
Monoids
with	examples	using	Scalaz	and	Cats

based	on

@philip_schwarzslides	by

Part	1

What is a monoid?

Let’s consider the algebra of string concatenation. We can add "foo" + "bar" to get "foobar", and the empty string is an identity element for that
operation. That is, if we say (s + "") or ("" + s), the result is always s.

scala> val s = "foo" + "bar"
s: String = foobar

scala> assert(s == s + "")

scala> assert(s == "" + s)

scala>

scala> val (r,s,t) = ("foo","bar","baz")
r: String = foo
s: String = bar
t: String = baz

scala> assert(((r + s) + t) == (r + (s + t)))

scala> assert(((r + s) + t) == "foobarbaz")

scala>

Furthermore, if we combine three strings by saying (r + s + t), the operation is associative —it doesn’t matter
whether we parenthesize it: ((r + s) + t) or (r + (s + t)).

Functional Programming in Scala
(by	Paul	Chiusano	and	Runar	Bjarnason)

@pchiusano @runarorama

The exact same rules govern integer addition. It’s associative, since (x + y) + z is always equal to x + (y + z)

scala> val (x,y,z) = (1,2,3)
x: Int = 1
y: Int = 2
z: Int = 3

scala> assert(((x + y) + z) == (x + (y + z)))

scala> assert(((x + y) + z) == 6)

scala>

and it has an identity element, 0 , which “does nothing” when added to another integer

scala> val s = 3
s: Int = 3

scala> assert(s == s + 0)

scala> assert(s == 0 + s)

scala>

Functional Programming in Scala
(by	Paul	Chiusano	and	Runar	Bjarnason)

@pchiusano @runarorama

Ditto for integer multiplication

scala> val s = 3
s: Int = 3

scala> assert(s == s * 1)

scala> assert(s == 1 * s)

scala>

scala> val (x,y,z) = (2,3,4)
x: Int = 2
y: Int = 3
z: Int = 4

scala> assert(((x * y) * z) == (x * (y * z)))

scala> assert(((x * y) * z) == 24)

scala>

whose identity element is 1

Functional Programming in Scala
(by	Paul	Chiusano	and	Runar	Bjarnason)

@pchiusano @runarorama

The Boolean operators && and || are likewise associative

and they have identity elements true and false, respectively

scala> val (p,q,r) = (true,false,true)
p: Boolean = true
q: Boolean = false
r: Boolean = true

scala> assert(((p || q) || r) == (p || (q || r)))

scala> assert(((p || q) || r) == true)

scala> assert(((p && q) && r) == (p && (q && r)))

scala> assert(((p && q) && r) == false)

scala>

scala> val s = true
s: Boolean = true

scala> assert(s == (s && true))

scala> assert(s == (true && s))

scala> assert(s == (s || false))

scala> assert(s == (false || s))

scala>

Functional Programming in Scala
(by	Paul	Chiusano	and	Runar	Bjarnason)

@pchiusano @runarorama

These are just a few simple examples, but algebras like this are virtually everywhere. The term for this kind of algebra is monoid.

The laws of associativity and identity are collectively called the monoid laws.

A monoid consists of the following:
• Some type A
• An associative binary operation, op, that takes two values of type A and combines them into one: op(op(x,y), z) == op(x, op(y,z)) for any

choice of x: A, y: A, z: A
• A value, zero: A, that is an identity for that operation: op(x, zero) == x and op(zero, x) == x for any x: A

trait Monoid[A] {
def op(a1: A, a2: A): A
def zero: A

}

val stringMonoid = new Monoid[String] {
def op(a1: String, a2: String) = a1 + a2
val zero = ""

}

An example instance of this trait is the String monoid:

def listMonoid[A] = new Monoid[List[A]] {
def op(a1: List[A], a2: List[A]) = a1 ++ a2
val zero = Nil

}

List concatenation also forms a monoid:

Functional Programming in Scala
(by	Paul	Chiusano	and	Runar	Bjarnason)

@pchiusano @runarorama

We can express this with a Scala trait:

List function returning a new list containing the elements from the left
hand operand followed by the elements from the right hand operand

String concatenation	function

Monoid instances for integer addition and multiplication as well as the Boolean operators

val intAddition: Monoid[Int] = new Monoid[Int] {
def op(x: Int, y: Int) = x + y
val zero = 0

}

val intMultiplication: Monoid[Int] = new Monoid[Int] {
def op(x: Int, y: Int) = x * y
val zero = 1

}

Just what is a monoid, then? It’s simply a type A and an implementation of Monoid[A] that satisfies the laws.

Stated tersely, a monoid is a type together with a binary operation (op) over that type, satisfying associativity and having an
identity element (zero).

What does this buy us? Just like any abstraction, a monoid is useful to the extent that we can write useful generic code assuming
only the capabilities provided by the abstraction. Can we write any interesting programs, knowing nothing about a type other
than that it forms a monoid? Absolutely!

val booleanOr: Monoid[Boolean] = new Monoid[Boolean] {
def op(x: Boolean, y: Boolean) = x || y
val zero = false

}

val booleanAnd: Monoid[Boolean] = new Monoid[Boolean] {
def op(x: Boolean, y: Boolean) = x && y
val zero = true

}

Functional Programming in Scala
(by	Paul	Chiusano	and	Runar	Bjarnason)

@pchiusano @runarorama

(by	Runar	Bjarnason)
@runarorama

def combine[A](a: A, b: A, c: A)(implicit m: Monoid[A]): (A,A,A) =
(m.op(a,b), m.op(a,c), m.op(b,c))

scala> assert(combine("a","b","c") == ("ab","ac","bc"))
scala> assert(combine(List(1,2),List(3,4),List(5,6)) == (List(1,2,3,4),List(1,2,5,6),List(3,4,5,6)))
scala> assert(combine(1,2,3) == (3,4,5))
scala>

Here is a very simple, contrived example of a generic function called combine that operates on any three values of a type A for which an
implicit monoid is available.

