a; : aq
/\ /\f
a, : a;
/\ /\
as [] as e

k‘ N sy
E‘ HX @philip_schwarz (FP IM\uminated) https://fpilluminated.com/

slides by

http://fpilluminated.com/

The Three Duality Theorems of Fold | (for allfinite lists })

where @ and e are such that for all x, y, and z we have

@ foldr () e xs = foldl (B) e xs gx@@xyief;n:;géyji 2)

In other words, b is associative with unit e. N

where @B, &, and e are such that for all x, y, and z we have

xD YRz =xDy)Qz
@ foldr (B) e xs = foldl (Q) e xs xPe=eQRQx

In other words, 5 and &) associate with each other, and e on
the right of & is equivalent to e on the left of &).

@ foldr f e xs = foldl (flip f) e (reverse xs) where flip fxy=fyx
foldr =z (@ > »B)>pB - la]l > B foldl == (B »a »B)->p-la]>p
foldr fel] =e foldl fel] =e
foldr f e (x:xs) = f x (foldr f e xs) foldl f e (x:xs) = foldl f (f e x) xs

T Theorem@is a special case of@with (D) =(®) iTheorem@is a generalisation of@ "X For example, + and X are associative

. - . operators with respective units 0 and 1.
-+ Except lists sufficiently large to cause a right fold to encounter a stack overflow P P

(D) [foldr (@) e xs = foldl (@) e xs »=Haskell

where @ and e are such that :{ > integers = [1,2,3,4]
forallx, y, and z we have foldRight :: (o -=> B -> B) -> B -> [a] -> B > flags = [True, False, True]
foldRight f e [] = e > lists = [[1], [2,3,4],[5,6]]
CONBz=xDB D2 || foldright f e (x:xs) = f x (foldRight f e xs)
e@x=xandx@e=x > subLeft(integers) subtraction is not associative, and @ is not its
In other words, @ is foldLeft :: (B -> a ->B) -> B -> [a] -> P -10 unit, so the following are not equivalent:
associative with unit e. foldLeft f e [] =€
foldLeft f e (x:xs) = foldLeft f (f e x) xs > subRight(integers) | foldLeft (-) ©
.}) foldRight (-) ©
associative unit
Operator > sumLeft = foldLeft (+) © > assert (sumLeft(integers) == sumRight(integers)) "OK”
+ 0 > sumRight = foldRight (+) © "oK"
* 1 > subLeft = foldLeft (-) © > assert (sublLeft(integers) /= subRight(integers)) "OK”
> subRight = foldRight (-) © "oK"
&& True
> prdLeft = foldLeft (*) 1 > assert (prdLeft(integers) == prdRight(integers)) "OK”
I False > prdRight = foldRight (*) 1 "OK"
t 1 > andLeft = foldLeft (&&) True > assert (andLeft(flags) == andRight(flags)) "OK”
> andRight = foldRight (&&) True "oK"
> orLeft = foldLeft (||) False > assert (orLeft(flags) == orRight(flags)) "OK”
> orRight = foldRight (||) False "OK"
> concatLeft = foldlLeft (++) [] > assert (concatLeft(lists) == concatRight(lists)) "OK”
> concatRight = foldRight (++) [] "OK”

Same as previous slide but using built-in foldl and foldr

> sumLeft
> sumRight

> subLeft
> subRight

> prdLeft
> prdRight

> andLeft
> andRight

> orLeft
> orRight

> concatLeft
> concatRight

foldl
foldr

foldl
foldr

foldl
foldr

foldl
foldr

foldl
foldr

(+) ©
(+) ©

(-) @
(-) @
(*) 1
(*) 1
(&&) True
(&&) True

foldl (++) []
foldr (++) []

> integers = [1,2,3,4]
> flags = [True, False, True]
> lists = [[1], [2,314]1[516]]

> subLeft(integers)
-10

subtraction is not associative, and 9 is not its
unit, so the following are not equivalent:

> subRight(integers) | foldl (-) @

-2 foldr (-) ©

> assert (sumLeft(integers) == sumRight(integers)) "OK”
IIOK n

> assert (subLeft(integers) /= subRight(integers)) "OK”
IIOKII

> assert (prdLeft(integers) == prdRight(integers)) "OK”
IIOK n

> assert (andLeft(flags) == andRight(flags)) "OK”
IIOK mn

> assert (orLeft(flags) == orRight(flags)) "OK”
IIOK n

> assert (concatLeft(lists) == concatRight(lists)) "OK”
n OK»

