Introduction to

-using Haskell
] edition

Functional Programming

Richard Bird

http://www.cs.ox.ac.uk/people/richard.bird/

The Functional Programming Triad of Folding, Scanning and Iteration
a first example in Scala and Haskell

Polyglot FP for Fun and Profit

slides by .

u @philip_schwarz

\,ﬁ,slideshare

https://www.slideshare.net/pjschwarz

The Science of
Functional
Programming

A tutorial, with examples in Scala

Sergei Winitzki
m sergei-winitzki-11a6431

https://www.slideshare.net/pjschwarz/natural-transformations
http://www.cs.ox.ac.uk/people/richard.bird/

This slide deck can work both as an aide mémoire (memory jogger), or as a first (not
completely trivial) example of using left folds, left scans and iteration to implement
mathematical induction.

We first look at the implementation, using a left fold, of a digits-to-int function
that converts a sequence of digits into a whole number.

Then we look at the implementation, using the iterate function, of an int-to-
digits function that converts an integer into a sequence of digits. In Scala this
function is very readable because the signatures of functions provided by collections
permit the piping of such functions with zero syntactic overhead. In Haskell, there is
some syntactic sugar that can be used to achieve the same readability, so we look at
how that works.

u @philip_schwarz

We then set ourselves a simple task involving digits-to-int and int-to-digits,
and write a function whose logic can be simplified with the introduction of a left scan.

Let’s begin, on the next slide, by looking at how Richard Bird describes the digits-
to-int function, which he calls decimal.

Suppose we want a function decimal that takes a list of digits and returns the corresponding decimal number;
thus

decimal [Xg, X1, o) Xp] = Yomeg X 100775)

It is assumed that the most significant digit comes first in the list. One way to compute decimal efficiently is by a
process of multiplying each digit by ten and adding in the following digit. For example

decimal [.X'O, X1, xZ] =10 X (10 X (10 X0+ XO) + xl) +)

This decomposition of a sum of powers is known as Horner’s rule.
Suppose we define @ byn @ x = 10 X n + x. Then we can rephrase the above equation as

decimal [xg, x1,x;] = ((0 D x0) D x1) D x;

This example motivates the introduction of a second fold operator called foldl (pronounced ‘fold left’).
Informally:

fOldl (®) e [x(), X1y o) XN _ 1] = (((e @ xO) @ xl)) @ Xn _1
The parentheses group from the left, which is the reason for the name. The full definition of foldl is
foldl (B oa->pB)opola]-p

foldl fel] =e
foldl f e (x:xs) = foldl f (f e x) xs

Introduction to

Haskell
edition

Functional Programming

Richard Bird

On the next slide we look at how Sergei
Winitzki describes the digits-to-int
function, and how he implements it in Scala.

The Science of
Functional
Programming

A tutorial, with examples in Scala

Example 2.2.5.3 Implement the function digits-to-int using foldLeft.

The required computation can be written as the formula

n-1
r= z d, * 10" 17k,
k=0

Solution The inductive definition of digitsToInt

* For an empty sequence of digits, Seq (), the result is 0. This is a convenient base case, even if we never call

digitsToInt on an empty sequence.
 IfdigitsToInt(xs) isalready known for a sequence xs of digits, and we have a sequence xs :+ x with one
more digit x, then

digitsToInt(xs :+ x) = digitsToInt(xs) * 10 + x

is directly translated into code:

def digitsToInt(d: Seq[Int]): Int = d.foldLeft(@®){ (n, x) => n * 10 + x }

Sergei Winitzki

m sergei-winitzki-11a6431

ﬁ Here is a quick refresher on fold left

foldl 2 (foa->B)->po[a]l-p

foldl fel] =e
foldl f e (x:xs) = foldl f (f e x) xs

foldl (®) e [xg xy x,]

foldl () (e @D xo) [x1, x,]

foldl () ((e @ x0) @ x1) [x2]
foldl (@) (((e ® xp) D x1) D xy) []
((e D xg) D x1) D x,

foldl (&) 0 [1,2,3]

foldl (@) (0 1) [2,3]

foldl (®) (0@ 1) ®2) [3]
foldl (®) (01 B2)D3) []
(0D1)D2)D3

foldl (D) e [xp, x4, ..., xn] = (... ((e D xp) B x1) ...) B x,,

foldl (+)01[1,23] =6

n

So let’s implement the) ﬁAnd ow in Scala
digits-to-int function :
in Haskell.)