It takes each of three pairs of values and produces a combined value for the pair by applying themonoid’s binary operation to the pair’s
elements, returning a tuple of the resulting combined values.@philip_schwarz

What about Scalaz? Scalaz provides a predefined Monoid trait whose binary operation is called append, rather than op,
and provides predefined implicit instances, e.g. for String, List and integer addition. So all we have to do is add a couple
of imports and we can then define combine as follows:

implicit val stringMonoid = new Monoid[String] …
implicit def listMonoid[A] = new Monoid[List[A]] …
implicit val intAddition = new Monoid[Int] …

If we now revisit some of the monoid instances we defined earlier and declare them
to be implicit, we can then invoke our generic combine function multiple times, each
time passing in values of a different type, and each time implicitly passing in amonoid
instance associated with that type.

import scalaz.Scalaz._
import scalaz._

def combine[A](a: A, b: A, c: A)(implicit m: Monoid[A]): (A,A,A) =
(m.append(a,b), m.append(a,c), m.append(b,c))

trait Monoid[F] extends Semigroup[F] { self =>
def zero: F
…

trait Semigroup[F] { self =>
def append(f1: F, f2: => F): F
…

In Scalaz the binary operation is called append, rather than op and it is not defined in the
Monoid trait, but in the Semigroup trait, which the Monoid trait extends.

@philip_schwarz

final class SemigroupOps[F]…(implicit val F: Semigroup[F]) … {
final def |+|(other: => F): F = F.append(self, other)
final def mappend(other: => F): F = F.append(self, other)
final def ⊹(other: => F): F = F.append(self, other)

…

and the SemigroupOps class defines
three aliases of append that are infix
operators: |+|, mappend, ⊹

def combine[A](a: A, b: A, c: A)(implicit sg: Semigroup[A]): (A,A,A) = ???So our combine function can just take an implicit
Semigroup rather than an implicit Monoid

(sg.append(a,b), sg.append(a,c), sg.append(b,c))

(a |+| b, a |+| c, b |+| c)

(a ⊹ b, a ⊹ c, b ⊹ c)

(a mappend b, a mappend c, b mappend c)

and we can write the body of
our combine function in any of
the following ways:

trait Monoid[A] {
def op(a1: A, a2: A): A
def zero: A

}

FP in Scala

trait Monoid[A] {
def op(a1: A, a2: A): A
def zero: A

}

implicit val stringMonoid: Monoid[String] = new Monoid[String] {
def op(a1: String, a2: String) = a1 + a2
val zero = ""

}

implicit def listMonoid[A]: Monoid[List[A]] = new Monoid[List[A]] {
def op(a1: List[A], a2: List[A]) = a1 ++ a2
val zero = Nil

}

implicit val intAddition: Monoid[Int] = new Monoid[Int] {
def op(x: Int, y: Int) = x + y
val zero = 0

}

def f[A](a: A, b: A, c: A)(implicit m: Monoid[A]): (A,A,A) =
(m.op(a, b), m.op(a, c), m.op(b, c))

def f[A](a: A, b: A, c: A)(implicit m: Monoid[A]): (A,A,A) =
(a |+| b, a |+| c, b |+| c)

import scalaz.Scalaz._
import scalaz._

assert(f("a","b","c") == ("ab","ac","bc"))
assert(f(List(1,2), List(3,4), List(5,6)) == (List(1, 2, 3, 4),List(1, 2, 5, 6),List(3, 4, 5, 6)))
assert(f(1,2,3) == (3,4,5))

trait StringInstances {
implicit object stringInstance extends Monoid[String] with …
…

trait ListInstances extends ListInstances0 {
…
implicit def listMonoid[A]: Monoid[List[A]] = …
…

trait AnyValInstances {
…
implicit val intInstance: Monoid[Int] with …
…

trait Monoid[F] extends Semigroup[F] { self =>
def zero: F
…

trait Semigroup[F] { self =>
def append(f1: F, f2: => F): F
…

final class SemigroupOps[F]…(implicit val F: Semigroup[F]) … {
final def |+|(other: => F): F = F.append(self, other)FP in Scala

Sam	Halliday
@fommil

Appendable Things
import simulacrum.typeclass
import simulacrum.{op}

@typeclass trait Semigroup[A] {
@op("|+|") def append(x: A, y: => A): A

def multiply1(value: A, n: Int): A
}

@typeclass trait Monoid[A] extends Semigroup[A] {
def zero: A

def multiply(value: A, n:Int): A =
if (n <= 0) zero else multiply1(value, n - 1)

}

|+| is known as the TIE Fighter operator.
There is an Advanced TIE Fighter in an
upcoming section, which is very exciting.

A Monoid is a Semigroup with a zero element (also
called empty or identity). Combining zero with any other
a should give a.

a |+| zero == a

a |+| 0 == a

There are implementations of Monoid for all the primitive
numbers, but the concept of appendable things is useful
beyond numbers.

scala> "hello" |+| " " |+| "world!"
res: String = "hello world!”

scala> List(1, 2) |+| List(3, 4)
res: List[Int] = List(1, 2, 3, 4)

@typeclass trait Band[A] extends Semigroup[A]

Band has the law that the append operation of the same
two elements is idempotent, i.e. gives the same value.
Examples are anything that can only be one value,
such as Unit, least upper bounds, or a Set. Band
provides no further methods yet users can make use of
the guarantees for performance optimisation.

A Semigroup should exist for a type if two elements can be
combined to produce another element of the same type. The
operation must be associative, meaning that the order of
nested operations should not matter, i.e.

(a |+| b) |+| c == a |+| (b |+| c)

(1 |+| 2) |+| 3 == 1 |+| (2 |+| 3)

Here is a simplified version of theMonoid definition from Cats

trait Monoid[A] {
def combine(x: A, y: A): A
def empty: A

}

In addition to providing the combine and empty operations, monoids must formally obey several laws.
For all values x, y, and z, in A, combine must be associative and emptymust be an identity element

def associativeLaw[A](x: A, y: A, z: A)(implicit m: Monoid[A]): Boolean =
{

m.combine(x, m.combine(y, z)) == m.combine(m.combine(x, y), z)
}

def identityLaw[A](x: A)(implicit m: Monoid[A]): Boolean = {
(m.combine(x, m.empty) == x) && (m.combine(m.empty, x) == x)

}

Integer subtraction, for example, is not a
monoid because subtraction is not associative

scala> (1 - 2) - 3
res0: Int = -4

scala> 1 - (2 - 3)
res1: Int = 2

A semigroup is just the combine part of a monoid. While many semigroups are also monoids, there are some
data types for which we cannot define an empty element. For example, we have just seen that sequence
concatenation and integer addition aremonoids. However, if we restrict ourselves to non-empty sequences and
positive integers, we are no longer able to define a sensible empty element. Cats has a NonEmptyList data type
that has an implementation of Semigroup but no implementation of Monoid.

