoid of lists under concatenation, but there are many other instances.

Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product.

NOTE: semigroup is a superclass of Monoid since base-4.11.0.0.

So in Haskell, Monoid’s mappend is actually just another name for
Semigroup’s associative operation <>, so maybe that’s why in Scalaz,
mappend is not defined in Monoid but is instead an infix operator
Methods that is an alias for Semigroup’s associative function append.

Minimal complete definition

mempty

mempty :: a

Identity of mappend
mappend :: a -> a -> a

An associative operation

NOTE: This method is redundant and has the default implementation mappend = ' (<>)' since base-4.11.0.0.

mconcat :: [a] -> a u@philip_schwarz
Fold a list using the monoid.

For most types, the default definition for mconcat will be used, but the function is included in the class definition so that an optimized version can be provided for specific types.

The Option[A] Monoid
and the notion that
every Monoid has a dual

EXERCISE 10.1

Give aMonoid instance for combining Option values.

def optionMonoid[A]: Monoid[Option[A]]

Notice that we have a choice in how we
implement op. We can compose the options in
either order.

Both of those implementations satisfy the
monoid laws, but they are not equivalent. This
is true in general — that is, every monoid has a
dual where the op combines things in the
opposite order.

Monoids like booleanOr and intAddition are
equivalent to their duals because their op is
commutative as well as associative.

def optionMonoid[A]: Monoid[Option[A]] new Monoid[Option[A]] {

returns x if it is nonempty, otherwise
returns the result of evaluating y

def op(x: Option[A], y: Option[A]) = x orElse y
val zero = None L
}

// We can get the dual of any monoid just by flipping the "op .
def dual[A](m: Monoid[A]): Monoid[A] = new Monoid[A] {

def op(x: A, y: A): A = m.op(y, X)

val zero = m.zero

}

// Now we can have both monoids on hand:
def firstOptionMonoid[A]: Monoid[Option[A]]
def lastOptionMonoid[A]: Monoid[Option[A]]

optionMonoid[A]
dual(firstOptionMonoid)

OptionMonoid.op(Some(2),Some(3))
= Some(2)

OptionMonoid.op(None,Some(3))
= Some(3)

OptionMonoid.op(Some(2),None)
= Some(2)

OptionMonoid.op(None,None)
= None

OptionMonoid.op(Some(2),Some(3))
= Some(3)

FP in Scala

A companion booklet to
Functional Programming in Scala

Chapter notes, errata, hints, and answers to exercises

compiled by Runar Oli Bjamason

A Companion booklet to
FP in Scala

OptionMonoid.op(None,Some(3))
= Some(3)

OptionMonoid.op(Some(2),None)

= Some(2) None

The results of the op associative
operations of firstOptionMonoid
and lastOptionMonoid only differ
when neither of the arguments is

OptionMonoid.op(None,None)
= None

val stringMonoid = new Monoid[String] {
def op(al: String, a2: String) = al + a2 Unlike the op of monoids like booleanOr, booleanAnd,
val zero = "" intAddition, intMultiplication, which is commutative, the op of
monoids like stringMonoid and listMonoid is not
}
. commutative, so these monoids are not equivalent to their
def firstStringMonoid: Monoid[String] = stringMonoid duals.
def lastStringMonoid: Monoid[String] = dual(firstStringMonoid)

firstStringMonoid.op("Hello, ", "World!")
String = Hello, World!

lastStringMonoid.op("Hello, ", "World!")
String = "World!Hello, "

assert(firstStringMonoid.op("Hello, ", "World!") equals lastStringMonoid.op("World!", "Hello, "))

def listMonoid[A] = new Monoid[List[A]] {
def op(al: List[A], a2: List[A]) = al ++ a2
val zero = Nil
}
def firstListMonoid[A]: Monoid[List[A]]
def lastListMonoid[A]: Monoid[List[A]]

listMonoid
dual(firstListMonoid)

firstListMonoid[Int].op(List(1,2,3), List(4,5,6))
List[Int] = List(1l, 2, 3, 4, 5, 6)

lastListMonoid[Int] .op(List(1,2,3), List(4,5,6))
List[Int] = List(4, 5, 6, 1, 2, 3)