decimal [xg, X1, ..., Xp] = Z x, 10K
k=0

() :: Int -> Int -> Int extension (n:Int)

digits _to _int = foldl (&) o ds.foldLeft(0)(D)

(@) nd =10 *n + d)X‘ def @ (d:Int) =10 * n + d !

digits to int :: [Int] -> Int def digitsToInt(ds: Seq[Int]): Int =

assert((150 @ 7)

1507)

assert(digitsToInt(List(5,3,7,4)) == 5374)

Now we turn to int-to-digits, a function that is the opposite of digits-to-int,
and one that can be implemented using the iterate function.

In the next two slides, we look at how Sergei Winitzki describes digits-to-int
(which he calls digits0f) and how he implements it in Scala. Y,

2.3 Converting a single value into a sequence
An aggregation converts (“folds”) a sequence into a single value; the opposite operation (“unfolding”) converts a single value into
a sequence. An example of this task is to compute the sequence of decimal digits for a given integer:

def digitsOf(x: Int): Seq[Int] = ???

scala> digits0f(2405)
res@: Seq[Int] = List(2, 4, 0, 5)

We cannot implement digitsOf using map, zip, or foldLeft, because these methods work only if we already have a sequence;
but the function digitsOf needs to create a new sequence.

To figure out the code for digitsOf, we first write this function as a mathematical formula. To compute the digits for, say, n =
2405, we need to divide n repeatedly by 10, getting a sequence n, of intermediate numbers (n, = 2405, n1 = 240, ...) and the
corresponding sequence of last digits, n, mod 10 (in this example: 5, 0, ...). The sequence n, is defined using mathematical
induction:

* Base case: n, = n, where n is the given initial integer.

* Inductive step: n,,, = [%J fork=1,2, ..

Here [%J is the mathematical notation for the integer division by 10.
Let us tabulate the evaluation of the sequence n, for n = 2405:

k = 0 1 2 |3]14]|5]|6
ng = 2405 | 240 |24 {210 |0] O
n; mod 10 = 5 0 4 1210[01]0

The numbers n, will remain all zeros after k = 4. It is clear that the useful part of the sequence is before it becomes all zeros. In this
example, the sequence n, needs to be stopped at k = 4. The sequence of digits then becomes [5, 0, 4, 2], and we need to reverse it
to obtain [2, 4, 0, 5]. For reversing a sequence, the Scala library has the standard method reverse.

The Science of
Functional
Programming

A tutorial, with examples in Scala

Sergei Winitzki
m sergei-winitzki-11a6431

The Scala library has a general stream-producing function Stream.iterate. This function has two arguments, the initial
value and a function that computes the next value from the previous one:

The type signature of the method Stream.iterate can be written as
def iterate[A](init: A)(next: A => A): Stream[A]

and shows a close correspondence to a definition by mathematical induction. The base case is the first value, init, and
the inductive step is a function, next, that computes the next element from the previous one. It is a general way of
creating sequences whose length is not determined in advance.

So, a complete implementation for digitsOf is:

def digitsOf(n: Int): Seq[Int] =
if (n == @) Seq(9) else { // n == @ is a special case.
Stream.iterate(n) { nk => nk / 10 }
.takeWhile { nk => nk != 0 }
.map { nk => nk % 10 }
.toList.reverse

}

We can shorten the code by using the syntax such as (_ % 10) instead of { nk => nk % 10 },

def digitsOf(n: Int): Seq[Int] =
if (n == 0) Seq(9) else { // n == @ is a special case.
Stream.iterate(n) (_ / 10)
.takeWhile (_ !=90)
.map (_ % 10)
.toList.reverse

The Science of
Functional
Programming

A tutorial, with examples in Scala

Sergei Winitzki
m sergei-winitzki-11a6431

Here is how Richard Bird
describes the iterate function

the prelude function iterate returns an infinite list:

, G’r.

iterate :: (a > a) » a - [da]

5 UK i
iterate f x = x : iterate f (f x) FUNCTIONALLY
with
In particular, iterate (+1) 1 is an infinite list of the positive integers, a value we can also HASKELL
writeas [1..]. RICHARD BIRD
4 N\
Richard Bird Here on the left | had a go at a Haskell implementation of the int-to-digits function (we
are not handling cases like n=0 or negative n), and on the right, the same logic in Scala.
. J