»:Haskell

def foldr[A, B](f: A => B => B)(e: B)(s: List[A]): B = s match @ foldr (D) e xs = foldl (D) e xs ’Scala
case Nil => e
case x :: xs => f(x)(foldr(f)(e)(xs))
where @ and e are such that for all x, y, and z we have
def Folﬂ}%Ai B](f: B => A => B)(e: B)(s: List[A]): B = s match B Bz=xD (y® 2)
case N1l => e e@x=xandxDe=x
case x :: xs => foldl(f)(f(e)(x))(xs)
In other words, P is associative with unit e.
val " (+) : Int => Int => Int =m=>n=>m+ n
val "(-)": Int => Int => Int =m=>n=>m-n - -
val “(*): Int => Int => Int = m =>n =>m * n val integers = List(1, 2, 3, 4)
val (&) : Boolean => Boolean => Boolean =m =>n =>m & n val flags = List(true, false, true) .
val “(||) : Boolean => Boolean => Boolean = m => n =>m || n val lists = List(List(1), List(2, 3, 4), List(5, 6))

def " (++) [A](m: Seq[A]): Seq[A] => Seq[A] = n =>m ++ n

scala> sublLeft(integers) subtraction is not associative, and @ is not its
val sumLeft = foldl((+)7)(9) val rese: Int = -10 unit, so the following are not equivalent:
val sumRight = foldr (" (+)7)(9)

ai?gﬂigre unit scala> subRight(integers) | foldl(" (-)")(®)
val sublLeft = foldl((-))(9) val resl: Int = -2 foldr("(-)")(0)
val subRight = foldr((-)")(9) + 0
scala> assert(sumLeft(integers) == sumRight(integers))
val prodLeft = foldl((*))(1) * 1 | assert(subleft(integers) != subRight(integers))
val prodRight = foldr((*)")(1) | assert(prodLeft(integers) == prodRight(integers))
&& True | assert(andLeft(flags) == andRight(flags))
val andLeft = foldl((&&))(true) I False | assert(orLeft(flags) == orRight(flags))
val andRight = foldr(" (&&))(true) . | assert(concatLeft(lists) == concatRight(lists))
Ly N scala>
val orLeft = foldl((||)) (true)
val orRight = foldr("(||)™)(true)

val concatlLeft = foldl((++))(Nil)
val concatRight = foldr((++))(Nil)

Same as previous slide but using built-in foldLeft and foldRight

& Scala

val
val

val
val

val
val

val
val

val
val

def

def

sumLeft: List[Int] => Int = _.foldLeft(9)(_+)

sumRight: List[Int] => Int = _.foldRight(9)(_+_)

subLeft: List[Int] => Int = _.foldLeft(9)(_-)

subRight: List[Int] => Int = _.foldRight(9)(_-_)

prodLeft: List[Int] => Int = _.foldLeft(1)(_*_)

prodRight: List[Int] => Int = _.foldRight(1)(_*_)

andLeft: List[Boolean] => Boolean = _.foldLeft(true)(_&&)
andRight: List[Boolean] => Boolean = _.foldRight(true)(_&&_)
orLeft: List[Boolean] => Boolean = _.foldLeft(false)(_||_)

.foldRight(false)(||.)

orRight: List[Boolean] => Boolean

concatLeft[A]: List[List[A]] => List[A] =

.foldLeft(List.empty[A])(_++_)

concatRight[A]: List[List[A]] => List[A] =

.foldRight(List.empty[A])(_++_)

val integers =

val flags = List(true, false, true)

val lists = List(List(1), List(2, 3, 4), List(5, 6))

scala> sublLeft(integers) subtraction is not associative, and @ is not its

val res@: Int = -10 . . .)

