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This slide deck can work both as an aide mémoire (memory jogger), or as a first (not 
completely trivial) example of using left folds, left scans and iteration to implement 
mathematical induction.

We first look at the implementation, using a left fold, of a digits-to-int function 
that converts a sequence of digits into a whole number.

Then we look at the implementation, using the iterate function, of an int-to-
digits function that converts an integer into a sequence of digits. In Scala this 
function is very readable because the signatures of functions provided by collections 
permit the piping of such functions with zero syntactic overhead. In Haskell, there is 
some syntactic sugar that can be used to achieve the same readability, so we look at 
how that works.

We then set ourselves a simple task involving digits-to-int and int-to-digits, 
and write a function whose logic can be simplified with the introduction of a left scan.

Let’s begin, on the next slide, by looking at how Richard Bird describes the digits-
to-int function, which he calls 𝑑𝑒𝑐𝑖𝑚𝑎𝑙. 
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Suppose we want a function decimal that takes a list of digits and returns the corresponding decimal number; 
thus  
 
 𝑑𝑒𝑐𝑖𝑚𝑎𝑙	[𝑥0, 𝑥1, … , 𝑥n] = ∑!"#$ 𝑥𝑘10($&!)

It is assumed that the most significant digit comes first in the list. One way to compute decimal efficiently is by a 
process of multiplying each digit by ten and adding in the following digit. For example

 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑥0, 𝑥1, 𝑥2 = 10	× 10	× 10	×	0 + 𝑥0 + 𝑥1 + 𝑥2

This decomposition of a sum of powers is known as Horner’s rule.

Suppose we define ⊕	by 𝑛 ⊕ 𝑥 = 10	×	𝑛 + 𝑥. Then we can rephrase the above equation as

 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑥0, 𝑥1, 𝑥2 = (0⊕ 𝑥0) ⊕ 𝑥1 ⊕𝑥2

This example motivates the introduction of a second fold operator called 𝑓𝑜𝑙𝑑𝑙 (pronounced ‘fold left’). 
Informally:

 𝑓𝑜𝑙𝑑𝑙 ⊕ 	𝑒 𝑥0, 𝑥1, … , 𝑥𝑛 − 1 = …((𝑒 ⊕ 𝑥0) ⊕ 𝑥1)… ⊕ 𝑥𝑛 − 1

The parentheses group from the left, which is the reason for the name. The full definition of	𝑓𝑜𝑙𝑑𝑙 is 

	 𝑓𝑜𝑙𝑑𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → 𝛽	
	 𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 	 = 𝑒
	 𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 𝑥: 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙	𝑓 𝑓	𝑒	𝑥 	𝑥𝑠	

Richard Bird



On the next slide we look at how Sergei 
Winitzki describes the digits-to-int 
funcKon, and how he implements it in Scala.



Example 2.2.5.3 Implement the function digits-to-int using foldLeft.
…
The required computation can be written as the formula

𝑟 = A
!"#

$&(

𝑑𝑘 ∗ 10$&(&!.

…

Solution  The inductive definition of digitsToInt 

• For an empty sequence of digits, Seq(), the result is 0. This is a convenient base case, even if we never call 
digitsToInt on an empty sequence.

• If digitsToInt(xs) is already known for a sequence xs of digits, and we have a sequence xs :+ x with one 
more digit x, then

 digitsToInt(xs :+ x) = digitsToInt(xs) * 10 + x

is directly translated into code:

  def digitsToInt(d: Seq[Int]): Int = d.foldLeft(0){ (n, x) => n * 10 + x }
Sergei Winitzki
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(⊕) :: Int -> Int -> Int
(⊕) n d = 10 * n + d

digits_to_int :: [Int] -> Int
digits_to_int = foldl (⊕) 0

extension (n:Int) 
  def ⊕ (d:Int) = 10 * n + d

def digitsToInt(ds: Seq[Int]): Int =
  ds.foldLeft(0)(_⊕_)

assert( digitsToInt(List(5,3,7,4)) == 5374)

assert( (150 ⊕ 7) == 1507 )

𝑓𝑜𝑙𝑑𝑙 + 	0 1,2,3 = 6𝑓𝑜𝑙𝑑𝑙 ⊕ 	𝑒 𝑥0, 𝑥1, … , 𝑥𝑛 = …((𝑒 ⊕ 𝑥0) ⊕ 𝑥1)… ⊕ 𝑥𝑛

𝑓𝑜𝑙𝑑𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → 𝛽	
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 	 = 𝑒
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 𝑥: 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙	𝑓 𝑓	𝑒	𝑥 	𝑥𝑠	