& C @ https://appdoc.app/artifact/org.scalaz/scalaz-core_2.9.2/7.0.0-RC2/scalaz/Tags$$Dual.html

It looks like In Scalaz there is a Dual tag that we can
apply to the operands of a monoid’s associative
Dual operation so that we get the same effect as using
the associative operation of the monoid’s dual.

scalaz.Tags

sealed trait Dual extends AnyRef

Type tag to choose a Monoid instance that inverts the operands to append before calling the natural Monoid for the type.

Example:

import scalaz.{@@, Tag, Tags, Dual} u @philip_schwarz
import scalaz.std.string._
import scalaz.syntax.monoid.

import scalaz.Dual._
Dual("World!") |+| Dual("Hello, ") // "Hello, World!" S (Al A ,

"Hello, " |+]| "World!"
= Hello, World!

Dual("Hello, ") [+]| Dual("World!") 2

= "World'!Hello,

Dual("World!") |+| Dual("Hello, ")
= Hello. World! Using the Dual tag with the String monoid]

assert(("Hello, " |+] "World!") equals (Dual("World!") |+| Dual("Hello, ")))

List(1,2,3) |+]| List(4,5,6)
= List(1l, 2, 3, 4, 5, 6) S~

[and with the List monoid]

Dual(List(1,2,3)) |+| Dual(List(4,5,6))
= List(4, 5,

The canonicity of a Scala monoid

In Scala, it’s possible to have multiple Monoid instances associated with a type. For example, for the type Int, we can
have a Monoid[Int] that uses addition with 0, and another Monoid[Int] that uses multiplication with 1.

val intAddition: Monoid[Int] = new Monoid[Int] { val intMultiplication: Monoid[Int] = new Monoid[Int] {
def op(x: Int, y: Int) = x +y def op(x: Int, y: Int) = x * vy
val zero = 0 val zero =1

¥ }

This can lead to certain problems since we cannot count on a Monoid instance being canonical in_ any way. To
illustrate this problem, consider a “suspended” computation like the following:

case class Suspended(acc: Int, m: Monoid[Int], remaining: List[Int])

This represents an addition that is “in flight” in some sense. It’s an accumulated value so far, represented by acc, a monoid
m that was used to accumulate acc, and a list of remaining elements to add to the accumulation using the monoid.

Now, if we have two values of type Suspended, how would we add them together? We have no idea whether the two
monoids are the same. And when it comes time to add the two acc values, which monoid should we use? There’s no way
of inspecting the monoids (since they are just functions) to see if they are equivalent. So we have to make an arbitrary
guess, or just give up.

The Scalaz library takes the same approach [as Haskell], where there is only one canonical monoid per type. However,
since Scala doesn’t have type constraints, the canonicity of monoids is more of a convention than something enforced by
the type system. And since Scala doesn’t have newtypes, we use phantom types to add tags to the underlying types.

This is done with scalaz.Tag...

A companion booklet to
Functional Programming in Scala
a, hints, and answers 10 exercises

compiled by Ranar Oli Bjarmason

(by Runar Bjarnason)

@runarorama

There can only be one implementation of a typeclass for any given type parameter, a property known as
typeclass coherence.

Typeclass coherence is primarily about consistency, and the consistency gives us the confidence to use implicit
parameters. It would be difficult to reason about code that performs differently depending on the implicit imports that are
in scope. Typeclass coherence effectively says that imports should not impact the behaviour of the code.

Tagging

In the section introducing Monoid we built a Monoid[TradeTemplate] and realised that scalaz does not do what we
wanted with Monoid[Option[A]]. This is not an oversight of scalaz: often we find that a data type can implement a
fundamental typeclass in multiple valid ways and that the default implementation doesn’t do what we want, or
simply isn’t defined.

Basic examples are Monoid[Boolean] (conjunction && vs disjunction Il) and Monoid[Int] (multiplication vs
addition).