A	more	accurate	(though	still	simplified)	
definition	of	Cats’	Monoid is:

trait Semigroup[A] {
def combine(x: A, y: A): A

}

trait Monoid[A] extends Semigroup[A] {
def empty: A

}

import cats.Monoid
import cats.instances.string._

scala> Monoid[String].combine("Hi ", "there")
res2: String = Hi there

scala> Monoid[String].empty
res3: String = ""

import cats.Monoid
import cats.instances.int._

scala> Monoid[Int].combine(32, 10)
res4: Int = 42

scala> Monoid[Int].empty
res5: Int = 0

As we know, Monoid extends Semigroup. If we
don’t need empty we can equivalently write:

import cats.Semigroup
import cats.instances.string._

scala> Semigroup[String].combine("Hi ", "there")
res6: String = Hi there

In Cats the binary operation is called neither op nor
append, but rather combine and the identity value
is not called zero but empty.

In Cats, as in Scalaz, the binary operation is
defined in Semigroup rather than inMonoid.

by Noel Welsh and Dave Gurnell

@noelwelsh @davegurnell

Cats provides syntax for the combine method in the form of the |+| operator. Because combine technically comes
from Semigroup, we access the syntax by importing from cats.syntax.semigroup

import cats.syntax.semigroup._ // for |+|

scala> val stringResult = "Hi " |+| "there" |+| Monoid[String].empty
stringResult: String = Hi there

scala> val intResult = 1 |+| 2 |+| Monoid[Int].empty
intResult: Int = 3

import cats.Monoid
import cats.instances.string._ // for String Monoid
import cats.instances.int._ // for Int Monoid

scala> val stringResult = "Hi " combine "there" combine Monoid[String].empty
stringResult: String = Hi there

scala> val intResult = 1 combine 2 combine Monoid[Int].empty
intResult: Int = 3

In Cats (as in Scalaz) SemigroupOps defines
infix operator aliases for Semigroup’s
associative operation, i.e. combine (append).

final class SemigroupOps[A: Semigroup](lhs: A) {
def |+|(rhs: A): A = macro Ops.binop[A, A]
def combine(rhs: A): A = macro Ops.binop[A, A]
def combineN(rhs: Int): A = macro Ops.binop[A, A]

}

Given	context	and	an	expression,	this	method	rewrites	the	tree	
to	call	the	"desired"	method	with	the	lhs and	rhs parameters.

by Noel Welsh and Dave Gurnell

@noelwelsh @davegurnell

we saw the three infix operator aliases that Scalaz
provides for Semigroup’s append function

final class SemigroupOps[F]…(implicit val F: Semigroup[F]) … {
final def |+|(other: => F): F = F. append (self, other)
final def mappend(other: => F): F = F. append (self, other)
final def ⊹(other: => F): F = F. append (self, other)

…

@philip_schwarz

And we looked at |+|, aka the TIE Fighter operator.

What aboutmappend?

Monoid is an embarrassingly simple but amazingly powerful concept. It’s the concept behind basic arithmetics:
Both addition and multiplication form a monoid. Monoids are ubiquitous in programming. They show up as strings,
lists, foldable data structures, futures in concurrent programming, events in functional reactive programming, and so on.
…

In Haskell we can define a type class for monoids — a type for which there is a neutral element called mempty and a
binary operation called mappend:

class Monoid m where
mempty :: m
mappend :: m -> m -> m

…
As an example, let’s declare String to be a monoid by providing the implementation of mempty and mappend (this is, in
fact, done for you in the standard Prelude):

instance Monoid String where
mempty = ""
mappend = (++)

Here, we have reused the list concatenation operator (++), because a String is just a list of characters.

A word about Haskell syntax: Any infix operator can be turned into a two-argument function by surrounding it with
parentheses. Given two strings, you can concatenate them by inserting ++ between them:

"Hello " ++ "world!”

or by passing them as two arguments to the parenthesized (++):

(++) "Hello " "world!"

In	Scalaz,	mappend is	
defined	in	Semigroup.	

In	Haskell,	mappend is	
defined	in	Monoid.

@BartoszMilewski

Monoid

A monoid is a binary associative operation with an identity.
…
For lists, we have a binary operator, (++), that joins two lists together. We can also use a function, mappend, from the
Monoid type class to do the same thing:

Prelude> mappend [1, 2, 3] [4, 5, 6]
[1, 2, 3, 4, 5, 6]

For lists, the empty list, [], is the identity value:

mappend [1..5] [] = [1..5]
mappend [] [1..5] = [1..5]

We can rewrite this as a more general rule, using mempty from the Monoid type class as a generic identity value (more
on this later):

mappend x mempty = x
mappend mempty x = x

In plain English, a monoid is a function that takes two arguments and follows two laws: associativity and identity.
Associativity means the arguments can be regrouped (or reparenthesized, or reassociated) in different orders and give
the same result, as in addition. Identity means there exists some value such that when we pass it as input to our function,
the operation is rendered moot and the other value is returned, such as when we add zero or multiply by one. Monoid is
the type class that generalizes these laws across types.

Again, in Haskell,
mappend is defined
in Monoid

By Christopher Allen
and Julie Moronuki

@bitemyapp@argumatronic

The type class Monoid is defined:

class Monoid m where
mempty :: m
mappend :: m -> m -> m
mconcat :: [m] -> m
mconcat = foldr mappend mempty

mappend is how any two values that inhabit your type can be joined
together. mempty is the identity value for that mappend operation. There
are some laws that all Monoid instances must abide, and we’ll get to those
soon. Next, let’s look at some examples of monoids in action!

Examples of using Monoid
The nice thing about monoids is that they are familiar; they’re all over the
place. The best way to understand them initially is to look at examples of
some common monoidal operations and remember that this type class
abstracts the pattern out, giving you the ability to use the operations over a
larger range of types.

List
One common type with an instance of Monoid is List. Check out how
monoidal operations work with lists:

Prelude> mappend [1, 2, 3] [4, 5, 6]
[1,2,3,4,5,6]
Prelude> mconcat [[1..3], [4..6]]
[1,2,3,4,5,6]
Prelude> mappend "Trout" " goes well with garlic"
"Trout goes well with garlic"

This should look familiar, because we’ve certainly seen this before:

Prelude> (++) [1, 2, 3] [4, 5, 6]
[1,2,3,4,5,6]
Prelude> (++) "Trout" " goes well with garlic"
"Trout goes well with garlic"
Prelude> foldr (++) [] [[1..3], [4..6]]
[1,2,3,4,5,6]
Prelude> foldr mappend mempty [[1..3], [4..6]]
[1,2,3,4,5,6]

Our old friend (++)! And if we look at the definition of Monoid for
lists, we can see how this all lines up:

instance Monoid [a] where
mempty = []
mappend = (++)

For other types, the instances would be different, but the ideas
behind them remain the same.