𝑓𝑜𝑙𝑑𝑙	 ⊕ 	 𝑒	 𝑥0, 𝑥1, 𝑥2
    = 	 𝑓𝑜𝑙𝑑𝑙	 ⊕ 	 𝑒 ⊕ 𝑥0 	 𝑥1, 𝑥2
    = 	 𝑓𝑜𝑙𝑑𝑙	 ⊕ 	 𝑒 ⊕ 𝑥0 ⊕𝑥1 	 𝑥2
    = 	 𝑓𝑜𝑙𝑑𝑙	 ⊕ 	 (( 𝑒 ⊕ 𝑥0 ⊕𝑥1) ⊕ 𝑥2)	 [	]
	 = 	 ((𝑒 ⊕ 𝑥0) ⊕ 𝑥1) ⊕ 𝑥2

𝑓𝑜𝑙𝑑𝑙	 ⊕ 	 0	 1,2,3
    = 	 𝑓𝑜𝑙𝑑𝑙	 ⊕ 	 0⊕ 1 	 2,3
    = 	 𝑓𝑜𝑙𝑑𝑙	 ⊕ 	 0⊕ 1 ⊕ 2 	 3
    = 	 𝑓𝑜𝑙𝑑𝑙	 ⊕ 	 (( 0 ⊕ 1 ⊕ 2)⊕ 3)	 [	]
	 = 	 ((0 ⊕ 1)⊕ 2)⊕ 3

Here is a quick refresher on fold leD

So let’s implement the 
digits-to-int function 
in Haskell. 

And now in Scala. 𝑑𝑒𝑐𝑖𝑚𝑎𝑙	[𝑥0, 𝑥1, … , 𝑥n] = A
!"#

$

𝑥𝑘10($&!)



Now we turn to int-to-digits, a function that is the opposite of digits-to-int, 
and one that can be implemented using the iterate function.

In the next two slides, we look at how Sergei Winitzki describes digits-to-int 
(which he calls digitsOf) and how he implements it in Scala.



2.3 Converting a single value into a sequence
An aggregation converts (“folds”) a sequence into a single value; the opposite operation (“unfolding”) converts a single value into 
a sequence. An example of this task is to compute the sequence of decimal digits for a given integer:

  def digitsOf(x: Int): Seq[Int] = ???

  scala> digitsOf(2405)
  res0: Seq[Int] = List(2, 4, 0, 5)

We cannot implement digitsOf using map, zip, or foldLeft, because these methods work only if we already have a sequence; 
but the function digitsOf needs to create a new sequence. 
…
To figure out the code for digitsOf, we first write this function as a mathematical formula. To compute the digits for, say, n = 
2405, we need to divide n repeatedly by 10, getting a sequence nk of intermediate numbers (n0 = 2405, n1 = 240, ...) and the 
corresponding sequence of last digits, nk mod 10 (in this example: 5, 0, ...). The sequence nk is defined using mathematical 
induction:
• Base case: n0 = n, where n is the given initial integer.
• Inductive step: nk+1 =  nk

10   for k = 1, 2, ...

Here nk
10 	is the mathematical notation for the integer division by 10.

Let us tabulate the evaluation of the sequence nk for n = 2405:
 

The numbers nk will remain all zeros after k = 4. It is clear that the useful part of the sequence is before it becomes all zeros. In this 
example, the sequence nk needs to be stopped at k = 4. The sequence of digits then becomes [5, 0, 4, 2], and we need to reverse it 
to obtain [2, 4, 0, 5]. For reversing a sequence, the Scala library has the standard method reverse. 

Sergei Winitzki
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So, a complete implementa.on for digitsOf is:

  def digitsOf(n: Int): Seq[Int] =
    if (n == 0) Seq(0) else { // n == 0 is a special case.
      Stream.iterate(n) { nk => nk / 10 }
      .takeWhile { nk => nk != 0 }
      .map { nk => nk % 10 }
      .toList.reverse
  }

We can shorten the code by using the syntax such as (_ % 10) instead of { nk => nk % 10 },

  def digitsOf(n: Int): Seq[Int] =
    if (n == 0) Seq(0) else { // n == 0 is a special case.
      Stream.iterate(n) (_ / 10 )
      .takeWhile ( _ != 0 )
      .map ( _ % 10 )
      .toList.reverse
  }