To implement Monoid[TradeTemplate] we found ourselves either breaking typeclass coherency, or using a different
typeclass.

scalaz.Tag is designed to address the multiple typeclass implementation problem without breaking typeclass
coherency.

The definition is quite contorted, but the syntax to use it is very clean. This is how we trick the compiler into allowing
us to define an infix type A @@ T that is erased to A at runtime:

import scalaz.Tags.{Disjunction,Multiplication}
import scalaz.Tags.{Disjunction, Multiplication}

<not shown here — too involved>

Multiplication(3)

i.e. we tag things with Princess Leia hair buns @@.
Disjunction(false)

Some useful tags are provided in the Tags object.

First / Last are used to select Monoid instances that pick the first or last non-zero operand. Multiplication is for
numeric multiplication instead of addition. Disjunction / Conjunction are to select && or Il, respectively.

Using scalaz.Tag to

distinguish between Functional
different monoids Programming
for the same type for Mortals

with Scalaz

Sam Halliday
@fommil

Sam Halliday u @fommil

SCALANCZ

object Tags {

sealed trait First
val First = Tag.of[First]

sealed trait Last
val Last = Tag.of[Last]

sealed trait Multiplication
val Multiplication = Tag.of[Multiplication]

sealed trait Disjunction
val Disjunction = Tag.of[Disjunction]

sealed trait Conjunction
val Conjunction = Tag.of[Conjunction]

scalaz

Tags

object Tags

SCALANCZ

Type tags that are used to discriminate between alternative type class instances.

Source
See also

Tags.scala

scalaz.Tag and, @@ in the package object scalaz .

trait Conjunction

Type tag to choose a scalaz.Monoid
instance that performs conjunction (&&)

trait Disjunction

Type tag to choose a scalaz.Monoid
instance that performs disjunction (| |)

trait First

Type tag to choose a scalaz.Monoid
instance that selects the first non-zero
operand to append.

trait Last

Type tag to choose a scalaz.Monoid
instance that selects the last non-zero
operand to append.

trait Multiplication

Type tag to choose a scalaz.Monoid
instance for a numeric type that
performs multiplication, rather than the
default monoid for these types which
by convention performs addition.

Type Members

sealed

sealed

sealed

sealed

sealed

sealed

sealed

sealed

sealed

sealed

sealed

sealed

sealed

sealed

trait

trait

trait

trait

trait

trait

trait

trait

trait

trait

trait

trait

trait

trait

Conjunction

Type tag to choose a scalaz.Monoid instance that performs conjunction (&&)
Disjunction
Type tag to choose a scalaz.Monoid instance that performs disjunction (| |)

Dual

Type tag to choose a scalaz.Monoid instance that inverts the operands to append before calling the natural
scalaz.Monoid for the type.

First

Type tag to choose a scalaz.Monoid instance that selects the first non-zero operand to append.

Firstval
Type tag to choose a scalaz.Semigroup instance that selects the first operand to append.

Last

Type tag to choose a scalaz.Monoid instance that selects the last non-zero operand to append.

LastVal
Type tag to choose a scalaz.Semigroup instance that selects the last operand to append.

Max
Type tag to choose a scalaz.Monoid instance that selects the greater of two operands, ignoring zero.

MaxVal

Type tag to choose a scalaz.Semigroup instance that selects the greater of two operands.

Min

Type tag to choose a scalaz.Monoid instance that selects the lesser of two operands, ignoring zero.

Minval
Type tag to choose a scalaz.Semigroup instance that selects the lesser of two operands.

Multiplication

Type tag to choose a scalaz.Monoid instance for a numeric type that performs multiplication, rather than
the default monoid for these types which by convention performs addition.

Parallel
Type tag to choose a scalaz.Applicative instance that runs scalaz.concurrent.Futures in parallel.

Zip
Type tag to choose as scalaz.Applicative instance that performs zipping.

