
Functional Effects
Part 1

learn about functional effects through the work of

slides by @philip_schwarz

Debasish Ghosh
@debasishg

https://www.slideshare.net/pjschwarz

https://www.slideshare.net/pjschwarz/natural-transformations

Functional thinking and implementing with pure functions is a great engineering discipline for your domain model. But you also
need language support that helps build models that are responsive to failures, scales well with increasing load, and delivers a
nice experience to users. Chapter 1 referred to this characteristic as being reactive, and identified the following two aspects that
you need to address in order to make your model reactive:

• Manage failures, also known as design for failure
• Minimize latency by delegating long-running processes to background threads without blocking the main thread of

execution

In this section, you’ll see how Scala offers abstractions that help you address both of these issues. You can manage exceptions
and latency as effects that compose along with the other pure abstractions of your domain model. An effect adds capabilities
to your computation so that you don’t need to use side effects to model them. The sidebar “What is an effectful computation?”
details what I mean.

Managing exceptions is a key component of reactive models—you need to ensure that a failing component doesn’t bring down
the entire application. And managing latency is another key aspect that you need to take care of—unbounded latency through
blocking calls in your application is a severe antipattern of good user experience. Luckily, Scala covers both of them by
providing abstractions as part of the standard library.

What is an effectful computation?

In functional programming, an effect adds some capabilities to a computation. And because we’re dealing with a statically typed
language, these capabilities come in the form of more power from the type system. An effect is modeled usually in the form of a
type constructor that constructs types with these additional capabilities.

Say you have any type A and you’d like to add the capability of aggregation, so that you can treat a collection of A as a separate
type. You do this by constructing a type List[A] (for which the corresponding type constructor is List), which adds the effect of
aggregation on A. Similarly, you can have Option[A] that adds the capability of optionality for the type A.

In the next section, you’ll learn how to use type constructors such as Try and Future to model the effects of exceptions and
latency, respectively. In chapter 4 we’ll discuss more advanced effect handling using applicatives and monads. @debasishg

Debasish Ghosh

2.6.1 Managing effects

When we’re talking about exceptions, latency, and so forth in the context of making your model reactive, you must be
wondering how to adapt these concepts into the realm of functional programming. Chapter 1 called these side effects and
warned you about the cast of gloom that they bring to your pure domain logic. Now that we’re talking about managing them to
make our models reactive, how should you treat them as part of your model so that they can be composed in a referentially
transparent way along with the other domain elements?

In Scala, you treat them as effects, in the sense that you abstract them within containers that expose functional interfaces
to the world. The most common example of treating exceptions as effects in Scala is the Try abstraction, which you saw
earlier. Try provides a sum type, with one of the variants (Failure) abstracting the exception that your computation can
raise. Try wraps the effect of exceptions within itself and provides a purely functional interface to the user. In the more
general sense of the term, Try is a monad. There are some other examples of effect handling as well. Latency is another
example, which you can treat as an effect—instead of exposing the model to the vagaries of unbounded latency, you use
constructs such as Future that act as abstractions to manage latency. You’ll see some examples shortly.

The concept of a monad comes from category theory. This book doesn’t go into the theoretical underpinnings of a monad as a
category. It focuses more on monads as abstract computations that help you mimic the effects of typically impure actions
such as exceptions, I/O, continuations, and so forth while providing a functional interface to your users. And we’ll limit
ourselves to the monadic implementations that some of the Scala abstractions such as Try and Future offer. The only
takeaway on what a monad does in the context of functional and reactive domain modeling is that it abstracts effects and lets
you play with a pure functional interface that composes nicely with the other components.

@debasishg
Debasish Ghosh

effect failure

latency

Try
Future

monad

pure functional interface

abstract computation

aggregation

optionality

type constructor

capability

List
Option

exceptions

effectful computationcomputation

adds

to resuting in

abstracts – helps you mimic – allows the handling of

provides

allows
modeling

of abstraction

to manage

pure abstractions

composes
along with

other

side effect

so there is no
need to use a

Key terms and concepts
seen so far

@philip_schwarz

def calculateInterest[A <: SavingsAccount](account: A, balance: BigDecimal): Try[BigDecimal] = ???

def getCurrencyBalance[A <: SavingsAccount](account: A): Try[BigDecimal] = ???

def calculateNetAssetValue[A <: SavingsAccount](account: A, ccyBalance: BigDecimal, interest: BigDecimal): Try[BigDecimal] = ???

val account: SavingsAccount = ???

val result: Try[BigDecimal] = for {
 balance ⃪ getCurrencyBalance(account)
 interest ⃪ calculateInterest(account, balance)
 value ⃪ calculateNetAssetValue(account, balance, interest)
} yield value

result match {
 case Success(v) => ??? // .. success
 case Failure(ex) => ??? // .. failure
}

Listing 2.13 shows three functions, each of which can fail in some circumstances. We make that fact loud and clear—instead of BigDecimal, these
functions return Try[BigDecimal].

You’ve seen Try before and know how it abstracts exceptions within your Scala code. Here, by returning a Try, the function makes it explicit that it can
fail. If all is good and happy, you get the result in the Success branch of the Try, and if there’s an exception, then you get it from the Failure variant.

The most important point to note is that the exception never escapes from the Try as an unwanted side effect to pollute your compositional code. Thus
you’ve achieved the first promise of the two-pronged strategy of failure management in Scala: being explicit about the fact that this function can fail.