By Christopher Allen
and Julie Moronuki

@bitemyapp@argumatronic

Semigroup

Mathematicians play with algebras like that creepy kid you knew in grade school who would pull legs off of insects.
Sometimes, they glue legs onto insects too, but in the case where we’re going from Monoid to Semigroup, we’re pulling
a leg off.

In this case, the leg is our identity. To get from a monoid to a semigroup, we simply no longer furnish nor require an
identity. The core operation remains binary and associative. With this, our definition of Semigroup is:

class Semigroup a where
(<>) :: a -> a -> a

And we’re left with one law:
(a <> b) <> c = a <> (b <> c)

Semigroup still provides a binary associative operation, one that typically joins two things together (as in
concatenation or summation), but doesn’t have an identity value. In that sense, it’s a weaker algebra.
…

NonEmpty, a useful datatype

One useful datatype that can’t have a Monoid instance but does have a Semigroup instance is the NonEmpty list type.
It is a list datatype that can never be an empty list…

We can’t write a Monoid for NonEmpty because it has no identity value by design! There is no empty list to serve as an
identity for any operation over a NonEmpty list, yet there is still a binary associative operation: two NonEmpty lists
can still be concatenated.

A type with a canonical binary associative operation but no identity value is a natural fit for Semigroup.

By Christopher Allen
and Julie Moronuki

@bitemyapp@argumatronic

def foo[A](x: A, y: A)(implicit sg: Semigroup[A]) =
sg.append(x, y)

implicit def nonEmptyListSemigroup[A]: Semigroup[NonEmptyList[A]] = new Semigroup[NonEmptyList[A]] {
def append(f1: NonEmptyList[A], f2: => NonEmptyList[A]) = f1 append f2

}

In Scalaz there is a predefined implicit NonEmptyList Semigroup

@philip_schwarz

so if we write a function that operates on values of type A for which an implicit
Semigroup, is available e.g. a function foo that appends two such values

we are then able to use the function to append two non-empty lists

scala> foo(NonEmptyList(1,2,3), NonEmptyList(4,5,6))
res2: scalaz.NonEmptyList[Int] = NonEmpty[1,2,3,4,5,6]
scala>

sg.append(x, y)
x |+| y
x ⊹ y
x mappend y

and since we saw before that there are infix operator aliases for the append method
of a Semigroup, the body of foo can be written in any of the following ways

Strength can be weakness

When Haskellers talk about the strength of an algebra, they usually mean the number of operations it provides which in
turn expands what you can do with any given instance of that algebra without needing to know specifically what
type you are working with.

The reason we cannot and do not want to make all of our algebras as big as possible is that there are datatypes which
are very useful representationally, but which do not have the ability to satisfy everything in a larger algebra that could
work fine if you removed an operation or law.

This becomes a serious problem if NonEmpty is the right datatype for something in the domain you’re representing. If
you’re an experienced programmer, think carefully. How many times have you meant for a list to never be empty? To
guarantee this and make the types more informative, we use types like NonEmpty.

The problem is that NonEmpty has no identity value for the combining operation (mappend) in Monoid. So, we keep
the associativity but drop the identity value and its laws of left and right identity. This is what introduces the need
for and idea of Semigroup from a datatype.

The most obvious way to see that a monoid is stronger than a semigroup is to observe that it has a strict superset of
the operations and laws that Semigroup provides. Anything which is a monoid is by definition also a semigroup.

It is to be hoped that Semigroup will be made a superclass of Monoid in an upcoming version of GHC.

class Semigroup a => Monoid a where
...

actually Semigroup has been made a superclass of Monoid – see next slide

By Christopher Allen
and Julie Moronuki

@bitemyapp@argumatronic

So in Haskell, Monoid’s mappend is actually just another name for
Semigroup’s associative operation <>, so maybe that’s why in Scalaz,
mappend is not defined in Monoid but is instead an infix operator
that is an alias for Semigroup’s associative function append.

@philip_schwarz

EXERCISE 10.1

Give a Monoid instance for combining Option values.

def optionMonoid[A]: Monoid[Option[A]]

Notice that we have a choice in how we
implement op. We can compose the options in
either order.

Both of those implementations satisfy the
monoid laws, but they are not equivalent. This
is true in general – that is, every monoid has a
dual where the op combines things in the
opposite order.

Monoids like booleanOr and intAddition are
equivalent to their duals because their op is
commutative as well as associative.

scala> firstOptionMonoid.op(Some(2),Some(3))
res0: Option[Int] = Some(2)

scala> firstOptionMonoid.op(None,Some(3))
res1: Option[Int] = Some(3)

scala> firstOptionMonoid.op(Some(2),None)
res2: Option[Int] = Some(2)

scala> firstOptionMonoid.op(None,None)
res3: Option[Nothing] = None

scala> lastOptionMonoid.op(Some(2),Some(3))
res0: Option[Int] = Some(3)

scala> lastOptionMonoid.op(None,Some(3))
res1: Option[Int] = Some(3)

scala> lastOptionMonoid.op(Some(2),None)
res2: Option[Int] = Some(2)

scala> lastOptionMonoid.op(None,None)
res3: Option[Nothing] = None

FP in Scala

A Companion booklet to
FP in Scala

The results of the op associative
operations of firstOptionMonoid
and lastOptionMonoid only differ
when neither of the arguments is
None.

returns x if it is nonempty, otherwise
returns the result of evaluating y

The Option[A] Monoid
and the notion that
everyMonoid has a dual

def optionMonoid[A]: Monoid[Option[A]] = new Monoid[Option[A]] {
def op(x: Option[A], y: Option[A]) = x orElse y
val zero = None

}

// We can get the dual of any monoid just by flipping the `op`.
def dual[A](m: Monoid[A]): Monoid[A] = new Monoid[A] {

def op(x: A, y: A): A = m.op(y, x)
val zero = m.zero

}

// Now we can have both monoids on hand:
def firstOptionMonoid[A]: Monoid[Option[A]] = optionMonoid[A]
def lastOptionMonoid[A]: Monoid[Option[A]] = dual(firstOptionMonoid)

val stringMonoid = new Monoid[String] {
def op(a1: String, a2: String) = a1 + a2
val zero = ""

}
def firstStringMonoid: Monoid[String] = stringMonoid
def lastStringMonoid: Monoid[String] = dual(firstStringMonoid)

scala> firstStringMonoid.op("Hello, ", "World!")
res0: String = Hello, World!