// use default Scalaz Int monoid, i.e. (Int,+,0) S C A /\ 3
L [

2 3
Int

trait Multiplication
import scalaz.Tags.Multiplication Type tag to choose a scalaz.Monoid Examples of using scalaz.Tag to
import scalaz.Tags.Multiplication instance for a numeric type that distinguish between different

_ _ _ performs multiplication, rather than the Int monoids and Boolean
// use alternative Scalaz Int monoid, i.e. (Int,*,1) default monoid for these types which monoids

by convention performs addition.
Multiplication(2) |[+]| Multiplication(3)
Int scalaz.Tags.Multiplication = 6

import scalaz.Scalaz.
import scalaz.Scalaz.

import scalaz.Tags.{Conjunction,Disjunction}
import scalaz.Tags.{Conjunction, Disjunction}

Conjunction(true)
Boolean scalaz.Tags.Conjunction
Disjunction(true)
Boolean scalaz.Tags.Disjunction

Princess Leia hair buns @@

// use monoid (Boolean,OR,false)

assert((Disjunction(false) |+| Disjunction(false)) Disjunction(false) trait Disjunction

assert((Disjunction(false) |[+| Disjunction(true)) Disjunction(true) Type tag to choose a scalaz.Monoid
assert((Disjunction(true) |[+] Disjunction(false)) Disjunction(true) instance that performs disjunction (| |)
assert((Disjunction(true) |+| Disjunction(true)) Disjunction(true)

// use monoid (Boolean,AND, true)

assert((Conjunction(false) |+| Conjunction(false)) Conjunction(false) Conjunction

assert((Conjunction(false) [+| Conjunction(true)) Conjunction(false) Type tag to choose a scalaz.Monoid
assert((Conjunction(true) |+]| Conjunction(false)) Conjunction(false) instance that performs conjunction (&&)
assert((Conjunction(true) |+| Conjunction(true)) === Conjunction(true)

Picking a particular Boolean semigroup or monoid in Scalaz S C /\ L /\ G

There is a way of doing this, e.g. picking (Boolean, AND, true)

import scalaz.Monoid
import scalaz.Monoid

implicit val booleanMonoid: Monoid[Boolean] = scalaz.std.anyVal.booleanInstance.conjunction
scalaz.Monoid[Boolean] = scalaz.std.AnyVallnstances$booleanInstance$conjunction$@4d2667fc

import scalaz.syntax.semigroup.
import scalaz.syntax.semigroup.

true |+| false
Boolean = false

booleanMonoid.zero
Boolean = true

or picking (Boolean, OR, false)

import scalaz.Monoid
import scalaz.Monoid

implicit val booleanMonoid: Monoid[Boolean] = scalaz.std.anyVal.booleanInstance.disjunction
scalaz.Monoid[Boolean] = scalaz.std.AnyVallnstances$booleanInstance$disjunction$@794091e3

import scalaz.syntax.semigroup.
import scalaz.syntax.semigroup.

true |+| false
Boolean = true

booleanMonoid.zero
Boolean = false

but as Travis Brown explains in his answer to https://stackoverflow.com/questions/34163121/how-to-create-semigroup-for-boolean-when-using-scalaz
this is somewhat at odds with the Scalaz philosophy

def optionMonoid[A]: Monoid[Option[A]] = new Monoid[Option[A]] {
def op(x: Option[A], y: Option[A]) = x orElse y

val zero = None

} returns x if it is nonempty, otherwise
returns the result of evaluating y

// We can get the dual of any monoid just by flipping the “op’.
def dual[A](m: Monoid[A]): Monoid[A] = new Monoid[A] {

def op(x: A, y: A): A = m.op(y, X)

val zero = m.zero

}

// Now we can have both monoids on hand:
def firstOptionMonoid[A]: Monoid[Option[A]]
def lastOptionMonoid[A]: Monoid[Option[A]]

optionMonoid[A]

dual(firstOptionMonoid)

Remember the two definitions of Monoid[Option[A]] we saw in
FP in Scala, i.e. optionMonoid and its dual?

When firstOptionMonoid combines two Option arguments the
result is the first non-zero argument, i.e. the first argument that
is not None.

When lastOptionMonoid combines two Option arguments the
result is the last non-zero argument, i.e. the last argument that
is not None.

