
CHEAT-SHEET

Folding

#6

∶
			/		\
	𝒂𝟎	 ∶
							/		\	
	 𝒂𝟏	 ∶
										/		\	
	 𝒂𝟐	 ∶
														/		\
	 𝒂𝟑 	

𝒇
			/		\
	𝒂𝟎	 𝒇
							/		\	
	 𝒂𝟏	 𝒇
										/		\	
	 𝒂𝟐	 𝒇
														/		\
	 𝒂𝟑				𝒆

@philip_schwarzslides by https://fpilluminated.com/

http://fpilluminated.com/

𝑓𝑜𝑙𝑑𝑙	is tail recursive.

Folding a list (however large) with 𝑓𝑜𝑙𝑑𝑙
does not result in a stack overflow error. ‡

𝑓𝑜𝑙𝑑𝑟	is not tail recursive. ☩

Folding a sufficiently large list with 𝑓𝑜𝑙𝑑𝑟	
results in a stack overflow error. †

† See slide after next for an exception in Scala
‡ See next slide for an exception in Haskell
☩ See slides five to nine for a refresher on tail recursion

𝑓𝑜𝑙𝑑𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → 𝛽	
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑏 	 = 𝑏
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑏 𝑥: 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙	𝑓 𝑓	𝑏	𝑥 	𝑥𝑠

𝑓𝑜𝑙𝑑𝑟	 ∷ 𝛼	 → 𝛽	 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑟	𝑓	𝑏 	 = 𝑏
𝑓𝑜𝑙𝑑𝑟	𝑓	𝑏 𝑥: 𝑥𝑠 	 = 𝑓	𝑥 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑏	𝑥𝑠

𝑓𝑜𝑙𝑑𝑟	 ∷ 𝛼	 → 𝛽	 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑟	𝑓	𝑏 	 = 𝑏
𝑓𝑜𝑙𝑑𝑟	𝑓	𝑏 𝑥: 𝑥𝑠 	 = 𝑓	𝑥 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑏	𝑥𝑠

𝑓𝑜𝑙𝑑𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → 𝛽	
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑏 	 = 𝑏
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑏 𝑥: 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙	𝑓 𝑓	𝑏	𝑥 	𝑥𝑠

> :{
| foldRight :: (α -> β -> β) -> β -> [α] -> β
| foldRight f e [] = e
| foldRight f e (x:xs) = f x (foldRight f e xs)
| :}

> foldRight (+) 0 [1..10000000]
50000005000000

> foldRight (+) 0 [1..100000000]
*** Exception: stack overflow

> -- same again but using built-in function

> foldr (+) 0 [1..10000000]
50000005000000

> foldr (+) 0 [1..100000000]
*** Exception: stack overflow

> :{
| foldLeft :: (β -> α -> β) -> β -> [α] -> β
| foldLeft f e [] = e
| foldLeft f e (x:xs) = foldLeft f (f e x) xs
| :}

> foldLeft (+) 0 [1..10000000]
50000005000000

> foldLeft (+) 0 [1..100000000]
*** Exception: stack overflow

> -- same again but using built-in function

> foldl (+) 0 [1..10000000]
50000005000000

> foldl (+) 0 [1..100000000]
*** Exception: stack overflow

> Data.List.foldl' (+) 0 [1..100000000]
5000000050000000

These stack overflows have to do with Haskell’s nonstrict evaluation, and are avoided using a strict left fold, called foldl’ (see final slides).