scala> lastStringMonoid.op("Hello, ", "World!")
res1: String = "World!Hello, "

scala> assert(firstStringMonoid.op("Hello, ", "World!") equals lastStringMonoid.op("World!", "Hello, "))

scala>

def listMonoid[A] = new Monoid[List[A]] {
def op(a1: List[A], a2: List[A]) = a1 ++ a2
val zero = Nil

}
def firstListMonoid[A]: Monoid[List[A]] = listMonoid
def lastListMonoid[A]: Monoid[List[A]] = dual(firstListMonoid)

scala> firstListMonoid[Int].op(List(1,2,3), List(4,5,6))
res15: List[Int] = List(1, 2, 3, 4, 5, 6)

scala> lastListMonoid[Int].op(List(1,2,3), List(4,5,6))
res16: List[Int] = List(4, 5, 6, 1, 2, 3)

Unlike the op of monoids like booleanOr, booleanAnd,
intAddition, intMultiplication, which is commutative, the op of
monoids like stringMonoid and listMonoid is not
commutative, so these monoids are not equivalent to their
duals.

scala> "Hello, " |+| "World!"
res0: String = Hello, World!

scala> Dual("Hello, ") |+| Dual("World!")
res1: String @@ scalaz.Tags.Dual = "World!Hello, "

scala> Dual("World!") |+| Dual("Hello, ")
res2: String @@ scalaz.Tags.Dual = Hello, World!

scala> assert(("Hello, " |+| "World!") equals (Dual("World!") |+| Dual("Hello, ")))

It looks like In Scalaz there is a Dual tag that we can
apply to the operands of a monoid’s associative
operation so that we get the same effect as using
the associative operation of themonoid’s dual.

Using the Dual tag with the String monoid

and with the List monoid

scala> List(1,2,3) |+| List(4,5,6)
res3: List[Int] = List(1, 2, 3, 4, 5, 6)

scala> Dual(List(1,2,3)) |+| Dual(List(4,5,6))
res4: List[Int] @@ scalaz.Tags.Dual = List(4, 5, 6, 1, 2, 3)

@philip_schwarz

val intAddition: Monoid[Int] = new Monoid[Int] {
def op(x: Int, y: Int) = x + y
val zero = 0

}

The canonicity of a Scala monoid

In Scala, it’s possible to have multiple Monoid instances associated with a type. For example, for the type Int, we can
have a Monoid[Int] that uses addition with 0, and another Monoid[Int] that uses multiplication with 1.

val intMultiplication: Monoid[Int] = new Monoid[Int] {
def op(x: Int, y: Int) = x * y
val zero = 1

}

This can lead to certain problems since we cannot count on a Monoid instance being canonical in any way. To
illustrate this problem, consider a “suspended” computation like the following:

This represents an addition that is “in flight” in some sense. It’s an accumulated value so far, represented by acc, a monoid
m that was used to accumulate acc, and a list of remaining elements to add to the accumulation using the monoid.

Now, if we have two values of type Suspended, how would we add them together? We have no idea whether the two
monoids are the same. And when it comes time to add the two acc values, which monoid should we use? There’s no way
of inspecting the monoids (since they are just functions) to see if they are equivalent. So we have to make an arbitrary
guess, or just give up.

…

The Scalaz library takes the same approach [as Haskell], where there is only one canonical monoid per type. However,
since Scala doesn’t have type constraints, the canonicity of monoids is more of a convention than something enforced by
the type system. And since Scala doesn’t have newtypes, we use phantom types to add tags to the underlying types.

This is done with scalaz.Tag…

case class Suspended(acc: Int, m: Monoid[Int], remaining: List[Int])

(by	Runar	Bjarnason)
@runarorama

Tagging
In the section introducing Monoid we built a Monoid[TradeTemplate] and realised that scalaz does not do what we
wanted with Monoid[Option[A]]. This is not an oversight of scalaz: often we find that a data type can implement a
fundamental typeclass in multiple valid ways and that the default implementation doesn’t do what we want, or
simply isn’t defined.

Basic examples are Monoid[Boolean] (conjunction && vs disjunction ||) and Monoid[Int] (multiplication vs
addition).

To implement Monoid[TradeTemplate] we found ourselves either breaking typeclass coherency, or using a different
typeclass.

scalaz.Tag is designed to address the multiple typeclass implementation problem without breaking typeclass
coherency.

The definition is quite contorted, but the syntax to use it is very clean. This is how we trick the compiler into allowing
us to define an infix type A @@ T that is erased to A at runtime:

…
<not shown here – too involved>
…

i.e. we tag things with Princess Leia hair buns @@.

Some useful tags are provided in the Tags object.

First / Last are used to select Monoid instances that pick the first or last non-zero operand. Multiplication is for
numeric multiplication instead of addition. Disjunction / Conjunction are to select && or ||, respectively.

Sam	Halliday @fommil

There can only be one implementation of a typeclass for any given type parameter, a property known as
typeclass coherence.

Typeclass coherence is primarily about consistency, and the consistency gives us the confidence to use implicit
parameters. It would be difficult to reason about code that performs differently depending on the implicit imports that are
in scope. Typeclass coherence effectively says that imports should not impact the behaviour of the code.

object Tags {

sealed trait First
val First = Tag.of[First]

sealed trait Last
val Last = Tag.of[Last]

sealed trait Multiplication
val Multiplication = Tag.of[Multiplication]

sealed trait Disjunction
val Disjunction = Tag.of[Disjunction]

sealed trait Conjunction
val Conjunction = Tag.of[Conjunction]