unit, so the following are not equivalent:

scala> subRight(integers) | .foldLeft(®)(-)

val resl: Int = -2 _.foldRight(@)(_-_)

scala> assert(sumLeft(integers) == sumRight(integers))
| assert(sublLeft(integers) != subRight(integers))
| assert(prodLeft(integers) == prodRight(integers))
| assert(andLeft(flags) == andRight(flags))
| assert(orLeft(flags) == orRight(flags))
| assert(concatLeft(lists) == concatRight(lists))

scala>

List(1, 2, 3, 4)

(@) [foldr (@) e x5 = foldl (®) ¢ xs »Haskell

where @, @, and e are such that for all x, y, and z we have

xBO(YRz) =xDy)Qz
xPe=eQx

In other words, @@ and & associate with each other, and e on the right of @ is equivalent to e on the left of .

i

foldRight :: (a -> B ->B) -> B -> [a] -> B
foldRight f e [] = e

foldRight f e (x:xs) = f x (foldRight f e xs)

foldLeft :: (B ->a ->B) ->B -> [a] -> B

foldLeft f e [] = e

foldLeft f e (x:xs) = foldLeft f (f e x) xs

2 list = [1,2,3] | same as on the left but using built-in foldl and foldr

> lengthRight = foldRight oneplus © where oneplus x n =1 + n > lengthRight = foldr oneplus © where oneplus x n =1 + n
> lengthLeft = foldLeft plusone © where plusone n x = n + 1 > lengthLeft = foldl plusone @ where plusone n x = n + 1
> assert (lengthRight(list) == lengthLeft(list)) "OK" > assert (lengthRight(list) == lengthLeft(list)) "OK"
HOK» "OK”

> reverseRight = foldRight snoc [] where snoc x xs = Xs ++ [X] > reverseRight = foldr snoc [] where snoc x xs = xs ++ [X]
> reverselLeft = foldLeft cons [] where cons xs x = x : Xs > reverselLeft = foldl cons [] where cons xs x = X : XS

> assert (reverseRight(list) == reverselLeft(list)) "OK" > assert (reverseRight(list) == reverseLeft(list)) "OK"
IIOKII IIOKII

@ foldr (@) e xs = foldl (Q) e xs ’Scala

where @, &, and e are such that for all x, y, and z we have

xO(YRz) =xDy)Qz
xPe=eQx

In other words, @@ and & associate with each other, and e on the right of @ is equivalent to e on the left of .

def foldr[A, B](f: A => B => B)(e: B)(s: List[A]): B = s match val list: List[Int] = List(1, 2, 3)

case Nil => e

case X :: xs => f(x)(foldr(f)(e)(xs))
def foldl[A, B](f: B => A => B)(e: B)(s: List[A]): B = s match

case Nil => e

case x :: xs => foldl(f)(f(e)(x))(xs) Same as on the left but using built-in foldLeft and foldRight
def oneplus[A]: A => Int => Int = x => n =>1 + n def oneplus[A]: (A, Int) => Int = (X, n) => 1 + n
def plusOne[A]: Int => A => Int =n =>Xx=>n+1 def plusOne[A]: (Int, A) => Int = (n, x) => n + 1
val lengthRight = foldr(oneplus)(0) def lengthRight[A]: List[A] => Int = _.foldRight(©)(oneplus)
val lengthLeft = foldl(plusOne)(©) def lengthLeft[A]: List[A] => Int = _.foldLeft(©)(plusOne)
scala> assert(lengthRight(list) == lengthlLeft(list)) scala> assert(lengthRight(list) == lengthLeft(1list))
def snoc[A]: A => List[A] => List[A] = x => xs => xs ++ List(x) def snoc[A]:(A, List[A]) => List[A] = (x, xS) => Xxs ++ List(x)
def cons[A]: List[A] => A => List[A] = XS => X => X::XS def cons[A]:(List[A], A) => List[A] = (xS, X) => X::XS
val reverseRight = foldr(snoc[Int])(Nil) def reverseRight[A]: List[A]=>List[A] = _.foldRight(Nil) (snoc)
val reverselLeft = foldl(cons[Int])(Nil) def reverselLeft[A] : List[A]=>List[A] = _.foldLeft(Nil) (cons)
scala> assert(reverseRight(list) == reverselLeft(list)) scala> assert(reverseRight(list) == reverselLeft(list))

(3) | foldr f e xs = foldi (flip f) e (reverse xs)

i
foldRight :: (a -> B ->B) -> B -> [a] -> B
foldRight f e [] = e

foldRight f e (x:xs)

f x (foldRight f e xs)