) S

int_to_digits :: Int -> [Int] import LazyList.iterate
int_to digits n =
reverse (/ \ def intToDigits(n: Int): Seq[Int] =
map (\x -> mod x 10) (| find the Scala version slightly easier iterate(n) (_ / 10)
takeWhile (\x -> x /= 0) (to understand, because the functions .takeWhile (_!= 0)
iterate (\x -> div x 10) that we are calling appear in the order .map (_ % 10)
n in which they are executed. Contrast .tolList
) that with the Haskell version, in which .reverse
) the function invocations occur in the
) Qpposne order. /

I}

even though it is executed last, and vice versa for inc.

While the ‘“fluent’ chaining of function calls on Scala collections is very convenient, when using other functions, we
face the same problem that we saw in Haskell on the previous slide. e.g. in the following code, square appears first,

u @philip_schwarz

def inc(n: Int): Int
def twice(n: Int): Int
def square(n: Int): Int

square(twice(inc(3))

n + 1
n * 2
n*

assert(square(twice(inc(3))) 64)

n

def pipe[B](f: (A) => B): B

Converts the value by applying the function f.

scala> import scala.util.chaining._

scala> val timesé6
times6: Int => Int

(_: Int) *x 6
$$Lambda$2023/975629453@17143b3b

scala> val i
i: Int 24

(1 - 2 - 3).pipe(times6) .pipe(scala.math.abs)

Note: (1 - 2 - 3).pipe(times6) may have a small amount of overhead at runtime compared to the equivalent {

val temp = 1 - 2 - 3; times6(temp) }.

B the result type of the function f.
f the function to apply to the value.
returns a new value resulting from applying the given function f to this value.

(To help a bit with that problem, in Scala\
there is a pipe function which is available
on all values, and which allows us to order

\function invocations in the’riht’}rder._)

Armed with pipe, we can rewrite the code so that function
names occur in the same order in which the functions are
invoked, which makes the code more understandable.

3 pipe inc

assert ((3 pipe inc pipe twice pipe square)

64) pipe twice

pipe square

What about in Haskell? First of all, in Haskell there is a function application
operator called $, which we can sometimes use to omit parentheses

wforallra(b:: TYPETr).(a->b)->a->b

For beginners, the $ often makes Haskell code more difficult to
parse. In practice, the $ operator is used frequently, and you'll
base Prelude Data.Function GHC.Base likely find you prefer using it over many parentheses. There’s
nothing magical about S; if you look at its type signature, you
Application operator. This operator is redundant, since ordinary application (f x) can see how it works:

means the same as (f $ x).

($) :: (@ ->b) ->a ->b
However, $ has low, right-associative binding precedence, so it sometimes allows

parentheses to be omitted; for example: The arguments are just a function and a value. The trick is
that $ is a binary operator, so it has lower precedence than the
f$g%hx=+F (g (hx)) other functions you’re using. Therefore, the argument for the

function will be evaluated as though it were in parentheses.

int_to_digits :: Int -> [Int]
int_to_digits n = i Armed with $, we can simplify our function as follows GET PROGRAMMING
reverse (H EI.I.

map (\x -> mod x 10) (

takewWhile (\x -> X./= 0) (int_to _digits :: Int -> [Int]
iterate (\x -> div x 10) int_to_digits n =

n reverse $ map (\x -> mod x 10)
) $ takeWhile (\x -> x > 9)
) $ iterate (\x -> div x 10)
) $ n

| But there is more we can do. In addition to the) N
function application operator S, in Haskell there
is also a reverse function application operator &.

https://www.fpcomplete.com/haskell/tutorial/operators/

foo (bar (baz bin))

with

foo $ bar $ baz bin

Function application $

($) :: (a—>Db) >a —=>0b

One of the most common operators, and source of initial confusion, is the $ operator. All this does is apply a function. So, ¥ $ x is exactly equivalentto f x. If

so, why would you ever use $? The primary reason is - for those who prefer the style - to avoid parentheses. For example, you can replace:

~FP

Complete

Reverse function application &

(&) ::a-—>(a-=>b) =>b
& is just like $ only backwards. Take our example for $:

foo $ bar $ baz bin

This is semantically equivalent to:

bin & baz & bar & foo

& is useful because the order in which functions are applied to their arguments read left to right instead of the reverse (which is the case for $). This is closer to

how English is read so it can improve code clarity.

| [Thanks to the & operator, we can rearrange our int_to_digits
function so that it is as readable as the Scala version.