Sergei Winitzki
sergei-winitzki-11a6431

The Scala library has a general stream-producing func8on Stream.iterate. This func8on has two arguments, the ini8al 
value and a func8on that computes the next value from the previous one:
…
The type signature of the method Stream.iterate can be wri?en as

  def iterate[A](init: A)(next: A => A): Stream[A]

and shows a close correspondence to a defini8on by mathema8cal induc8on. The base case is the first value, init, and 
the induc8ve step is a func8on, next, that computes the next element from the previous one. It is a general way of 
crea8ng sequences whose length is not determined in advance.



the prelude function iterate returns an infinite list:

𝑖𝑡𝑒𝑟𝑎𝑡𝑒	 ∷ 𝑎	 → 𝑎 → 𝑎	 → 𝑎
𝑖𝑡𝑒𝑟𝑎𝑡𝑒	𝑓	𝑥 = 𝑥 ∶ 𝑖𝑡𝑒𝑟𝑎𝑡𝑒	𝑓	(𝑓	𝑥)

In particular, 𝑖𝑡𝑒𝑟𝑎𝑡𝑒 +1 	1	is an infinite list of the positive integers, a value we can also 
write as [1..].

Richard Bird

Here is how Richard Bird 
describes the iterate function

int_to_digits :: Int -> [Int]
int_to_digits n =
  reverse (
    map (\x -> mod x 10) (
      takeWhile (\x -> x /= 0) (
        iterate (\x -> div x 10)
          n
      )
    )
  )

import LazyList.iterate

def intToDigits(n: Int): Seq[Int] =
  iterate(n) (_ / 10 )
    .takeWhile ( _ != 0 )
    .map ( _ % 10 )
    .toList
    .reverse

Here on the left I had a go at a Haskell implementation of the int-to-digits function (we 
are not handling cases like n=0 or negative n), and on the right, the same logic in Scala.

I find the Scala version slightly easier 
to understand, because the functions 
that we are calling appear in the order 
in which they are executed. Contrast 
that with the Haskell version, in which 
the function invocations occur in the 
opposite order.



While the ‘fluent’ chaining of funcEon calls on Scala collecEons is very convenient, when using other funcEons, we 
face the same problem that we saw in Haskell on the previous slide. e.g. in the following code, square appears first, 
even though it is executed last, and vice versa for inc.

assert(square(twice(inc(3))) == 64)

assert ((3 pipe inc pipe twice pipe square) == 64)

To help a bit with that problem, in Scala 
there is a pipe function which is available 
on all values, and which allows us to order 
function invocations in the ‘right’ order.

Armed with pipe, we can rewrite the code so that function 
names occur in the same order in which the functions are 
invoked, which makes the code more understandable. 

def inc(n: Int): Int = n + 1
def twice(n: Int): Int = n * 2
def square(n: Int): Int = n * n

3 pipe inc 
  pipe twice 
  pipe square

square(twice(inc(3))

@philip_schwarz



What about in Haskell? First of all, in Haskell there is a function application 
operator called $, which we can sometimes use to omit parentheses 

Application operator. This operator is redundant, since ordinary application (f x) 
means the same as (f $ x). 

However, $ has low, right-associative binding precedence, so it sometimes allows 
parentheses to be omitted; for example:

    f $ g $ h x = f (g (h x))

int_to_digits :: Int -> [Int]
int_to_digits n =
  reverse (
    map (\x -> mod x 10) (
      takeWhile (\x -> x /= 0) (
        iterate (\x -> div x 10)
          n
      )
    )
  )

int_to_digits :: Int -> [Int]
int_to_digits n =
  reverse $ map (\x -> mod x 10)
          $ takeWhile (\x -> x > 0)
          $ iterate (\x -> div x 10)
          $ n

Armed with $, we can simplify our func.on as follows

simplify

For beginners, the $ often makes Haskell code more difficult to 
parse. In practice, the $ operator is used frequently, and you’ll 
likely find you prefer using it over many parentheses. There’s 
nothing magical about $; if you look at its type signature, you 
can see how it works:

  ($) :: (a -> b) -> a -> b

The arguments are just a function and a value. The trick is 
that $ is a binary operator, so it has lower precedence than the 
other functions you’re using. Therefore, the argument for the 
function will be evaluated as though it were in parentheses.



But there is more we can do. In addiEon to the 
funcFon applicaFon operator $, in Haskell there 
is also a reverse funcFon applicaFon operator &.

https://www.fpcomplete.com/haskell/tutorial/operators/



int_to_digits :: Int -> [Int]
int_to_digits n =
  reverse $ map (\x -> mod x 10)
          $ takeWhile (\x -> x > 0)
          $ iterate (\x -> div x 10)
          $ n

int_to_digits :: Int -> [Int]
int_to_digits n =
  n & iterate (\x -> div x 10)
    & takeWhile (\x -> x > 0)
    & map (\x -> mod x 10)
    & reverse

def intToDigits(n: Int): Seq[Int] =
  iterate(n) (_ / 10 )
    .takeWhile ( _ != 0 )
    .map ( _ % 10 )
    .toList
    .reverse

Thanks to the & operator, we can rearrange our int_to_digits 
funcEon so that it is as readable as the Scala version.