scala> def foldr[A,B](f: A=>B=>B)(e:B)(s:List[A]):B =
| s match { case Nil => e
| case x::xs => f(x)(foldr(f)(e)(xs)) }

scala> def `(+)`: Long => Long => Long =
 | m => n => m + n

scala> foldr(`(+)`)(0)(List(1,2,3,4))
val res1: Long = 10

scala> foldr(`(+)`)(0)(List.range(1,10_001))
val res2: Long = 50005000

scala> foldr(`(+)`)(0)(List.range(1,100_001))
java.lang.StackOverflowError

scala> // same again but using built-in function

scala> List.range(1,10_001).foldRight(0)(_+_)
val res3: Int = 50005000

scala> List.range(1,100_001).foldRight(0L)(_+_)
val res4: Long = 500000500000

scala> import scala.annotation.tailrec

scala> @tailrec
| def foldl[A,B](f: B=>A=>B)(e:B)(s:List[A]):B =
| s match { case Nil => e
| case x::xs => foldl(f)(f(e)(x))(xs) }

scala> def `(+)`: Long => Long => Long =
 | m => n => m + n

scala> foldl(`(+)`)(0)(List.range(1,10_001))
val res1: Long = 50005000

scala> foldl(`(+)`)(0)(List.range(1,100_001))
val res2: Long = 5000050000

scala> // same again but using built-in function

scala> List.range(1,10_001).foldLeft(0)(_+_)
val res3: Int = 50005000

scala> List.range(1,100_001).foldLeft(0L)(_+_)
val res4: Long = 5000050000

The reason a stack overflow is not happening here is because built-in foldRight is defined in terms of foldLeft! (see cheat-sheet #7)

𝑓𝑜𝑙𝑑𝑟	 ∷ 𝛼	 → 𝛽	 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑟	𝑓	𝑏 	 = 𝑏
𝑓𝑜𝑙𝑑𝑟	𝑓	𝑏 𝑥: 𝑥𝑠 	 = 𝑓	𝑥 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑏	𝑥𝑠

𝑓𝑜𝑙𝑑𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → 𝛽	
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑏 	 = 𝑏
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑏 𝑥: 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙	𝑓 𝑓	𝑏	𝑥 	𝑥𝑠

2.2.3 Tail recursion

The code of lengthS will fail for large enough sequences. To see why, consider an inductive definition of the .length method as a
function lengthS:

 def lengthS(s: Seq[Int]): Int =
 if (s.isEmpty) 0
 else 1 + lengthS(s.tail)

 scala> lengthS((1 to 1000).toList)
 res0: Int = 1000

 scala> val s = (1 to 100_000).toList
 s : List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, ...

 scala> lengthS(s)
 java.lang.StackOverflowError
 at .lengthS(<console>:12)
 at .lengthS(<console>:12)
 at .lengthS(<console>:12)
 at .lengthS(<console>:12)
 ...
The problem is not due to insufficient main memory: we are able to compute and hold in memory the entire sequence s. The
problem is with the code of the function lengthS. This function calls itself inside the expression 1 + lengthS(...). Let us
visualize how the computer evaluates that code:

 lengthS(Seq(1, 2, ..., 100_000))
 = 1 + lengthS(Seq(2, ..., 100_000))
 = 1 + (1 + lengthS(Seq(3, ..., 100_000)))
 = ...

Sergei Winitzki
sergei-winitzki-11a6431

The code of lengthS will evaluate the inductive step, that is, the “else” part of the “if/else”, about 100,000 times. Each time, the
intermediate sub-expression with nested computations 1+(1+(...)) will get larger.

That sub-expression needs to be held somewhere in memory, until the function body goes into the base case with no more
recursive calls. When that happens, the intermediate sub-expression will contain about 100_000_nested function calls still
waiting to be evaluated.

A special area of memory called stack memory is dedicated to storing the arguments for all not-yet-evaluated nested function
calls. Due to the way computer memory is managed, the stack memory has a fixed size and cannot grow automatically. So, when
the intermediate expression becomes large enough, it causes an overflow of the stack memory and crashes the program.

One way to avoid stack overflows is to use a trick called tail recursion. Using tail recursion means rewriting the code so that all
recursive calls occur at the end positions (at the “tails”) of the function body. In other words, each recursive call must be itself the
last computation in the function body, rather than placed inside other computations. Here is an example of tail-recursive code:

 def lengthT(s: Seq[Int], res: Int): Int =
 if (s.isEmpty) res
 else lengthT(s.tail, res + 1)

In this code, one of the branches of the if/else returns a fixed value without doing any recursive calls, while the other branch
returns the result of a recursive call to lengthT(...).