But what about the promise of compositionality? Yes, Try also gives you
that by being a monad and offering a lot of higher-order functions. Here’s the
flatMap method of Try that makes it a monad and helps you compose
with other functions that may fail:

 def flatMap[U](f: T => Try[U]): Try[U]

You saw earlier how flatMap binds together computations and helps you
write nice, sequential for-comprehensions without forgoing the goodness of
expression-oriented evaluation. You can get the same goodness with Try and
compose code that may fail:

This code handles all exceptions, composes nicely, and expresses the intent of the code in a clear and succinct manner. This is what you get when you
have powerful language abstractions to back your domain model. Try is the abstraction that handles the exceptions, and flatMap is the secret sauce
that lets you program through the happy path. So you can now have domain model elements that can throw exceptions—just use the Try abstraction for
managing the effects and you can make your code resilient to failures.

@debasishg
Debasish Ghosh

Functional and Reactive
Domain Modeling

Managing Failures

Managing Latency

def calculateInterest[A <: SavingsAccount](account: A, balance: BigDecimal):Future[BigDecimal] = ???

def getCurrencyBalance[A <: SavingsAccount](account: A): Future[BigDecimal] = ???

def calculateNetAssetValue[A <: SavingsAccount](account: A, ccyBalance: BigDecimal, interest: BigDecimal): Future[BigDecimal] = ???

val account: SavingsAccount = ???
implicit val ec: ExecutionContext = ???

val result: Future[BigDecimal] = for {
 balance ⃪ getCurrencyBalance(account)
 interest ⃪ calculateInterest(account, balance)
 value ⃪ calculateNetAssetValue(account, balance, interest)
} yield value

result onComplete {
 case Success(v) => ??? //.. success
 case Failure(ex) => ??? //.. failure
}

Just as Try manages exceptions using effects, another abstraction in the Scala library called Future helps you manage latency as an effect. What does that
mean? Reactive programming suggests that our model needs to be resilient to variations in latency, which may occur because of increased load on the system
or network delays or many other factors beyond the control of the implementer. To provide an acceptable user experience with respect to response time, our
model needs to guarantee some bounds on the latency.

The idea is simple: Wrap your long-running computations in a Future. The computation will be delegated to a background thread, without blocking
the main thread of execution. As a result, the user experience won’t suffer, and you can make the result of the computation available to the user whenever you
have it. Note that this result can also be a failure, in case the computation failed—so Future handles both latency and exceptions as effects.

@debasishg
Debasish Ghosh

Functional and Reactive
Domain Modeling

Future is also a monad, just like Try, and has the flatMap method
that helps you bind your domain logic to the happy path of
computation… imagine that the functions you wrote in listing 2.13
involve network calls, and thus there’s always potential for long latency
associated with each of them. As I suggested earlier, let’s make this explicit
to the user of our API and make each of the functions return Future:

By using flatMap, you can now compose the functions sequentially to yield another Future. The net effect is that the entire computation is delegated to
a background thread, and the main thread of execution remains free. Better user experience is guaranteed, and you’ve implemented what the reactive
principles talk about—systems being resilient to variations in network latency. The following listing demonstrates the sequential composition of futures in
Scala.
Here, result is also a Future, and you can plug in callbacks for the success and failure paths of the completed Future. If the Future completes
successfully, you have the net asset value that you can pass on to the client. If it fails, you can get that exception as well and implement custom
processing of the exception.

def calculateInterest[A <: SavingsAccount](account: A, balance: BigDecimal): Try[BigDecimal] = ???

def getCurrencyBalance[A <: SavingsAccount](account: A): Try[BigDecimal] = ???

def calculateNetAssetValue[A <: SavingsAccount](account: A, ccyBalance: BigDecimal, interest: BigDecimal): Try[BigDecimal] = ???

val account: SavingsAccount = ???

val result: Try[BigDecimal] = for {
 balance <- getCurrencyBalance(account)
 interest <- calculateInterest(account, balance)
 value <- calculateNetAssetValue(account, balance, interest)
} yield value

result match {
 case Success(v) => ??? // .. success
 case Failure(ex) => ??? // .. failure
}

def calculateInterest[A <: SavingsAccount](account: A, balance: BigDecimal): Future[BigDecimal] = ???

def getCurrencyBalance[A <: SavingsAccount](account: A): Future[BigDecimal] = ???

def calculateNetAssetValue[A <: SavingsAccount](account: A, ccyBalance: BigDecimal, interest: BigDecimal): Future[BigDecimal] = ???

val account: SavingsAccount = ???
implicit val ec: ExecutionContext = ???

val result: Future[BigDecimal] = for {
 balance <- getCurrencyBalance(account)
 interest <- calculateInterest(account, balance)
 value <- calculateNetAssetValue(account, balance, interest)
} yield value

result onComplete {
 case Success(v) => ??? //.. success
 case Failure(ex) => ??? //.. failure
}

Managing Failures

Managing Latency

That was great. Functional and Reactive Domain Modeling is a very nice book.

I’ll leave you with a question: are Try and Future lawful monads? See the following for
an introduction to monad laws and how to check if they are being obeyed:

https://www.slideshare.net/pjschwarz/monad-laws-must-be-checked-107011209

@philip_schwarz

Monad Laws Must be Checked

https://www.slideshare.net/pjschwarz/monad-laws-must-be-checked-107011209