There is one school of thought according to which the choice of names for $ and & make 
Haskell hard to read for newcomers, that it is better if  $ and & are instead named <| and |>. 

Flow provides operators for writing more understandable Haskell. It is an alternative to some 
common idioms like ($) for function application and (.) for function composition.
…
Rationale
I think that Haskell can be hard to read. It has two operators for applying functions. Both are not 
really necessary and only serve to reduce parentheses. But they make code hard to read. People 
who do not already know Haskell have no chance of guessing what foo $ bar or baz & 
qux mean.
…
I think we can do better. By using directional operators, we can allow readers to move their eye 
in only one direction, be that left-to-right or right-to-left. And by using idioms common in other 
programming languages, we can allow people who aren't familiar with Haskell to guess at the 
meaning.

So instead of ($), I propose (<|). It is a pipe, which anyone who has touched a Unix system 
should be familiar with. And it points in the direction it sends arguments along. Similarly, 
replace (&) with (|>). …

square $ twice $ inc $ 3

square <| twice <| inc <| 3

3 & inc & twice & square

3 |> inc |> twice |> square

Here is an example of how |> and 
<| improve readability 



Since & is just the reverse of $, we can define |> ourselves simply by flipping $  

λ "left" ++ "right"
"leftright”
λ
λ (##) = flip (++)
λ
λ "left" ## "right"
"rightleft"
λ
λ inc n = n + 1
λ twice n = n * 2
λ square n = n * n
λ
λ square $ twice $ inc $ 3
64
λ
λ (|>) = flip ($)
λ
λ 3 |> inc |> twice |> square
64
λ

int_to_digits :: Int -> [Int]
int_to_digits n =
  n |> iterate (\x -> div x 10)
    |> takeWhile (\x -> x > 0)
    |> map (\x -> mod x 10)
    |> reverse

And here is how our 
function looks using |>.

@philip_schwarz



Now let’s set ourselves the following task. Given a posiEve integer N  with n  digits, e.g. the five-digit number 
12345, we want to compute the following:

   [(0,0),(1,1),(12,3),(123,6),(1234,10),(12345,15)]

i.e. we want to compute a list of pairs p0	,	p1	,	…	 ,	pn	with pk being ( Nk		,	Nk𝛴 ),	where Nk  is the integer number 
formed by the first k  digits of N, and Nk𝛴 is the sum of those digits. We can use our int_to_digits funcEon to 
convert N	 into its digits d1	,	d2	,	…	,	dn	:

  λ int_to_digits 12345 
  [1,2,3,4,5]
  λ

And we can use digits_to_int to turn digits d1	,	d2	,	…	,	dk  into Nk , e.g. for k	=	3 :

  λ digits_to_int [1,2,3]
  123
  λ

How can we generate the following sequences of digits ?

						[	[	]	,	[d1	]	,	[d1	,	d2	]	,	[d1	,	d2	,	d3	]	,	…	,	[d1	,	d2	,	d3	,	…	,	dn	]	]

As we’ll see on the next slide, that is exactly what the inits funcEon produces when passed [d1	,	d2	,	d3	,	…	,	dn	]	!



𝑖𝑛𝑖𝑡𝑠 𝑥0, 𝑥1, 𝑥2 = [[	], 𝑥0 , 𝑥0, 𝑥1 , 𝑥0, 𝑥1, 𝑥2 ]

𝑖𝑛𝑖𝑡𝑠	 ∷ α → α
𝑖𝑛𝑖𝑡𝑠 	 = [ 	 ]
𝑖𝑛𝑖𝑡𝑠 𝑥: 𝑥𝑠 = 	 ∶ 𝑚𝑎𝑝 𝑥: 	(𝑖𝑛𝑖𝑡𝑠	𝑥𝑠)	

Here is a definition for inits.

So we can apply inits to [d1	,	d2	,	d3	,	…	,	dn	]	to generate the following:

					[	[	]	,	[d1	]	,	[d1	,	d2	]	,	[d1	,	d2	,	d3	]	,	…	,	[d1	,	d2	,	d3	,	…	,	dn	]	]

e.g.

  λ inits [1,2,3,4]
  [[],[1],[1,2],[1,2,3],[1,2,3,4]]]
  λ

And here is what inits produces, i.e. 
the list of all iniFal segments of a list.