...
}

scala> import scalaz.Tags.{Disjunction,Multiplication}
import scalaz.Tags.{Disjunction, Multiplication}

scala> Multiplication(3)
res0: Int @@ scalaz.Tags.Multiplication = 3

scala> Disjunction(false)
res1: Boolean @@ scalaz.Tags.Disjunction = false

Using	scalaz.Tag to	
distinguish	between	
different	monoids
for	the	same	type

scala> // use default Scalaz Int monoid, i.e. (Int,+,0)

scala> 2 |+| 3
res0: Int = 5

scala> import scalaz.Tags.Multiplication
import scalaz.Tags.Multiplication

scala> // use alternative Scalaz Int monoid, i.e. (Int,*,1)

scala> Multiplication(2) |+| Multiplication(3)
res1: Int @@ scalaz.Tags.Multiplication = 6

scala> import scalaz.Scalaz._
import scalaz.Scalaz._
scala> import scalaz.Tags.{Conjunction,Disjunction}
import scalaz.Tags.{Conjunction, Disjunction}

scala> Conjunction(true)
res0: Boolean @@ scalaz.Tags.Conjunction = true
scala> Disjunction(true)
res1: Boolean @@ scalaz.Tags.Disjunction = true

scala> // use monoid (Boolean,OR,false)
scala> assert((Disjunction(false) |+| Disjunction(false)) === Disjunction(false))
scala> assert((Disjunction(false) |+| Disjunction(true)) === Disjunction(true))
scala> assert((Disjunction(true) |+| Disjunction(false)) === Disjunction(true))
scala> assert((Disjunction(true) |+| Disjunction(true)) === Disjunction(true))

scala> // use monoid (Boolean,AND,true)
scala> assert((Conjunction(false) |+| Conjunction(false)) === Conjunction(false))
scala> assert((Conjunction(false) |+| Conjunction(true)) === Conjunction(false))
scala> assert((Conjunction(true) |+| Conjunction(false)) === Conjunction(false))
scala> assert((Conjunction(true) |+| Conjunction(true)) === Conjunction(true))

Princess Leia hair buns @@

Examples of using scalaz.Tag to
distinguish between different
Int monoids and Boolean
monoids

scala> import scalaz.Monoid
import scalaz.Monoid

scala> implicit val booleanMonoid: Monoid[Boolean] = scalaz.std.anyVal.booleanInstance.conjunction
booleanMonoid: scalaz.Monoid[Boolean] = scalaz.std.AnyValInstances$booleanInstance$conjunction$@4d2667fc

scala> import scalaz.syntax.semigroup._
import scalaz.syntax.semigroup._

scala> true |+| false
res0: Boolean = false

scala> booleanMonoid.zero
res3: Boolean = true

scala> import scalaz.Monoid
import scalaz.Monoid

scala> implicit val booleanMonoid: Monoid[Boolean] = scalaz.std.anyVal.booleanInstance.disjunction
booleanMonoid: scalaz.Monoid[Boolean] = scalaz.std.AnyValInstances$booleanInstance$disjunction$@794091e3

scala> import scalaz.syntax.semigroup._
import scalaz.syntax.semigroup._

scala> true |+| false
res0: Boolean = true

scala> booleanMonoid.zero
res3: Boolean = false

There	is	a	way	of	doing	this,	e.g.	picking	(Boolean,	AND,	true)

but as	Travis	Brown	explains	in	his	answer	to	https://stackoverflow.com/questions/34163121/how-to-create-semigroup-for-boolean-when-using-scalaz
this	is	somewhat	at	odds	with	the	Scalaz philosophy

Picking	a	particular	Boolean	semigroup or	monoid	in	Scalaz

or	picking	(Boolean,	OR,	false)

def optionMonoid[A]: Monoid[Option[A]] = new Monoid[Option[A]] {
def op(x: Option[A], y: Option[A]) = x orElse y
val zero = None

}

// We can get the dual of any monoid just by flipping the `op`.
def dual[A](m: Monoid[A]): Monoid[A] = new Monoid[A] {

def op(x: A, y: A): A = m.op(y, x)
val zero = m.zero

}

// Now we can have both monoids on hand:
def firstOptionMonoid[A]: Monoid[Option[A]] = optionMonoid[A]
def lastOptionMonoid[A]: Monoid[Option[A]] = dual(firstOptionMonoid)

FP in Scala

Remember the two definitions ofMonoid[Option[A]] we saw in
FP in Scala, i.e. optionMonoid and its dual?

When firstOptionMonoid combines two Option arguments the
result is the first non-zero argument, i.e. the first argument that
is not None.

When lastOptionMonoid combines two Option arguments the
result is the last non-zero argument, i.e. the last argument that
is not None.

implicit def optionMonoid[A: Semigroup]: Monoid[Option[A]] =
new OptionSemigroup[A] with Monoid[Option[A]] {

override def B = implicitly
override def zero = None

}

private trait OptionSemigroup[A] extends Semigroup[Option[A]] {
def B: Semigroup[A]
def append(a: Option[A], b: => Option[A]): Option[A] = (a, b) match {

case (Some(aa), Some(bb)) => Some(B.append(aa, bb))
case (Some(_), None) => a
case (None, b2@Some(_)) => b2
case (None, None) => None

}
}

returns x if it is nonempty, otherwise
returns the result of evaluating y

In Scalaz, the above two Option monoids are called optionFirst and optionLast and are
considered alternative Optionmonoids.

In Scalaz the default Option monoid is a third one called optionMonoid. It operates on
Option[A] values such that a Semigroup[A] instance is defined.

When optionMonoid combines two Option arguments, the result is the result of combining
the A values of the two options with the associative operation of the Semigroup[A] instance.

e.g. while the result of combining Some(2) and Some(3) with optionFirst is Some(2) and the
result of combining them with optionLast is Some(3), the result of combining them with
optionMonoid is Some(5), if Semigroup (Int,+) is chosen, or Some(6) if Semigroup (Int,*) is
chosen.

scala> Option(2) |+| Option(3)
res0: Option[Int] = Some(5)
scala> import scalaz.Tags.Multiplication
import scalaz.Tags.Multiplication
scala> Option(Multiplication(2)) |+| Option(Multiplication(3))
res1: Option[Int @@ scalaz.Tags.Multiplication] = Some(6)

@philip_schwarz

scala> Option(2) |+| Option(3)
res0: Option[Int] = Some(5)
scala> Option(2) |+| None
res1: Option[Int] = Some(2)
scala> (None:Option[Int]) |+| Option(3)
res2: Option[Int] = Some(3)

scala> Option("Hello, ") |+| Option("World!")
res3: Option[String] = Some(Hello, World!)
scala> Option("Hello, ") |+| None
res4: Option[String] = Some(Hello,)
scala> (None:Option[String]) |+| Option("World!")
res5: Option[String] = Some(World!)

scala> Option(List(1,2,3)) |+| Option(List(4,5))
res6: Option[List[Int]] = Some(List(1,2,3,4,5))
scala> Option(List(1,2,3)) |+| None
res7: Option[List[Int]] = Some(List(1,2,3))
scala> (None:Option[List[Int]]) |+| Option(List(1,2,3))
res8: Option[List[Int]] = Some(List(1,2,3))

scala> some(2) |+| some(3)
res0: Option[Int] = Some(5)
scala> some(2) |+| none
res1: Option[Int] = Some(2)
scala> none[Int] |+| some(3)
res2: Option[Int] = Some(3)

scala> some("Hello, ") |+| some("World!")
res3: Option[String] = Some(Hello, World!)
scala> some("Hello, ") |+| none
res4: Option[String] = Some(Hello,)
scala> none[String] |+| some("World!")
res5: Option[String] = Some(World!)