FP in Scala

SCNALANCZ

u @philip_schwarz

In Scalaz, the above two Option monoids are called optionFirst and optionLast and are
considered alternative Option monoids.

In Scalaz the default Option monoid is a third one called optionMonoid. It operates on
Option[A] values such that a Semigroup[A] instance is defined.

When optionMonoid combines two Option arguments, the result is the result of combining
the A values of the two options with the associative operation of the Semigroup[A] instance.

e.g. while the result of combining Some(2) and Some(3) with optionFirst is Some(2) and the
result of combining them with optionLast is Some(3), the result of combining them with

optionMonoid is Some(5), if Semigroup (Int,+) is chosen, or Some(6) if Semigroup (Int,*) is

Qosen. /

implicit def optionMonoid[A: Semigroup]: Monoid[Option[A]] =
new OptionSemigroup[A] with Monoid[Option[A]] {
override def B = implicitly
override def zero = None

}

private trait OptionSemigroup[A] extends Semigroup[Option[A]] {
def B: Semigroup[A]
def append(a: Option[A], b: => Option[A]): Option[A] = (a, b) match {
case (Some(aa), Some(bb)) => Some(B.append(aa, bb))
case (Some(_), None) => a
case (None, b2@Some(_)) => b2
case (None, None) => None

|+] Option(3)
= Some(5)
import scalaz.Tags.Multiplication

} Option(2)

import scalaz.Tags.Multiplication
Option(Multiplication(2)) |[+]| Option(Multiplication(3))

= Some (6)

Examples of optionMonoid[A: Semigroup]: Monoid[Option[A]] where Ais (Int,+), (String,++) and (List[Int],++)

gaining access to |+| using Option(..) and None using the more convenient some and none methods provided by OptionFunctions

Option(2) |+| Option(3) some(2) |+| some(3)

: Option[Int] = Some(5) . Option[Int] = Some(5)
Option(2) |+| None some(2) |+| none

: Option[Int] = Some(2) . Option[Int] = Some(2)
(None:Option[Int]) |+| Option(3) none[Int] |+]| some(3)

: Option[Int] = Some(3) . Option[Int] = Some(3)

Option("Hello, ") |+| Option("World!") some("Hello, ") |+| some("World!")
: Option[String] = Some(Hello, World!) . Option[String] Some (Hello, World!)
Option("Hello, ") |+| None some("Hello, ") |+]| none

(None:Option[String]) |+| Option("World!") none[String] |

| some("World!")
: Option[String] = Some(World!) . Option[String]

Some (Wor1ld!)

)
: Option[String] = Some(Hello,) . Option[String] = Some(Hello,)
+

Option(List(1,2,3)) |+| Option(List(4,5)) some(List(1,2,3)) |+| some(List(4,5))

: Option[List[Int]] = Some(List(1,2,3,4,5)) . Option[List[Int]] = Some(List(1,2,3,4,5))
Option(List(1,2,3)) |+| None some(List(1,2,3)) |+]| none

: Option[List[Int]] = Some(List(1,2,3)) : Option[List[Int]] = Some(List(1,2,3))
(None:Option[List[Int]]) |+| Option(List(1,2,3)) none[List[Int]] |+| some(List(1,2,3))

: Option[List[Int]] = Some(List(1,2,3)) : Option[List[Int]] = Some(List(1,2,3))

trait OptionFunctions {
final def some[A](a: A): Option[A] = Some(a)
final def none[A]: Option[A] = None

Even more convenient: using the some method provided by OptionIdOps

2.some |+| 3.some
Option[Int] = Some(5)

2.some |+| none
Option[Int] = Some(2)

none[Int] |+]| 3.some
Option[Int] = Some(3)

"Hello, ".some |+| "World!".some

Option[String] = Some(Hello, World!)

"Hello, ".some |+]| none SC/\L/_)
Option[String] = Some(Hello,) [

none[String] |+| "World!".some
Option[String] = Some(World!)