So if we map digits_to_int over the initial segments of [d1	,	d2	,	d3	,	…	,	dn	],		i.e	

						[	[	]	,	[d1	]	,	[d1	,	d2	]	,	[d1	,	d2	,	d3	]	,	…	,	[d1	,	d2	,	d3	,	…	,	dn	]	]

we obtain a list containing N0	, N1	, … , Nn		, e.g.

  λ map digits_to_int (inits [1,2,3,4,5]))
  [0,1,12,123,1234,12345]]
  λ

What we need now is a function digits_to_sum which is similar to digits_to_int but which instead of converting a list of digits 
[d1	 ,	 d2	 ,	 d3	 ,	 …	 ,	 dk	 ]	 into Nk	 	, i.e. the number formed by those digits, it turns the list into Nk𝛴, i.e. the sum of the digits. Like 
digits_to_int, the digits_to_sum function can be defined using a left fold:

  digits_to_sum :: [Int] -> Int
  digits_to_sum = foldl (+) 0

Let’s try it out:

  λ digits_to_sum [1,2,3,4])
  10]
  λ

Now if we map digits_to_sum over  the initial segments of [d1	,	d2	,	d3	,	…	,	dn	], we obtain a list containing N0 𝛴	, N1 𝛴	, … , Nn 𝛴		, 
e.g.

  λ map digits_to_sum (inits [1,2,3,4,5]))
  [0,1,3,6,10,15]]
  λ

(⊕) :: Int -> Int -> Int
(⊕) n d = 10 * n + d

digits_to_int :: [Int] -> Int
digits_to_int = foldl (⊕) 0



digits_to_sum :: [Int] -> Int
digits_to_sum = foldl (+) 0

(⊕) :: Int -> Int -> Int
(⊕) n d = 10 * n + d

digits_to_int :: [Int] -> Int
digits_to_int = foldl (⊕) 0

convert :: Int -> [(Int,Int)]
convert n = zip nums sums
            where nums = map digits_to_int segments
                  sums = map digits_to_sum segments
                  segments = inits (int_to_digits n)

int_to_digits :: Int -> [Int]
int_to_digits n =
  n |> iterate (\x -> div x 10)
    |> takeWhile (\x -> x > 0)
    |> map (\x -> mod x 10)
    |> reverse

λ convert 12345
[(0,0),(1,1),(12,3),(123,6),(1234,10),(12345,15)]
λ

So here is how our complete 
program looks at the moment.

@philip_schwarz



What we are going to do next is see how, by using the scan left function, we are 
able to simplify the definition of convert which we just saw on the previous slide. 

As a quick refresher of (or introduction to) the scan left function, in the next two 
slides we look at how Richard Bird describes the function.



4.5.2 Scan leD
SomeZmes it is convenient to apply a 𝑓𝑜𝑙𝑑𝑙	operaZon to every iniZal segment of a list. This is done by a funcZon	 𝑠𝑐𝑎𝑛𝑙	
pronounced ‘scan leB’. For example,

	 𝑠𝑐𝑎𝑛𝑙 ⊕ 	𝑒 𝑥0, 𝑥1, 𝑥2 = [𝑒, 𝑒 ⊕ 𝑥0, (𝑒 ⊕ 𝑥0) ⊕ 𝑥1, ((𝑒 ⊕ 𝑥0) ⊕ 𝑥1) ⊕ 𝑥2]

In parZcular,	𝑠𝑐𝑎𝑛𝑙 + 	0	computes the list of accumulated sums of a list of numbers, and	𝑠𝑐𝑎𝑛𝑙 × 	1	[1. . 𝑛]	computes a list of 
the first 𝑛 factorial numbers.		…	We will give two programs for	𝑠𝑐𝑎𝑛𝑙; the first is the clearest, while the second is more efficient.
For the first program we will need the funcZon inits  that returns the list of all iniDal segments of a list. For Example,	

        𝑖𝑛𝑖𝑡𝑠 𝑥0, 𝑥1, 𝑥2 = [[	], 𝑥0 , 𝑥0, 𝑥1 , 𝑥0, 𝑥1, 𝑥2 ]

The empty list has only one segment, namely the empty list itself; A list 𝑥: 𝑥𝑠 	has the empty list as its shortest iniDal segment, 
and all the other iniDal segments begin with 𝑥 and are followed by an iniDal segment of 𝑥𝑠. Hence