scala> some(List(1,2,3)) |+| some(List(4,5))
res6: Option[List[Int]] = Some(List(1,2,3,4,5))
scala> some(List(1,2,3)) |+| none
res7: Option[List[Int]] = Some(List(1,2,3))
scala> none[List[Int]] |+| some(List(1,2,3))
res8: Option[List[Int]] = Some(List(1,2,3))

Examples	of	optionMonoid[A: Semigroup]: Monoid[Option[A]] where	A is	(Int,+),	(String,++) and (List[Int],++)

gaining	access	to	|+| using	Option(…) and	None using	the	more	convenient	some and	nonemethods	provided	by	OptionFunctions

trait OptionFunctions {
final def some[A](a: A): Option[A] = Some(a)
final def none[A]: Option[A] = None
…

scala> 2.some |+| 3.some
res0: Option[Int] = Some(5)
scala> 2.some |+| none
res1: Option[Int] = Some(2)
scala> none[Int] |+| 3.some
res2: Option[Int] = Some(3)

scala> "Hello, ".some |+| "World!".some
res3: Option[String] = Some(Hello, World!)
scala> "Hello, ".some |+| none
res4: Option[String] = Some(Hello,)
scala> none[String] |+| "World!".some
res5: Option[String] = Some(World!)

scala> List(1,2,3).some |+| List(4,5).some
res6: Option[List[Int]] = Some(List(1,2,3,4,5))
scala> List(1,2,3).some |+| none
res7: Option[List[Int]] = Some(List(1,2,3))
scala> none[List[Int]] |+| List(1,2,3).some
res8: Option[List[Int]] = Some(List(1,2,3))

Even	more	convenient:	using	the	somemethod	provided	by	OptionIdOps

final class OptionIdOps[A](val self: A) extends AnyVal {
def some: Option[A] = Some(self)

}

implicit def optionFirst[A]: Monoid[FirstOption[A]] with Band[FirstOption[A]] =
new Monoid[FirstOption[A]] with Band[FirstOption[A]] {

def zero: FirstOption[A] = Tag(None)

def append(f1: FirstOption[A], f2: => FirstOption[A]) =
Tag(Tag.unwrap(f1).orElse(Tag.unwrap(f2)))

}

implicit def optionLast[A]: Monoid[LastOption[A]] with Band[LastOption[A]] =
new Monoid[LastOption[A]] with Band[LastOption[A]] {

def zero: LastOption[A] = Tag(None)

def append(f1: LastOption[A], f2: => LastOption[A]) =
Tag(Tag.unwrap(f2).orElse(Tag.unwrap(f1)))

}

scala> import scalaz.Tags.{First,Last}
import scalaz.Tags.{First, Last}

scala> First(2.some) |+| First(3.some)
res0: Option[Int] @@ scalaz.Tags.First = Some(2)
scala> First(2.some) |+| First(none)
res1: Option[Int] @@ scalaz.Tags.First = Some(2)
scala> First(none[Int]) |+| First(3.some)
res2: Option[Int] @@ scalaz.Tags.First = Some(3)
scala> First(none[Int]) |+| First(none)
res3: Option[Int] @@ scalaz.Tags.First = None

scala> Last(2.some) |+| Last(3.some)
res4: Option[Int] @@ scalaz.Tags.Last = Some(3)
scala> Last(2.some) |+| Last(none)
res5: Option[Int] @@ scalaz.Tags.Last = Some(2)
scala> Last(none[Int]) |+| Last(3.some)
res6: Option[Int] @@ scalaz.Tags.Last = Some(3)
scala> Last(none[Int]) |+| Last(none)
res7: Option[Int] @@ scalaz.Tags.Last = None

scala> 2.some.first |+| 3.some.first
res0: Option[Int] @@ scalaz.Tags.First = Some(2)
scala> 2.some.first |+| none.first
res1: Option[Int] @@ scalaz.Tags.First = Some(2)
scala> none[Int].first |+| 3.some.first
res2: Option[Int] @@ scalaz.Tags.First = Some(3)
scala> none[Int].first |+| none.first
res3: Option[Int] @@ scalaz.Tags.First = None

scala> 2.some.last |+| 3.some.last
res4: Option[Int] @@ scalaz.Tags.Last = Some(3)
scala> 2.some.last |+| none.last
res5: Option[Int] @@ scalaz.Tags.Last = Some(2)
scala> none[Int].last |+| 3.some.last
res6: Option[Int] @@ scalaz.Tags.Last = Some(3)
scala> none[Int].last |+| none.last
res7: Option[Int] @@ scalaz.Tags.Last = None

final class OptionOps[A](self: Option[A]) {
…
final def first: Option[A] @@ First = Tag(self)
final def last: Option[A] @@ Last = Tag(self)
…

How Scalaz alternative Option monoids optionFirst and
optionLast are implemented using FirstOption[A]
and LastOption[A], which are just aliases

type FirstOption[A] = Option[A] @@ Tags.First
type LastOption[A] = Option[A] @@ Tags.Last

Choosing the optionFirst monoid or the
optionLast monoid by using the First and
Last tags

Choosing the optionFirst monoid
or the optionLast monoid by
using the more convenient
first and last methods
provided by OptionOps

scala> First("Hello, ".some) |+| First("World!".some)
res0: Option[String] @@ scalaz.Tags.First = Some(Hello,)
scala> First("Hello, ".some) |+| First(none)
res1: Option[String] @@ scalaz.Tags.First = Some(Hello,)
scala> First(none[String]) |+| First("World!".some)
res2: Option[String] @@ scalaz.Tags.First = Some(World!)
scala> First(none[String]) |+| First(none)
res3: Option[String] @@ scalaz.Tags.First = None

scala> Last("Hello, ".some) |+| Last("World!".some)
res4: Option[String] @@ scalaz.Tags.Last = Some(World!)
scala> Last("Hello, ".some) |+| Last(none)
res5: Option[String] @@ scalaz.Tags.Last = Some(Hello,)
scala> Last(none[String]) |+| Last("World!".some)
res6: Option[String] @@ scalaz.Tags.Last = Some(World!)
scala> Last(none[String]) |+| Last(none)
res7: Option[String] @@ scalaz.Tags.Last = None