List(1,2,3).some |+| List(4,5).some
Option[List[Int]] = Some(List(1,2,3,4,5))

List(1,2,3).some |+| none
Option[List[Int]] = Some(List(1,2,3))

none[List[Int]] |[+]| List(1l,2,3).some
Option[List[Int]] = Some(List(1,2,3))

final class OptionIdOps[A](val self: A) extends AnyVal {
def some: Option[A] = Some(self)

}

Choosing the optionFirst monoid or the
optionLast monoid by using the First and
Last tags

How Scalaz alternative Option monoids optionFirst and 3
optionLast are implemented using FirstOption[A] S ‘ A | A C

and LastOption[A], which are just aliases

implicit def optionFirst[A]: Monoid[FirstOption[A]] with Band[FirstOption[A]] = . import scalaz.Tags.{First,Last}
new Monoid[FirstOption[A]] with Band[FirstOption[A]] { import scalaz.Tags.{First, Last}
. . First(2.some) |+| First(3.some)
def zero: FirstOption[A] = Tag(None) : = Some(2)
First(2.some) |+| First(none)
def append(fl: FirstOption[A], f2: => FirstOption[A]) = : : . = Some (2)
Tag(Tag.unwrap(f1l).orElse(Tag.unwrap(f2))) 2> First(nonefIntl) |+ F”St@'somf)someo)
} First(none[Int]) |+| First(none)
= None
implicit def optionLast[A]: Monoid[LastOption[A]] with Band[LastOption[A]] =
new Monoid[LastOption[A]] with Band[LastOption[A]] { Last(2.some) [+| Last(3.some)
: = Some(3)
] . _ Last(2.some) |[+]| Last(none)
def zero: LastOption[A] = Tag(None) it Firet : = Some(2)
: Last(none[Int]) |+]| Last(3.some)
. . Type tag to choose a scalaz.Monoid
def append(fl: LastOption[A], f2: => LastOption[A]) = instance that selects the first non-zero : = Some(3)
Tag(Tag.unwrap(f2).orElse(Tag.unwrap(fl))) operand to append. Last(none[Int]) [+]| Last(none)
} : = None
trait Last 2.some.first |+| 3.some.first
3 3 X : Type tag to choose a scalaz.Monoid = Some (2)
type FirstOption[A] = Option[A] @@ Tags.First instance that selects the last non-zero 2.some.first [+| none.first
type LastOption[A] = Option[A] @@ Tags.Last operand to append. . Opt : : = Some(2)
none[Int].first |+]| 3.some.first
= Some(3)
none[Int].first |+]| none.first
= None
final class OptionOps[A](self: Option[A]) { Choosing the optionFirst monoid
or the optionLast monoid by 2.some.last |+| 3.some.last
. . . .) . Some (3)
-F%nal def first: Op’Flon[A] @@ First = Tag(self) us-lng the more convenient 2 .some.last |+| none.last
final def last: Option[A] @@ Last = Tag(self) first and last methods : Some (2)
provided by OptionOps none[Int].last |+| 3.some.last

NXED)

none[Int].last |+]| none.last

None

Same as in previous slide, but instead of looking at (Int,+) we lookat (String,++) and (List[Int],++) S C /\ L /\ 2

using the First and Last tags using the more convenient first and last methods provided by OptionOps

First("Hello, ".some) |+]| First("World!".some) "Hello, ".some.first |+| "World!".some.first
Option[String] @@ scalaz.Tags.First = Some(Hello,) : Option[String] @@ scalaz.Tags.First = Some(Hello,)
First("Hello, ".some) |+| First(none) "Hello, ".some.first |+]| none.first
Option[String] @@ scalaz.Tags.First = Some(Hello,) : Option[String] @@ scalaz.Tags.First = Some(Hello,)
First(none[String]l) |+]| First("World!".some) none[String].first |+| "World!".some.first
Option[String] @@ scalaz.Tags.First = Some(World!) : Option[String] @@ scalaz.Tags.First = Some(World!)
First(none[String]l) |+]| First(none) none[String].first |+| none.first
Option[String] @@ scalaz.Tags.First = None : Option[String] @@ scalaz.Tags.First = None