	 𝑖𝑛𝑖𝑡𝑠	 ∷ α → α
	 𝑖𝑛𝑖𝑡𝑠 	 = [ 	 ]
	 𝑖𝑛𝑖𝑡𝑠 𝑥: 𝑥𝑠 = 	 ∶ 𝑚𝑎𝑝	(𝑥: )(𝑖𝑛𝑖𝑡𝑠	𝑥𝑠)	

The funcZon 𝑖𝑛𝑖𝑡𝑠	can be defined more succinctly as an instance of 𝑓𝑜𝑙𝑑𝑟	:

	 𝑖𝑛𝑖𝑡𝑠 = 𝑓𝑜𝑙𝑑𝑟	𝑓 [	] 	𝑤ℎ𝑒𝑟𝑒	𝑓	𝑥	𝑥𝑠𝑠 = 	 ∶ 𝑚𝑎𝑝 𝑥: 	𝑥𝑠𝑠

Now we define

	 𝑠𝑐𝑎𝑛𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → [𝛽]
	 𝑠𝑐𝑎𝑛𝑙	𝑓	𝑒	 = 𝑚𝑎𝑝 𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 	. 𝑖𝑛𝑖𝑡𝑠

This is the clearest definiZon of 𝑠𝑐𝑎𝑛𝑙 but it leads to an inefficient program. The funcZon 𝑓 is applied k	 Zmes in the evaluaZon of Richard Bird



𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒	 on a list of length k and, since the initial segments of a list of length n are lists with lengths 0,1,…,n, the function 𝑓 is 
applied about n2/2 times in total.

Let us now synthesise a more efficient program. The synthesis is by an induction argument on 𝑥𝑠 so we lay out the calculation in 
the same way.

<…not shown…>

In summary, we have derived 

	 𝑠𝑐𝑎𝑛𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → [𝛽]
	 𝑠𝑐𝑎𝑛𝑙	𝑓	𝑒 	 = [𝑒]
        𝑠𝑐𝑎𝑛𝑙 𝑓	𝑒 𝑥: 𝑥𝑠 	= 𝑒 ∶ 	𝑠𝑐𝑎𝑛𝑙	𝑓 𝑓	𝑒	𝑥 	𝑥𝑠 

This program is more efficient in that function 𝑓 is applied exactly n  times on a list of length n.

Richard Bird

𝑠𝑐𝑎𝑛𝑙 ⊕ 	𝑒 𝑥0, 𝑥1, 𝑥2
⬇

[𝑒, 𝑒 ⊕ 𝑥0, (𝑒 ⊕ 𝑥0) ⊕ 𝑥1, ((𝑒 ⊕ 𝑥0) ⊕ 𝑥1) ⊕ 𝑥2]

𝑓𝑜𝑙𝑑𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 	 = 𝑒
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 𝑥: 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙	𝑓 𝑓	𝑒	𝑥 	𝑥𝑠	

Note the similarities and differences between 𝑠𝑐𝑎𝑛𝑙 and 𝑓𝑜𝑙𝑑𝑙, e.g. the left hand sides of their equations are the 
same, and their signatures are very similar, but	𝑠𝑐𝑎𝑛𝑙 returns [𝛽]	rather than 𝛽 and while 𝑓𝑜𝑙𝑑𝑙 is tail recursive, 
𝑠𝑐𝑎𝑛𝑙 isn’t.

𝑠𝑐𝑎𝑛𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → [𝛽]
𝑠𝑐𝑎𝑛𝑙	𝑓	𝑒 	 = [𝑒]
𝑠𝑐𝑎𝑛𝑙 𝑓	𝑒 𝑥: 𝑥𝑠 	= 𝑒 ∶ 	𝑠𝑐𝑎𝑛𝑙	𝑓 𝑓	𝑒	𝑥 	𝑥𝑠 

𝑓𝑜𝑙𝑑𝑙 ⊕ 	𝑒 𝑥0, 𝑥1, 𝑥2
⬇

((𝑒 ⊕ 𝑥0) ⊕ 𝑥1) ⊕ 𝑥2



On the next slide, a very simple example of 
using scanl, and a reminder of how the result 
of scanl relates to the result of inits and foldl.