It is not a problem that the recursive call to lengthT has some sub-expressions such as res + 1 as its arguments, because all
these sub-expressions will be computed before lengthT is recursively called.

def lengthS(s: Seq[Int]): Int =
 if (s.isEmpty) 0
 else 1 + lengthS(s.tail)

lengthS(Seq(1, 2, ..., 100_000))
= 1 + lengthS(Seq(2, ..., 100_000))
= 1 + (1 + lengthS(Seq(3, ..., 100_000)))
= ...

Sergei Winitzki
sergei-winitzki-11a6431

The recursive call to lengthT is the last computation performed by this branch of the if/else. A tail-recursive function can have many
if/else or match/case branches, with or without recursive calls; but all recursive calls must be always the last expressions returned.

The Scala compiler will always use tail recursion when possible. Additionally, Scala has a feature for verifying that a function’s code is
tail-recursive: the tailrec annotation. If a function with a tailrec annotation is not tail-recursive (or is not recursive at all), the
program will not compile. The code of lengthT with a tailrec annotation looks like this:

 import scala.annotation.tailrec

 @tailrec def lengthT(s: Seq[Int], res: Int): Int =
 if (s.isEmpty) res
 else lengthT(s.tail, res + 1)

Let us trace the evaluation of this function on an example:

 lengthT(Seq(1,2,3), 0)
 = lengthT(Seq(2,3), 0 + 1) // = lengthT(Seq(2,3), 1)
 = lengthT(Seq(3), 1 + 1) // = lengthT(Seq(3), 2)
 = lengthT(Seq(), 2 + 1) // = lengthT(Seq(), 3)
 = 3

All sub-expressions such as 1 + 1 and 2 + 1 are computed before recursive calls to lengthT. Because of that, sub-expressions
do not grow within the stack memory. This is the main benefit of tail recursion.

How did we rewrite the code of lengthS into the tail-recursive code of lengthT? An important difference between lengthS and
lengthT is the additional argument (res), called the accumulator argument. This argument is equal to an intermediate result of the
computation. The next intermediate result (res + 1) is computed and passed on to the next recursive call via the accumulator
argument. In the base case of the recursion, the function now returns the accumulated result (res) rather than 0, because at that
time the computation is finished. Rewriting code by adding an accumulator argument to achieve tail recursion is called the
accumulator technique or the “accumulator trick”.

def lengthS(s: Seq[Int]): Int =
 if (s.isEmpty) 0
 else 1 + lengthS(s.tail)

Sergei Winitzki
sergei-winitzki-11a6431

One consequence of using the accumulator trick is that the function lengthT now always needs a value for the accumulator
argument. However, our goal is to implement a function such as length(s) with just one argument, s:Seq[Int]. We can define
length(s) = lengthT(s, ???) if we supply an initial accumulator value. The correct initial value for the accumulator is 0, since
in the base case (an empty sequence s) we need to return 0.

It appears useful to define the helper function (lengthT) separately. Then length will just call lengthT and specify the initial value
of the accumulator argument. To emphasize that lengthT is a helper function that is only used by length to achieve tail
recursion, we define lengthT as a nested function inside the code of length:

 import scala.annotation.tailrec

 def length[A](xs: Seq[A]): Int = {
 @tailrec def lengthT(s: Seq[A], res: Int): Int = {
 if (s.isEmpty) res
 else lengthT(s.tail, res + 1)
 }
 lengthT(xs, 0)
 }

When length is implemented like that, users will not be able to call lengthT directly, because lengthT is only visible within the
body of the length function. Another possibility in Scala is to use a default value for the res argument:

 @tailrec def length(s: Seq[A], res: Int = 0): Int =
 if (s.isEmpty) res
 else length(s.tail, res + 1)

Giving a default value for a function argument is the same as defining two functions: one with that argument and one without. For
example, the syntax

 def f(x: Int, y: Boolean = false): Int = ... // Function body.
Sergei Winitzki

sergei-winitzki-11a6431

is equivalent to defining two functions with the same name but different numbers of arguments:

 def f(x: Int, y: Boolean) = ... // Define the function body here.
 def f(x: Int): Int = f(Int, false) // Call the function defined above.