\.

int_to_digits :: Int -> [Int] —
int_to_digits n =)x
reverse $ map (\x -> mod x 10)
$ takeWhile (\x -> x > 9)
$ iterate (\x -> div x 10)
$ n

int_to_digits :: Int -> [Int] —
int_to_digits n =)DNF
n & iterate (\x -> div x 10)
& takeWhile (\x -> x > 0)
& map (\x -> mod x 10)
& reverse

def intToDigits(n: Int): Seq[Int] =
iterate(n) (_ / 10)
.takeWhile (_ !'=90)
.map (_ % 10)

.tolList ’
.reverse

| There is one school of thought according to which the choice of names for S and & make) .
Haskell hard to read for newcomers, that it is better if S and & are instead named <| and |>.

& C @ https://hackage.haskell.org/package/flow-1.0.21/docs/Flow.html

N

= flow-1.0.21: Write more understandable Haskell.

[Here is an example of how |> and

<| improve readability
\ J

Flow

Flow provides operators for writing more understandable Haskell. It is an alternative to some square $ twice $ inc $ 3
common idioms like ($) for function application and (.) for function composition.

Rationale

| think that Haskell can be hard to read. It has two operators for applying functions. Both are not
really necessary and only serve to reduce parentheses. But they make code hard to read. People
who do not already know Haskell have no chance of guessing what foo $ bar or baz & square <| twice <| inc <| 3
qux mean.

| think we can do better. By using directional operators, we can allow readers to move their eye
in only one direction, be that left-to-right or right-to-left. And by using idioms common in other 3 & inc & twice & square
programming languages, we can allow people who aren't familiar with Haskell to guess at the
meaning.

So instead of ($), | propose (<|). It is a pipe, which anyone who has touched a Unix system
should be familiar with. And it points in the direction it sends arguments along. Similarly,
replace (&) with (|>). ... 3 |> inc |> twice |> square

i Since & is just the reverse of S, we can define |> ourselves simply by flipping S]

A "left" ++ "right”
"leftright”

A

A (##) = flip (++)
A

A "left” ## "right”
"rightleft"

n + 1
=n * 2
square n = n * n

square twice inc

) = flip (%)

inc twice square

A
A
A
A
A
A
6
A
A
A
A
6
A

And here is how our
. function looks using |>.

L J @philip_schwarz

int_to_digits :: Int -> [Int]
int_to digits n =
n |> iterate (\x -> div x 10)
| > takeWhile (\x -> x > 0)
|> map (\x -> mod x 10)
| > reverse

) S

=

Now let’s set ourselves the following task. Given a positive integer N with n digits, e.g. the five-digit number
12345, we want to compute the following:

[(0,0),(1,1),(12,3),(123,6),(1234,10),(12345,15)]
i.e. we want to compute a list of pairs py, p;, ..., p, with p; being (N, Nis), where N, is the integer number

formed by the first & digits of NV, and N, is the sum of those digits. We can use our int_to digits function to
convert NV into its digits d;, d>, ..., d,,:

A int_to_digits 12345
[1,2,3,4,5]
A

And we can use digits to_int to turn digits d;, d,, ..., d; into N, e.g. for k=3 :
A digits_to_int [1,2,3]
123
A

How can we generate the following sequences of digits ?

[[] Y [d]]) [dl! dZ] ’ [dj; dZ! d3]) [d]! dZ: d.S" e dn]]

As we’ll see on the next slide, that is exactly what the inits function produces when passed [d;, d5, d3, ..., d,] !

inits i [a] = [[a]]
inits [] = [[]]]

ﬁ Here is a definition for inits.]
inits (x:xs) =[]+ map (x:) (inits xs)

inits [xg, x1, x2] = [[], [x0], [%0, X1], [%0, X1, %2]]

’ And here is what inits produces, i.e.
the list of all initial segments of a list.

]

So we can apply inits to [d;, d5, d3, ..., d,] to generate the foIIowing:\

| [[1.1d].1dn o, [dyy do d51 s o [dyy oy dss ., dy]]

e.g.