Last("Hello, ".some) |+| Last("World!".some) "Hello, ".some.last |+| "World!".some.last
Option[String] @@ scalaz.Tags.Last = Some(World!) : Option[String] @@ scalaz.Tags.Last = Some(World!)
Last("Hello, ".some) |+| Last(none) "Hello, ".some.last |+| none.last
Option[String] @@ scalaz.Tags.Last = Some(Hello,) : Option[String] @@ scalaz.Tags.Last = Some(Hello,)
Last(none[String]) |+]| Last("World!".some) none[String].last |+| "World!".some.last
Option[String] @@ scalaz.Tags.Last = Some(World!) Option[String] @@ scalaz.Tags.Last = Some(World!)
Last(none[String]) |+| Last(none) none[String].last |+| none.last
Option[String] @@ scalaz.Tags.Last = None : Option[String] @@ scalaz.Tags.Last = None

First(List(1,2,3).some) |+| First(List(4,5).some) List(1,2,3).some.first |+| List(4,5).some.first
Option[List[Int]] @@ scalaz.Tags.First = Some(List(1l, 2, 3)) : Option[List[Int]] @@ scalaz.Tags.First = Some(List(l, 2, 3))
First(List(1,2,3).some) |+| First(none) List(1,2,3).some.first |+| none.first
Option[List[Int]] @@ scalaz.Tags.First = Some(List(1l, 2, 3)) : Option[List[Int]] @@ scalaz.Tags.First = Some(List(l, 2, 3))
First(none[List[Int]]) |+| First(List(1l,2,3).some) none[List[Int]].first |+| List(1,2,3).some.first
Option[List[Int]] @@ scalaz.Tags.First = Some(List(1l, 2, 3)) : Option[List[Int]] @@ scalaz.Tags.First = Some(List(l, 2, 3))
First(none[List[Int]]) |+| First(none) none[List[Int]].first |+| none.first
Option[List[Int]] @@ scalaz.Tags.First = None : Option[List[Int]] @@ scalaz.Tags.First None

Last(List(1,2,3).some) |+| Last(List(4,5).some) List(1,2,3).some.last |+| List(4,5).some.last
Option[List[Int]] @@ scalaz.Tags.Last = Some(List(4, 5)) : Option[List[Int]] @@ scalaz.Tags.Last = Some(List(4, 5))
Last(List(1,2,3).some) |+]| Last(none) List(1,2,3).some.last |+| none.last
Option[List[Int]] @@ scalaz.Tags.Last = Some(List(l, 2, 3)) : Option[List[Int]] @@ scalaz.Tags.Last = Some(List(l, 2, 3))
Last(none[List[Int]]) |+| Last(List(1,2,3).some) none[List[Int]].last |+]| List(1,2,3).some.last
Option[List[Int]] @@ scalaz.Tags.Last = Some(List(l, 2, 3)) : Option[List[Int]] @@ scalaz.Tags.Last = Some(List(l, 2, 3))
Last(none[List[Int]]) |[+]| Last(none) none[List[Int]].last |+]| none.last
Option[List[Int]] @@ scalaz.Tags.Last None : Option[List[Int]] @@ scalaz.Tags.Last = None

We saw earlier that in Scalaz there are three types of Option monoid: alternative monoids optionFirst and optionLast, plus
The Option Monoid in Cats a default one called optionMonoid, which operates on Option[A] values such that a Semigroup[A] instance is defined.
In Cats there is only one Option monoid and it has the same characteristics as the optionMonoid in Scalaz.