scala> First(List(1,2,3).some) |+| First(List(4,5).some)
res0: Option[List[Int]] @@ scalaz.Tags.First = Some(List(1, 2, 3))
scala> First(List(1,2,3).some) |+| First(none)
res1: Option[List[Int]] @@ scalaz.Tags.First = Some(List(1, 2, 3))
scala> First(none[List[Int]]) |+| First(List(1,2,3).some)
res2: Option[List[Int]] @@ scalaz.Tags.First = Some(List(1, 2, 3))
scala> First(none[List[Int]]) |+| First(none)
res3: Option[List[Int]] @@ scalaz.Tags.First = None

scala> Last(List(1,2,3).some) |+| Last(List(4,5).some)
res4: Option[List[Int]] @@ scalaz.Tags.Last = Some(List(4, 5))
scala> Last(List(1,2,3).some) |+| Last(none)
res5: Option[List[Int]] @@ scalaz.Tags.Last = Some(List(1, 2, 3))
scala> Last(none[List[Int]]) |+| Last(List(1,2,3).some)
res6: Option[List[Int]] @@ scalaz.Tags.Last = Some(List(1, 2, 3))
scala> Last(none[List[Int]]) |+| Last(none)
res7: Option[List[Int]] @@ scalaz.Tags.Last = None

Same as in previous slide, but instead of looking at (Int,+) we look at (String,++) and (List[Int],++)

scala> "Hello, ".some.first |+| "World!".some.first
res0: Option[String] @@ scalaz.Tags.First = Some(Hello,)
scala> "Hello, ".some.first |+| none.first
res1: Option[String] @@ scalaz.Tags.First = Some(Hello,)
scala> none[String].first |+| "World!".some.first
res2: Option[String] @@ scalaz.Tags.First = Some(World!)
scala> none[String].first |+| none.first
res3: Option[String] @@ scalaz.Tags.First = None

scala> "Hello, ".some.last |+| "World!".some.last
res4: Option[String] @@ scalaz.Tags.Last = Some(World!)
scala> "Hello, ".some.last |+| none.last
res5: Option[String] @@ scalaz.Tags.Last = Some(Hello,)
scala> none[String].last |+| "World!".some.last
res6 Option[String] @@ scalaz.Tags.Last = Some(World!)
scala> none[String].last |+| none.last
res7: Option[String] @@ scalaz.Tags.Last = None

scala> List(1,2,3).some.first |+| List(4,5).some.first
res0: Option[List[Int]] @@ scalaz.Tags.First = Some(List(1, 2, 3))
scala> List(1,2,3).some.first |+| none.first
res1: Option[List[Int]] @@ scalaz.Tags.First = Some(List(1, 2, 3))
scala> none[List[Int]].first |+| List(1,2,3).some.first
res2: Option[List[Int]] @@ scalaz.Tags.First = Some(List(1, 2, 3))
scala> none[List[Int]].first |+| none.first
res3: Option[List[Int]] @@ scalaz.Tags.First = None

scala> List(1,2,3).some.last |+| List(4,5).some.last
res4: Option[List[Int]] @@ scalaz.Tags.Last = Some(List(4, 5))
scala> List(1,2,3).some.last |+| none.last
res5: Option[List[Int]] @@ scalaz.Tags.Last = Some(List(1, 2, 3))
scala> none[List[Int]].last |+| List(1,2,3).some.last
res6: Option[List[Int]] @@ scalaz.Tags.Last = Some(List(1, 2, 3))
scala> none[List[Int]].last |+| none.last
res7: Option[List[Int]] @@ scalaz.Tags.Last = None

using	the	First and	Last tags using	the	more	convenient	first and	lastmethods	provided	by	OptionOps

We saw earlier that in Scalaz there are three types of Option monoid: alternativemonoids optionFirst and optionLast, plus
a default one called optionMonoid, which operates on Option[A] values such that a Semigroup[A] instance is defined.
In Cats there is only one Option monoid and it has the same characteristics as the optionMonoid in Scalaz.

The	Option Monoid in	Cats

https://typelevel.org/cats/typeclasses/monoid.html

Comparing the Cats mplementation
of optionMonoid with the Scalaz
implementation.

The	Cats implementation	of	optionMonoid[A: Semigroup]: Monoid[Option[A]]

https://typelevel.org/cats/typeclasses/monoid.html

implicit def optionMonoid[A: Semigroup]: Monoid[Option[A]] =
new OptionSemigroup[A] with Monoid[Option[A]] {

override def B = implicitly
override def zero = None

}

private trait OptionSemigroup[A] extends Semigroup[Option[A]] {
def B: Semigroup[A]
def append(a: Option[A], b: => Option[A]): Option[A] = (a, b) match {

case (Some(aa), Some(bb)) => Some(B.append(aa, bb))
case (Some(_), None) => a
case (None, b2@Some(_)) => b2
case (None, None) => None

}
}

We	can	assemble	a	Monoid[Option[Int]]	using	instances	from	cats.instances.int and	cats.instances.option

With	the	correct	instances	in	scope,	we	can	set	about	adding	anything	we	want

Example	of	using	the	Option Monoid in	Cats

by Noel Welsh and Dave Gurnell

@noelwelsh @davegurnell

trait Monoid[A] {
def op(a1: A, a2: A): A
def zero: A

}

trait Semigroup[F] { self =>
def append(f1: F, f2: => F): F
…

}

final class SemigroupOps[F]…(implicit val F: Semigroup[F]) … {
final def |+|(other: => F): F = F. append (self, other)
final def mappend(other: => F): F = F. append (self, other)
final def ⊹(other: => F): F = F. append (self, other)
…

}

trait Monoid[F] extends Semigroup[F] { self =>
def zero: F
…

}

FP in Scala

class Semigroup m where
(<>) :: m -> m -> m

class Semigroup m => Monoid m where
mempty :: m
mappend :: m -> m -> m
mconcat :: [m] -> m
mconcat = foldr mappend mempty

trait Semigroup[A] {
def combine(x: A, y: A): A
…

}

final class SemigroupOps[A: Semigroup](lhs: A) {
def |+|(rhs: A): A = macro Ops.binop[A, A]
def combine(rhs: A): A = macro Ops.binop[A, A]
def combineN(rhs: Int): A = macro Ops.binop[A, A]

}

trait Monoid[A] extends Semigroup[A] {
def empty: A
…

}

The mappend method is redundant and has
the default implementation mappend =	'(<>)'

Summary	of	the	naming	and	location	of	a	Monoid’s associative	binary	operation and	identity	element - simplified

to	be	continued	in	part	2