A inits [1,2,3,4]
[r1,011,11,21,11,2,31.,11,2,3,4]11

\ J

) S

Soifwe mapdigits_to_int overtheinitial segments of [d;, d,, d;, ..., d,], i.e

[[1.[d,],1d;,d;],1d,, d;, ds5], ..., 1d;, d;, ds, ..., d,]] (®) :: Int -> Int -> Int
(@) nd =10 *n + d

we obtain a list containing V), N,, ..., N, , e.g. digits to_int :: [Int] -> Int

digits_to_int = foldl (&) ©

A map digits to int (inits [1,2,3,4,5])
[6,1,12,123,1234,12345]
A

What we need now is a function digits_to_sum which is similar to digits_to_int but which instead of converting a list of digits
|d,, d,, d;, ..., d,] into N, , i.e. the number formed by those digits, it turns the list into Ay, i.e. the sum of the digits. Like
digits_to_int, thedigits_to_sum function can be defined using a left fold:

digits_to_sum :: [Int] -> Int
digits_to_sum = foldl (+) ©

Let’s try it out:

A digits_to_sum [1,2,3,4]
10
A

Now if we map digits_to_sum over the initial segments of [d,, d,, d;, ..., d,], we obtain a list containing N,,, N,5, ..., N, ,
e.g.

A map digits_to_sum (inits [1,2,3,4,5])
[0,1,3,6,10,15]
A

)

1

So here is how our complete
program looks at the moment.

]

u @philip_schwarz

int_to_digits :: Int -> [Int]
int_to digits n =
n |> iterate (\x -> div x 10)
| > takeWhile (\x -> x > 9)
|> map (\x -> mod x 10)
| > reverse

() :: Int -> Int -> Int
(&) nd =10 * n + d

digits to int :: [Int] -> Int
digits to int = foldl (&) o

digits to sum :: [Int] -> Int
digits to sum = foldl (+) ©

convert :: Int -> [(Int,Int)]
convert n = zip nums sums
where nums = map digits to_int segments
sums = map digits to _sum segments
segments = inits (int_to_digits n)

A convert 12345
[(0,0),(1,1),(12,3),(123,6),(1234,10),(12345,15)]
A

)

What we are going to do next is see how, by using the scan left function, we are
able to simplify the definition of convert which we just saw on the previous slide.

As a quick refresher of (or introduction to) the scan left function, in the next two
slides we look at how Richard Bird describes the function. Y,

4.5.2 Scan left

Sometimes it is convenient to apply a foldl operation to every initial segment of a list. This is done by a function scanl
pronounced ‘scan left’. For example,

scanl (D) e [x, x1,x,] = [e,e D x,, (e D x,) D x4, ((e D %) D x1) D x,]

In particular, scanl (+) 0 computes the list of accumulated sums of a list of numbers, and scanl (X) 1 [1..n] computes a list of
the first n factorial numbers. ... We will give two programs for scanl; the first is the clearest, while the second is more efficient.
For the first program we will need the function /nits that returns the list of all initial segments of a list. For Example,

inits [xq, x1, %] = [[1, [x0], [x0, X1] [%0, X1, X5]]

’

The empty list has only one segment, namely the empty list itself; A list (x: xs) has the empty list as its shortest initial segment,
and all the other initial segments begin with x and are followed by an initial segment of xs. Hence

inits i [a] = [[a]]
inits |] =[L1]
inits (x:xs) =[] : map (x:)(inits xs)

The function inits can be defined more succinctly as an instance of foldr :
inits = foldr f [[]] where f x xss =[] : map (x:) xss

Now we define

scanl = (B 2 a = B) = = [a] = [B]
scanl f e = map (foldl f e) .inits

This is the clearest definition of scanl but it leads to an inefficient program. The function f is applied & times in the evaluation of

e

-using Haskell

Frentice Nall Series in Computer Science

Introduction to
Functional Programming

3 edition

Richard Bird

Richard Bird

foldl f e on a list of length kand, since the initial segments of a list of length n are lists with lengths 0,1,...,n, the function f is
applied about n?/2 times in total.

Let us now synthesise a more efficient program. The synthesis is by an induction argument on xs so we lay out the calculation in
the same way.

<...not shown...>

In summary, we have derived

scanl (B oa o pB)op - [a] - [B]
scanl f e [] = [e]
scanl f e (x:xs) =e: scanl f (f e x) xs

This program is more efficient in that function f is applied exactly n times on a list of length n.