(Also holds true when foldr and foldl are swapped)

> assert (sumRight(list) == sumLeft(list)) "OK"
IIOK n

foldLeft :: (B ->a ->B) ->B -> [a] -> B

foldLeft f e [] = e

foldLeft f e (x:xs) = foldLeft f (f e x) xs

2 Same as on the left but using built-in foldl and foldr
> sumRight = foldRight (+) © > sumRight = foldr (+) ©

> sumLeft = foldLeft (flip (+)) © . reverse > sumLeft = foldl (flip (+)) © . reverse

> assert (sumRight(list) == sumLeft(list)) "OK"
n OK n

> oneplus x n =1+ n
> lengthRight = foldRight oneplus ©

> lengthLeft = foldLeft (flip oneplus) © . reverse

> assert (lengthRight(list) == lengthLeft(list)) "OK"
IIOK n

> oneplus x n =1+ n
> lengthRight = foldr oneplus ©

> lengthLeft = foldl (flip oneplus) @ . reverse

> assert (lengthRight(list) == lengthLeft(list)) "OK"
n OK n

>n @ d=10 * n + d

> decimallLeft = foldLeft (@) ©

> decimalRight = foldRight (flip (@)) © . reverse
> assert (decimallLeft(list) == decimalRight(list))
n OK n

v

n @dd=10 *n +d
decimalLeft = foldl (@) ©
decimalRight = foldr (flip (&@)) o .

Vv Vv

reverse

> assert (decimallLeft(list) == decimalRight(list)) "OK"

n OK n

»:Haskell

T see nextslide

u X@philip_schwarz

At the bottom of the previous slide and the next one, instead of exploiting this equation
foldr fexs = foldl (flip f) e (reverse xs)
we are exploiting the following derived equation in which foldr is renamed to foldl and vice versa:
foldl f exs = foldr (flip f) e (reverse xs)
The equation can be derived as shown below.
Define g = flip f and ys = reverse xs, from which it follows that f = flip g and xs = reverse ys.
In the original equation, replace f with (flip g) and replace xs with (reverse ys)
foldr (flip g) e (reverse ys) = foldl (flip(flip g)) e (reverse (reverse ys))
Simplify by replacing flip(flip g) with g and (reverse (reverse ys)) with ys
foldr (flip g) e (reverse ys) = foldl g e ys
Swap the right hand side with left hand side
foldl g e ys = foldr (flip g) e (reverse ys)
Rename g to f and rename ys to xs

foldl f e xs = foldr (flip f) e (reverse xs)

foldr f e xs = foldl (flip f) e (reverse xs)

& Scala

def foldr[A, B](f: A => B => B)(e: B)(s: List[A]): B = s match
case Nil => e
case X :: xs => f(x)(foldr(f)(e)(xs))
def flip[A, B, C]: (A =>B =>C) => (B =>A =>C) =
def foldl[A, B](f: B => A => B)(e: B)(s: List[A]): B = s match f =>b =>a => f(a)(b)
case Nil => e
case x :: xs => foldl(f)(f(e)(x))(xs) val list: List[Int] = List(1, 2, 3)

def plus: Int => Int => Int = m =>n =>m + n

val sumRight
val sumlLeft

foldr(plus) (@)
(xs: List[Int]) => foldl(flip(plus))(@)(xs.reverse)

assert(sumRight(list) == sumLeft(list))

def oneplus[A]: A => Int => Int = x => n =>1 + n

val lengthRight = foldr(oneplus)(©)
def lengthLeft[A] = (xs: List[A]) => foldl(flip(oneplus))(9)(xs.reverse)

assert(lengthRight(list) == lengthLeft(list))

def "(@) : Int => Int => Int = n=>d =>10 * n + d t

val decimalleft = foldl((@))(9)
val decimalRight = (xs: List[Int]) => foldr(flip((@)))(9)(xs.reverse)

assert(decimalleft(list) == decimalRight(1list))