Using a default argument value, we can define the tail-recursive helper function and the main function at once, making the code
shorter.

The accumulator trick works in a large number of cases, but it may be not obvious how to introduce the accumulator argument,
what its initial value must be, and how to define the inductive step for the accumulator. In the example with the lengthT
function, the accumulator trick works because of the following mathematical property of the expression being computed:

1	+	(1	+	(1	+	(...	+	0)))	 =	 (((0	+	1)	+	1)	+	...)	+	1	.

This equation follows from the associativity law of addition. So, the computation can be rearranged to group all additions to the
left. During the evaluation, the accumulator’s value corresponds to a certain number of left-grouped parentheses ((0	+	1)	...)	+	
1. In code, it means that intermediate expressions are fully computed before making recursive calls; So, recursive calls always
occur outside all other sub-expressions - that is, in tail positions. There are no sub-expressions that need to be stored on the stack
until all the recursive calls are complete.

However, not all computations can be rearranged in that way. Even if a code rearrangement exists, it may not be immediately
obvious how to find it.

Sergei Winitzki
sergei-winitzki-11a6431

Left Folds, Laziness, and Space Leaks
To keep our initial discussion simple, we use foldl throughout most of this section. This is convenient for testing, but we will
never use foldl in practice. The reason has to do with Haskell’s nonstrict evaluation. If we apply foldl (+) [1,2,3], it
evaluates to the expression (((0 + 1) + 2) + 3). We can see this occur if we revisit the way in which the function gets
expanded:

 foldl (+) 0 (1:2:3:[])
 == foldl (+) (0 + 1) (2:3:[])
 == foldl (+) ((0 + 1) + 2) (3:[])
 == foldl (+) (((0 + 1) + 2) + 3) []
 == (((0 + 1) + 2) + 3)

The final expression will not be evaluated to 6 until its value is demanded. Before it is evaluated, it must be stored as a
thunk. Not surprisingly, a thunk is more expensive to store than a single number, and the more complex the thunked
expression, the more space it needs. For something cheap such as arithmetic, thunking an expression is more
computationally expensive than evaluating it immediately. We thus end up paying both in space and in time.
When GHC is evaluating a thunked expression, it uses an internal stack to do so. Because a thunked expression could
potentially be infinitely large, GHC places a fixed limit on the maximum size of this stack. Thanks to this limit, we can try
a large thunked expression in ghci without needing to worry that it might consume all the memory:

ghci> foldl (+) 0 [1..1000]
500500

From looking at this expansion, we can surmise that this creates a thunk that consists of 1,000 integers and 999 applications
of (+). That’s a lot of memory and effort to represent a single number! With a larger expression, although the size is still
modest, the results are more dramatic:

ghci> foldl (+) 0 [1..1000000]
*** Exception: stack overflow

On small expressions, foldl will work correctly but slowly, due to the thunking_overhead that it incurs.

Bryan O’Sullivan
John Goerzen

Donald Bruce Stewart

We refer to this invisible thunking as a space leak, because our code is operating normally, but it is using far more memory
than it should.

On larger expressions, code with a space leak will simply fail, as above. A space leak with foldl is a classic roadblock for new
Haskell programmers. Fortunately, this is easy to avoid.

The Data.List module defines a function named foldl' that is similar to foldl, but does not build up thunks. The difference in
behavior between the two is immediately obvious:

ghci> foldl (+) 0 [1..1000000]
*** Exception: stack overflow
ghci> :module +Data.List
ghci> foldl' (+) 0 [1..1000000]
500000500000

Due to foldl’s thunking behavior, it is wise to avoid this function in real programs, even if it doesn’t fail outright, it will be
unnecessarily inefficient. Instead, import Data.List and use foldl'.

Bryan O’Sullivan
John Goerzen

Donald Bruce Stewart

https://fpilluminated.com/

based
on

http://fpilluminated.com/