N
Note the similarities and differences between scanl and foldl, e.g. the left hand sides of their equations are the
same, and their signatures are very similar, but scanl returns [£] rather than and while foldl is tail recursive,

scanl isn’t.
Y,

foldl (B) e [xg, x4, x,] scanl (D) e [xy, xq, X,]
l l

((e D xo) D x1) D x; [e,e D x, (e D x,) D x4, (e D x0) D x1) D x5]
foldl 2B bpa->B)oL-olal- B scanl (B 2a - p)->p-[a]l - [B]
foldl fel] =e scanl f e[] = [e]

foldl f e (x:xs) = foldl f (f e x) xs

scanl f e (x:xs) =e: scanl f (f e x) xs

Introduction to

Functional Programming
-using Haskell

P edition

Sevies Cdmons

Richard Bird

On the next slide, a very simple example of
using scanl, and a reminder of how the result
of scanl relates to the result of inits and foldl.

foldl

(B 2a—->B)->p—la]l->pB

foldl fel] =e
foldl fe(x:xs) = foldl f (f e x) xs

foldl (®) e [xgx1, %]

foldl () (e ® xg) [x1, %]

foldl (@) ((e ® xp) D x1) [x]
foldl (B) (((e ® xo) D x1) D xz) []
((e @D xg) D x1) D x;

foldl (B) e [xp X1, ., xn_4] =
(. ((e®x) Dxy)...) Dx, 4

inits [Xo, X1, xz] = [[], [xo]; [X(), xl]; [X(), X1 Xz]]

foldl (+) 0[] =0
foldl (+) 0[2] = 2
foldl (+)0[2,3] =5
foldl (+)0[2,3,4] =9

inits [2,3,4] = [[],12],12,3], [2,3,4]]

scanl

(B > a —p) B[]~ []

scanl f e = map (foldl f e) .inits

scanl (B) e [xy, x1, x7]

e, e D xo, (e D xo) D x1, ((e D x0) D x1) D x]

scanl (+) 0 [2,3,4]
!
[0,0+2,(0+2)+3,((0+2)+3)+4]

scanl (+) 0[2,3,4] = [0,2,5,9]

1

After that refresher of (introduction to) the scanl function, let’s see how it can help us simplify our definition of the convert function.

) S

The first thing to do is to take the definition of convert and inline its invocations of digits_to_int anddigits_to_sum:

convert ::
convert n =

where nums
sums

segments =

Int -> [(Int,Int)]
zip nums sums

map digits_to_int segments
map digits_to_sum segments
inits (int_to_digits n)

e

<‘Jl:NOV\/Iet’sextract(int_to_digits n) intodigits andinline segments.

convert ::
convert n =

where nums
sums

segments =

Int -> [(Int,Int)]
zip nums sums

map foldl (@) © segments
map foldl (+) © segments
inits (int_to_digits n)

S

convert :: Int -> [(Int,Int)]
convert n = zip nums sums
where nums = map foldl (&) © segments
sums = map foldl (+) © segments
segments = inits (int_to_digits n)
convert :: Int -> [(Int,Int)]
convert n = zip nums sums

where nums

digits

map foldl (@) © (inits digits)
map foldl (+) © (inits digits)
= int_to_digits n

As we saw earlier, mapping foldl over the result of applying inits to a list, is just applying

scanl to that list, so let’s simplify convert by calling scanl rather than mapping foldl.

scanl f e =map (foldl f e) .inits

sums

8-

convert ::
convert n =

where nums
sums

digits

Int -> [(Int,Int)]
zip nums sums

map foldl (@) 0 (inits digits)
map foldl (+) © (inits digits)
= int_to_digits n

S

convert
convert n =

:: Int -> [(Int,Int)]

zip nums sums

where nums
sums
digits =

scanl (@) 0 digits
scanl (+) © digits
int_to_digits n

’ [The suboptimal thing about our current definition of convert
is that it does two left scans over the same list of digits.

\.

u @philip_schwarz

convert :: Int -> [(Int,Int)]
convert n = zip nums sums
where nums = scanl (@) 0 digits
sums = scanl (+) © digits
digits = int_to_digits n

JCan we refactor it to do a single scan? Yes, by using tupling, i.e. by changing the function
that we pass to scanl from a function like () or (+), which computes a single result, to

a function, let’s call it next, which uses those two functions to compute two results

_

convert :: Int -> [(Int,Int)]

convert n = scanl next (@, ©0) digits
where next (number, sum) digit = (number @ digit, sum + digit)
digits = int_to_digits n

On the next slide, we inline digits and compare the resulting
convert function with our initial version, which invoked scanl twice.