𝑖𝑛𝑖𝑡𝑠 2,3,4 = [[	], 2 , 2,3 , 2,3,4 ]

𝑠𝑐𝑎𝑛𝑙 + 	0 2,3,4 = [0, 2, 5, 9]

𝑓𝑜𝑙𝑑𝑙 + 	0	[	] =0	
𝑓𝑜𝑙𝑑𝑙 + 	0 2 = 2
𝑓𝑜𝑙𝑑𝑙 + 	0 2,3 = 5
𝑓𝑜𝑙𝑑𝑙 + 	0 2,3,4 = 9

𝑠𝑐𝑎𝑛𝑙 ⊕ 	𝑒 𝑥0, 𝑥1, 𝑥2
⬇

[𝑒, 𝑒 ⊕ 𝑥0, (𝑒 ⊕ 𝑥0) ⊕ 𝑥1, ((𝑒 ⊕ 𝑥0) ⊕ 𝑥1) ⊕ 𝑥2]

𝑖𝑛𝑖𝑡𝑠 𝑥0, 𝑥1, 𝑥2 = [[	], 𝑥0 , 𝑥0, 𝑥1 , 𝑥0, 𝑥1, 𝑥2 ]

𝑠𝑐𝑎𝑛𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → [𝛽]
𝑠𝑐𝑎𝑛𝑙	𝑓	𝑒	 = 𝑚𝑎𝑝 𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 	. 𝑖𝑛𝑖𝑡𝑠

𝑓𝑜𝑙𝑑𝑙 ⊕ 	𝑒 𝑥0, 𝑥1, … , 𝑥𝑛 − 1 =
…((𝑒 ⊕ 𝑥0) ⊕ 𝑥1)… ⊕ 𝑥𝑛 − 1

𝑓𝑜𝑙𝑑𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → 𝛽	
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 	 = 𝑒
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 𝑥: 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙	𝑓 𝑓	𝑒	𝑥 	𝑥𝑠	

𝑓𝑜𝑙𝑑𝑙	 ⊕ 	 𝑒	 𝑥0, 𝑥1, 𝑥2
    = 	 𝑓𝑜𝑙𝑑𝑙	 ⊕ 	 𝑒 ⊕ 𝑥0 	 𝑥1, 𝑥2
    = 	 𝑓𝑜𝑙𝑑𝑙	 ⊕ 	 𝑒 ⊕ 𝑥0 ⊕𝑥1 	 𝑥2
    = 	 𝑓𝑜𝑙𝑑𝑙	 ⊕ 	 (( 𝑒 ⊕ 𝑥0 ⊕𝑥1) ⊕ 𝑥2)	 [	]
	 = 	 ((𝑒 ⊕ 𝑥0) ⊕ 𝑥1) ⊕ 𝑥2

𝑠𝑐𝑎𝑛𝑙 + 	0 2,3,4
⬇

[0, 0 + 2, 0 + 2 + 3, 0 + 2 + 3 + 4]



𝑠𝑐𝑎𝑛𝑙	𝑓	𝑒	 = 𝑚𝑎𝑝 𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 	. 𝑖𝑛𝑖𝑡𝑠

convert :: Int -> [(Int,Int)]
convert n = zip nums sums
            where nums = map digits_to_int segments
                  sums = map digits_to_sum segments
                  segments = inits (int_to_digits n)    

convert :: Int -> [(Int,Int)]
convert n = zip nums sums
            where nums = map foldl (⊕) 0 segments
                  sums = map foldl (+) 0 segments 
                  segments = inits (int_to_digits n)                  

After that refresher of (introduction to) the scanl function, let’s see how it can help us simplify our definition of the convert function.

The first thing to do is to take the definition of convert and inline its invocations of digits_to_int and digits_to_sum:

refactor

Now let’s extract (int_to_digits n) into digits and inline segments.

refactor

convert :: Int -> [(Int,Int)]
convert n = zip nums sums
            where nums = map foldl (⊕) 0 (inits digits)
                  sums = map foldl (+)  0 (inits digits)
                  digits = int_to_digits n 

convert :: Int -> [(Int,Int)]
convert n = zip nums sums
            where nums = map foldl (⊕) 0 segments
                  sums = map foldl (+) 0 segments 
                  segments = inits (int_to_digits n)                  

convert :: Int -> [(Int,Int)]
convert n = zip nums sums
            where nums = scanl (⊕) 0 digits
                  sums = scanl (+)  0 digits
                  digits = int_to_digits n 

convert :: Int -> [(Int,Int)]
convert n = zip nums sums
            where nums = map foldl (⊕) 0 (inits digits)
                  sums = map foldl (+)  0 (inits digits)
                  digits = int_to_digits n 

refactor

As we saw earlier, mapping foldl over the result of applying inits to a list, is just applying 
scanl to that list, so let’s simplify convert by calling scanl rather than mapping foldl.



convert :: Int -> [(Int,Int)]
convert n = zip nums sums
            where nums = scanl (⊕) 0 digits
                  sums = scanl (+)  0 digits
                  digits = int_to_digits n 

The suboptimal thing about our current definition of convert 
is that it does two left scans over the same list of digits. 