T see previous slide

Same as previous slide but using built-in foldLeft and foldRight

def flip[A, B, C]: ((A,B) => C) => ((B,A) => C) = f => (b,a) => f(a,b)

val list: List[Int] = List(1, 2, 3)

def plus: (Int,Int) => Int = (m,n) => m + n

val sumRight: List[Int] => Int
val sumLeft: List[Int] => Int

.foldRight (@) (plus)
.reverse.foldLeft(9)(flip(plus))

assert(sumRight(list) == sumLeft(list))

def oneplus[A]: (A,Int) => Int = (x,n) => 1 + n

def lengthRight[A]: List[A] => Int
def lengthLeft[A]: List[A] => Int

.foldRight (@) (oneplus)
.reverse.foldLeft(9)(flip(oneplus))

assert(lengthRight(list) == lengthLeft(list))

val " (®) : ((Int,Int) => Int) = (n,d) => 10 * n + d

val decimalleft: List[Int] => Int = _.foldLeft(0)((D))
val decimalRight: List[Int] => Int = _.reverse.foldRight(0)(flip(" (D)))

assert(decimalleft(list) == decimalRight(list))

& Scala

In previous slides we saw a decimal function that is implemented with a right fold.

It is derived, using the third duality theorem, from a decimal function implemented with a left fold.

>n @ d=10 *n +d)k val " (d) : ((Int,Int) => Int) = (n,d) => 10 * n + d !
> decimalLeft = foldl (@) © val decimalleft: List[Int] => Int = _.foldLeft(0)((@))
> decimalRight = foldr (flip (@)) © . reverse val decimalRight: List[Int] => Int = _.reverse.foldRight(9)(flip(()))

Note how much simpler it is than the decimal
function that we came up with in Cheat Sheet #4.

decimal :: [Int] -> Int)k def decimal(ds: List[Int]): Int = !
decimal ds = fst (foldr f (0,0) ds) ds.foldRight((9,0))(f).head

f :: Int -> (Int,Int) -> (Int,Int) def f(d: Int, acc: (Int,Int)): (Int,Int) = acc match
fd(ds, e) = (d * (106 ~e) + ds, e + 1) case (ds, e) => (d * Math.pow(10, e).toInt + ds, e + 1)

That function was produced by the right hand side of the universal property of fold, after
plugging into the left hand side a function that we contrived purely to match that left hand side.

The universal property of fold

gl =v o g = foldfv g
g(x:xs) =fx(gxs) vif
fra

Cheat Sheet #6 claimed (see bottom of next slide) that when using Scala’s built in
foldRight function, the reason why doing a right fold over a large collection did not
result in a stack overflow error, is that foldRight is defined in terms of foldLeft.

foldr : (a > B - B)->L—->[a] > B foldl :: (B »a »B)->B-la] > B !Scala
foldr fb[] = b foldl fb[] = b
foldr f b (x:xs) = fx(foldr f b xs) foldl f b (x:xs) = foldl f (f b x) xs
scala> def foldr[A,B](f: A=>B=>B) (e:B)(s:List[A]):B = scala> import scala.annotation.tailrec
| s match { case Nil => e
| case x::xs => f(x)(foldr(f) (e)(xs)) } scala> @tailrec
| def foldl[A,B](f: B=>A=>B) (e:B)(s:List[A]):B =

scala> def " (+) : Long => Long => Long = | s match { case Nil => e

| m=>n=>m+ n | case x::xs => foldl(f) (f(e)(x))(xs) }
scala> foldr((+)) (0)(List(1,2,3,4)) scala> def " (+) : Long => Long => Long =
val resl: Long = 10 | m=>n=>m+ n
scala> foldr((+))(0)(List.range(1,10 _001)) scala> foldl((+))(0)(List.range(1,10 001))
val res2: Long = 50005000 val resl: Long = 50005000
scala> foldr((+))(0)(List.range(1,100 001)) scala> foldl((+))(0)(List.range(1,100 001))
java.lang.StackOverflowError val res2: Long = 5000050000
scala> // same again but using built-in function scala> // same again but using built-in function
scala> List.range(1,10 _001).foldRight(0) (_+) scala> List.range(1,10 _001).foldLeft(0) (_+)
val res3: Int = 50005000 val res3: Int = 50005000
scala> List.range(1,100 001).foldRight(OL) (_+) scala> List.range(1,100 001).foldLeft(OL) (_+)
val res4: Long = 500000500000 < val res4: Long = 5000050000

The reason a stack overflow is not happening here is because built-in foldRight is defined in terms of foldLeft! (see cheat-sheet #7)

The remaining slides provide a justification for that claim, and are taken
from the following deck, which is what this cheat sheet is based on.