ﬁ Here is our first definition of convert]

convert :: Int -> [(Int,Int)]
convert n = zip nums sums
where nums = map digits_to_int segments
sums = map digits_to_sum segments
segments = inits (int_to_digits n)

ﬁ And here is our refactored version, which uses a left scan.]

convert :: Int -> [(Int,Int)]
convert n = scanl next (0, 0) (int_to_digits n)
where next (number, sum) digit = (number @ digit, sum + digit)

The next slide shows the complete Haskell program,
and next to it, the equivalent Scala program.

int_to _digits :: Int -> [Int])x=
int_to_digits n =
n |> iterate (\x -> div x 10)
|> takeWhile (\x -> x > 9)
|> map (\x -> mod x 10)
|> reverse

() :: Int -> Int -> Int
(®) nd=10 *n + d

digits_to_int :: [Int] -> Int
digits_to_int = foldl (@) ©

digits_to_sum :: [Int] -> Int
digits_to_sum = foldl (+) ©

.toList
.reverse

convert :: Int -> [(Int,Int)]
convert n = zip nums sums
where nums = map digits_to_int segments
sums = map digits_to_sum segments
segments = inits (int_to_digits n)

convert' :: Int -> [(Int,Int)]
convert' n = scanl next (0, 0) (int_to_digits n)
where next (number, sum) digit =
(number @ digit, sum + digit)

iterate(n) (_ / 10)
.takeWhile (_ !'=90)
.map (_ % 10)

extension (n:Int)
def @ (d:Int) =10 * n + d

def digitsToInt(ds: Seq[Int]): Int
ds.foldLeft(0)(_P)

def digitsToSum(ds: Seq[Int]): Int
ds.foldLeft(0)(_+)

def intToDigits(n: Int): Seq[Int] = !

def ‘convert:‘(n: Int): Seq[(Int,Int)] =

val nums = segments map digitsToInt
val sums = segments map digitsToSum
nums zip sums

val segments = intToDigits(n).inits.tolList.reverse

def “convert” " (n: Int): Seq[(Int,Int)] =
val next: ((Int,Int),Int) => (Int,Int) =
case ((number, sum), digit) =>
(number @ digit, sum + digit)
intToDigits(n).scanLeft((0,0))(next)

A convert 1234
[(0,0),(1,1),(12,3),(123,6),(1234,10)]
A

assert(intToDigits(1234) == List(1,2,3,4)); assert((123 @ 4) ==
assert(digitsToInt(List(1,2,3,4)) == 1234)
assert(digitsToSum(List(1,2,3,4)) == 10)

assert(converta (1234) == List((0,0),(1,1),(12,3),(123,6),(1234,
assert(convert” " (1234) == List((0,0),(1,1),(12,3),(123,6),(1234,

1234)

10)))
10)))

In the next slide we conclude this deck with Sergei Winitzki‘s
recap of how in functional programming we implement
mathematical induction using folding, scanning and iteration.

Use arbitrary inductive (i.e., recursive) formulas to:

* convert sequences to single values (aggregation or “folding”);
* create new sequences from single values (“unfolding”);

* transform existing sequences into new sequences.

Definition by induction Scala code example

f()=0b; f(S-H-[x]) =g(f(s), x) | £f(xs) = xs.foldLeft(b) (g)

xo=b; xpe1 = g(xg) xs = Stream.iterate(b) (g)

yo=b; Yi+1 =8k, Xx) ys = xs.scanLeft (b) (g)

Table 2.1: Implementing mathematical induction

Table 2.1 shows Scala code implementing those tasks. Iterative calculations are implemented by translating mathematical

The Science of
Functional
Programming

A tutorial, with examples in Scala

induction directly into code. In the functional programming paradigm, the programmer does not need to write any loops or use

array indices. Instead, the programmer reasons about sequences as mathematical values: “Starting from this value, we get that
sequence, then transform it into this other sequence,” etc. This is a powerful way of working with sequences, dictionaries, and
sets. Many kinds of programming errors (such as an incorrect array index) are avoided from the outset, and the code is shorter
and easier to read than conventional code written using loops.

Sergei Winitzki
m sergei-winitzki-11a6431