The Option monoid

There are some types that can forma Semigroup but nota Monoid . For example, the following NonEmptyList type

forms a semigroup through ++, but has no corresponding identity element to form a monoid.

import cats.Semigroup

final case class NonEmptyList[A] (head: A, tail: List[A]) {
def ++(other: NonEmptyList[A]): NonEmptyList[A] = NonEmptyList(head, tail ++ other.toList)

def tolList: List[A] = head :: tail

object NonEmptyList {
implicit def nonEmptyListSemigroup[A]l: Semigroup[NonEmptyList[A]] =
new Semigroup [NonEmptyList[A]] {
def combine(x: NonEmptyList[A], y: NonEmptyList[A]): NonEmptyList[A] = x ++ y
}

https://typelevel.org/cats/typeclasses/monoid.html

The Cats implementation of optionMonoid[A: Semigroup]: Monoid[Option[A]]

e 4

ql £3 *1‘14

How then can we collapse a List [NonEmptyList [A]] ? For such types that only have a Semigroup we can liftinto

Option togeta Monoid.

import cats.syntax.semigroup._

implicit def optionMonoid[A: Semigroup]: Monoid[Option[A]] = new Monoid[Option[A]] {

def empty: Option[A] = None

def combine(x: Option[A], y: Option[A]): Option[A] =

x match {
case None =>y
case Some(xv) =>
y match {
case None => x
case Some(yv) => Some(xv |+| yv)

}

https://typelevel.org/cats/typeclasses/monoid.html

This is the Monoid for Option:forany Semigroup [A] ,thereisa Monoid [Option[A]l].

¥¥ Cats

implicit def optionMonoid[A: Semigroup]: Monoid[Option[A]] =
new OptionSemigroup[A] with Monoid[Option[A]] {
override def B = implicitly
override def zero = None

}

private trait OptionSemigroup[A] extends Semigroup[Option[A]] {
def B: Semigroup[A]
def append(a: Option[A], b: => Option[A]): Option[A] = (a, b) match {
case (Some(aa), Some(bb)) => Some(B.append(aa, bb))
case (Some(_), None) => a
case (None, b2@Some(_)) => b2
case (None, None) => None

} ‘ SC/\L/\Z

}

Comparing the Cats mplementatlon
of optionMonoid with the Scalaz
implementation.

Example of using the Option Monoid in Cats ¥ Cats

We can assemble a Monoid[Option[Int]] using instances from cats.instances.int and cats.instances.option

import cats.Monoid

import cats.instances.int._ // for Monoid SCALA \n”TH CATS

import cats.instances.option._ // for Monoid Noel Vil i Dave Gl

val a = Option(22) {‘ = {lctMeg (A X o &

T
Q(”\ fl Mg Crrse 5500 ;%’\f@/\

// a: Option[Int] = Some(22)

%;x

val b = Option(20)
// b: Option[Int] = Some(20)

Monoid[Option[Int]].combine(a, b)
// res6: Option[Int] = Some(42)

With the correct instances in scope, we can set about adding anything we want

import cats.instances.int._ // for Monoid
import cats.instances.option._ // for Monoid underscore
Option(1) [+ | Option(2) by Noel Welsh and Dave Gurnell
// resl: Option[Int] = Some(3)
u @noelwelsh @davegurnell

Summary of the naming and location of a Monoid’s associative binary operation and identity element - simplified

FP in Scala

trait Monoid[A] {
def op(al: A, a2: A): A
def zero: A

}

trait Semigroup[F] { self => —
def append(fl: F, f2: => F): F S ‘ /\LA C

}

final class SemigroupOps[F]..(implicit val F: Semigroup[F]) .. {
final def |+|(other: => F): F = F. append (self, other)
final def mappend(other: => F): F F. append (self, other)
final def -(other: => F): F F. append (self, other)

trait Monoid[F] extends Semigroup[F] { self =>
def zero: F

class Semigroup m where
(<>) ::m->m->m

class Semigroup m => Monoid m where

mempty :: m
mappend :: m ->m ->m
mconcat :: [m] ->m

mconcat = foldr mappend mempty

The mappend method is redundant and has
the default implementation mappend ="'(<>)'

trait Semigroup[A] {
def combine(x: A, y: A): A

final class SemigroupOps[A: Semigroup](lhs: A) {
def |+|(rhs: A): A = macro Ops.binop[A, A]
def combine(rhs: A): A = macro Ops.binop[A, A]
def combineN(rhs: Int): A = macro Ops.binop[A, A]

trait Monoid[A] extends Semigroup[A] {
def empty: A

to be continued in part 2