Folding Unfolded

Polyglot FP for Fun and Profit
Haskell and Scala

See aggregation functions defined inductively and implemented using recursion
Learn how in many cases, tail-recursion and the accumulator trick can be used to avoid stackoverflow errors
Watch as general aggregation is implemented and see duality theorems capturing the relationship between left folds and right folds

Part 2 - through the work of

il Series in Computer Science
ﬁ 5

Introduction to
ctional Programming
Haskell

The Science of
Functional
Programming

A tutorial, with examples in Scala

ond edition

Richard Bird L i
L

Sergei Winitzki Richard Bird
sergei-winitzki-11a6431 http://www.cs.ox.ac.uk/people/richard.bird

|
slides by u@philip_schwarz @Sﬁdeshare https://www.slideshare.net/pjschwarz

overflow error, is that the foldRight function is implemented by code that reverses

The reason why doing a right fold over a large collection did not result in a stack}
the sequence, flips the function that it is passed, and then calls foldLeft!)

While this is not so obvious when we look at the code for foldRight
in List, because it effectively inlines the call to foldLeft...

final override def foldRight[B](z: B)(op: (A, B) => B): B = {

}

var acc = z
var these: List[A] = reverse
while (!these.isEmpty) {

acc = op(these.head, acc)
these = these.tail

}

acc

var acc = z
var these: LinearSeq[A]
while (!these.isEmpty) {

= coll

acc = op(acc, these.head)
these = these.tail
}
acc
}

override def foldLeft[B](z: B)(op: (B, A) => B): B = {

...it is plain to see in the
foldRight function for Seq

|

def foldRight[B](z: B)(op: (A, B) => B): B =
reversed.foldLeft(z)((b, a) => op(a, b))

This is the third duality
theorem in action

Third duality theorem. For all finite lists xs,

foldr fexs = foldl (flip f) e (reverse xs)
where flipfxy=fyx

£ Scala

At the bottom of this slide is where Functional sealed trait List[+A]

Programming in Scala shows that foldRight can be case object Nil extends List[Nothing]
defined in terms of foldLeft. case class Cons[+A](head: A, tail: List[A]) extends List[A]

def foldRight[A,B](as: List[A], z: B)(f: (A, B) => B): B = foldRight(Cons(1, Cons(2, Cons(3, Nil))), ©@)((x,y) => x + Vy)
as match { 1 + foldRight(Cons(2, Cons(3, Nil)), 0)((x,y) => X + y)
case Nil => z 1 + (2 + foldRight(Cons(3, Nil), @) ((x,y) => X + Vy))
case Cons(x, xs) => f(x, foldRight(xs, z)(f)) 1+ (2 + (3 + (foldRight(Nil, @) ((x,y) => x +y))))
} 1T+ (2 + (3 +(0)
6
Our implementation of foldRight is not tail-recursive and will result @annotation.tailrec
in a StackOverflowError for large lists (we say it’s not stack-safe). def foldLeft[A,B](l: List[A], z: B)(f: (B, A) => B): B = 1 match{
Convince yourself that this is the case, and then write another general list- case Nil => z
recursion function, foldLeft, that is tail-recursive case Cons(h,t) => foldLeft(t, f(z,h))(f) }

Implementing foldRight via foldLeft is useful because it lets us implement
foldRight tail-recursively, which means it works even for large lists without overflowing

the stack.

(Y 2a crusano and funar Blamason) | def foldRightViaFoldLeft[A,B](1: List[A], z: B)(f: (A,B) => B): B =
1 foldLeft(reverse(l), z)((b,a) => f(a,b))

ﬁ The third duality theorem in action.

Functional Programming in Scala

£ Scala

https://twitter.com/pchiusano
https://twitter.com/runarorama

Bd S It looks like it was none other than Paul Chiusano (co-author of FP in Scala), back in 2010, who
4 suggested that List’s foldRight(z)(f) be implemented as reverse.foldLeft(z) (flip(f))!