Can we refactor it to do a single scan? Yes, by using tupling, i.e. by changing the function 
that we pass to scanl from a function like (⊕) or (+), which computes a single result, to 
a function, let’s call it next, which uses those two functions to compute two results

convert :: Int -> [(Int,Int)]
convert n = scanl next (0, 0) digits
            where next (number, sum) digit = (number ⊕ digit, sum + digit)
                  digits = int_to_digits n

On the next slide, we inline digits and compare the resul.ng 
convert func.on with our ini.al version, which invoked scanl twice.

@philip_schwarz



convert :: Int -> [(Int,Int)]
convert n = scanl next (0, 0) (int_to_digits n)
            where next (number, sum) digit = (number ⊕ digit, sum + digit)

convert :: Int -> [(Int,Int)]
convert n = zip nums sums
            where nums = map digits_to_int segments
                  sums = map digits_to_sum segments
                  segments = inits (int_to_digits n)

Here is our first definition of convert

And here is our refactored version, which uses a left scan.

The next slide shows the complete Haskell program, 
and next to it, the equivalent Scala program.



digits_to_sum :: [Int] -> Int
digits_to_sum = foldl (+) 0

(⊕) :: Int -> Int -> Int
(⊕) n d = 10 * n + d

int_to_digits :: Int -> [Int]
int_to_digits n =
  n |> iterate (\x -> div x 10)
    |> takeWhile (\x -> x > 0)
    |> map (\x -> mod x 10)
    |> reverse

λ convert 1234
[(0,0),(1,1),(12,3),(123,6),(1234,10)]
λ

convert' :: Int -> [(Int,Int)]
convert' n = scanl next (0, 0) (int_to_digits n)
            where next (number, sum) digit = 
              (number ⊕ digit, sum + digit)

def digitsToInt(ds: Seq[Int]): Int =
  ds.foldLeft(0)(_⊕_)

def digitsToSum(ds: Seq[Int]): Int =
  ds.foldLeft(0)(_+_)

def intToDigits(n: Int): Seq[Int] =
  iterate(n) (_ / 10 )
    .takeWhile ( _ != 0 )
    .map ( _ % 10 )
    .toList
    .reverse

def `convert⚡`(n: Int): Seq[(Int,Int)] = 
  val next: ((Int,Int),Int) => (Int,Int) = 
    case ((number, sum), digit) =>
      (number ⊕ digit, sum + digit) 
  intToDigits(n).scanLeft((0,0))(next)

digits_to_int :: [Int] -> Int
digits_to_int = foldl (⊕) 0

fold

λ

convert :: Int -> [(Int,Int)]
convert n = zip nums sums
            where nums = map digits_to_int segments
                  sums = map digits_to_sum segments
                  segments = inits (int_to_digits n)

def `convert⌛`(n: Int): Seq[(Int,Int)] = 
  val segments = intToDigits(n).inits.toList.reverse
  val nums = segments map digitsToInt
  val sums = segments map digitsToSum
  nums zip sums

extension (n:Int) 
  def ⊕ (d:Int) = 10 * n + d

assert(intToDigits(1234) == List(1,2,3,4));  assert((123 ⊕ 4) == 1234)
assert(digitsToInt(List(1,2,3,4)) == 1234)
assert(digitsToSum(List(1,2,3,4)) == 10)
assert(`convert⌛`(1234) == List((0,0),(1,1),(12,3),(123,6),(1234,10)))
assert(`convert⚡`(1234) == List((0,0),(1,1),(12,3),(123,6),(1234,10)))



In the next slide we conclude this deck with Sergei Winitzki‘s 
recap of how in functional programming we implement 
mathematical induction using folding, scanning and iteration.



Use arbitrary inductive (i.e., recursive) formulas to:
• convert sequences to single values (aggregation or “folding”);
• create new sequences from single values (“unfolding”);
• transform existing sequences into new sequences.

Table 2.1: Implementing mathematical induction

Table 2.1 shows Scala code implementing those tasks. Iterative calculations are implemented by translating mathematical 
induction directly into code. In the functional programming paradigm, the programmer does not need to write any loops or use 
array indices. Instead, the programmer reasons about sequences as mathematical values: “Starting from this value, we get that 
sequence, then transform it into this other sequence,” etc. This is a powerful way of working with sequences, dictionaries, and 
sets. Many kinds of programming errors (such as an incorrect array index) are avoided from the outset, and the code is shorter 
and easier to read than conventional code written using loops.

Sergei Winitzki
sergei-winitzki-11a6431