< C @ github.com/scala/bug/issues/3295
O Search or jump to... Pull requests Issues Marketplace Explore

& scala/bug

Code O Issues 1.9k Il Pull requests (*) Actions (1) Security [~ Insights

foldRight broken for large lists #3295
scabug opened this issue on 14 Apr 2010 - 18 comments

‘ scabug commented on 14 Apr 2010 © ---

Is there a good reason not to implement |.foldRight(z) (f) as l.reverse.foldLeft(z) (flip(f)), or some variation? This would
avoid the stack overflow that results when using foldRight with large sequences. As it is implemented, the function is not
very useful except for toy examples.

It also looks like the change was made in 2013 (see next slide) and that it was in
2018 that foldRight was reimplemented as a while loop (see slide after that).

£ Scala

& 6 @ github.com/scala/scala/pull/2026/files

O Search or jump to...

[scala/scala

Pull requests Issues Marketplace Explore

Code 19 Pull requests 99 (*) Actions () Security |~/ Insights

SI1-2818 Makes List#foldRight work for large lists #2026

b (VEIGTC gkossakowski merged 1 commit into scala:2.10.x from JamesIry:2.10.x_SI-2818 () on1Feb 2013

1) Conversation 40 O- Commits 1 [F] Checks o ' Files changed 3

Changes from all commits ~ File filter... v Jumpto..~ &3+

v 3 EEE src/library/scala/collection/immutable/List.scala (5]

Al @@ -275,26 +275,29 @@

loop(this)

override def span(p: A => Boolean): (List[A], List[A]) = {
val b = new ListBuffer[A]
var these = this
while (!these.isEmpty && p(these.head)) {
b += these.head
these = these.tail
}
(b.toList, these)

override def reverse: List[A] = {
var result: List[A] = Nil
var these = this
while (!these.isEmpty) {

result = these.head :: result
these = these.tail

}

result

+

d

+

& Watch ~

loop(this)

override def span(p: A => Boolean): (List[A], List[A]) = {

val b = new ListBuffer[A]

var these = this

while (!these.isEmpty && p(these.head)) {
b += these.head
these = these.tail

}

(b.toList, these)

override def reverse: List[A] = {
var result: List[A] = Nil
var these = this
while (!these.isEmpty) {

result = these.head :: result
these = these.tail

}

result

override def foldRight[B](z: B)(op: (A, B) => B): B =
reverse.foldLeft(z) ((right, left) => op(left, right))

£ Scala

C @ github.com/scala/scala/commit/878e7d3e0d14633d19bac47dc9b532a54eab6379#diff-65c966843f6b3b817df43968f326d160L486-L487

O Search or jump to... Pull requests Issues Marketplace Explore

[scala/scala

<> Code 1 Pull requests 99 Actions) Security [~ Insights

X Migrate collection-strawman into standard library

This commit is the result of a scripted migration from the collection-strawman
repository into the main Scala repository. The parent commit is

5b97300 in the master branch of
https://github.com/scala/collection-strawman.git.

The merge commit performs the following changes:

- Move the main strawman sources into the scala.collection namespace under
src/library/scala/collection. The necessary migration steps have been
performed and the sources should be fully functional.

- Move the tests to test/collection-strawman. They still need to be integrated
into the standard test suite in a manual step.

- Delete all other parts (benchmarks, scalafix rules, documentation,
collections-contrib project) of collection-strawman. They will be moved to
other repositories.

Q szeiger committed on 22 Mar 2018

Showing 371 changed files with 28,309 additions and 26,016 deletions.

2 parents 9291el2 + 5b97300 commit 878e7d3e@d14633d19bac47dc9b532a54eab6379

Unified Split

- override def foldRight[B](z: B)(op: (A, B) => B): B =
- reverse.foldLeft(z) ((right, left) => op(left, right))

- override def stringPrefix = "List"
- override def toStream : Stream[A] =

- if (isEmpty) Stream.Empty

- else new Stream.Cons(head, tail.toStream)

+ + + + + + + + o+

final override def f@UdRight[B](z: B)(op: (A, B) => B): B = {
var acc = z
var these: List[A] = reverse
while (!these.isEmpty) {
acc = op(these.head, acc)
these = these.tail
¥

acc

£ Scala

