
Game of Life - Polyglot FP
Haskell - Scala - Unison

Follow along as Trampolining is used to overcome Stack Overflow issues with the simple IO monad

deepening you understanding of the IO monad in the process
See Game of Life IO actions migrated to the Cats Effect IO monad, which is trampolined in its flatMap evaluation

(Part 3)

through the work of

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

Paul ChiusanoRunar Bjarnason
@pchiusano@runarorama

FP in Scala Graham Hutton
@haskellhutt

https://www.slideshare.net/pjschwarz/natural-transformations

@philip_schwarz

At the end of part 2, when we first tried to run the Scala Game of Life program, it encountered a StackOverflowError.

We implemented the game’s I/O functions with a particular Scala IO Monad which can cause programs that use it to
encounter a StackOverflowError.

The first thing we are going to do next is see how Functional Programming in Scala describes the problem.

Many IO programs will overflow the runtime call stack and throw a StackOverflowError. If you haven’t encountered this
problem yet in your own experimenting, you’d certainly run into it if you were to write larger programs using our current IO type…

13.3 Avoiding the StackOverflowError
To better understand the StackOverflowError, consider this very simple program that demonstrates the problem:

val p = IO.forever(PrintLine("Still going..."))

If we evaluate p.run, it will crash with a StackOverflowError after printing a few thousand lines. If you look at the stack
trace, you’ll see that run is calling itself over and over. The problem is in the definition of flatMap:

def flatMap[B](f: A => IO[B]): IO[B] =
new IO[B] { def run = f(self.run).run }

This method creates a new IO object whose run definition calls run again before calling f.
This will keep building up nested run calls on the stack and eventually overflow it.

What can be done about this?

13.3.1 Reifying control flow as data constructors
The answer is surprisingly simple. Instead of letting program control just flow through with function
calls, we explicitly bake into our data type the control flow that we want to support. For example,
instead of making flatMap a method that constructs a new IO in terms of run, we can just make it
a data constructor of the IO data type. Then the interpreter can be a tail-recursive loop. Whenever it
encounters a constructor like FlatMap(x,k), it will simply interpret x and then call k on the result.

Runar Bjarnason
@runarorama

Paul Chiusano
@pchiusano

Functional Programming
in Scala

def forever[A,B](a: F[A]): F[B] = {
lazy val t: F[B] = flatMap(a)(_ => t)
t

}

Here’s a new IO type that implements that idea.

sealed trait IO[A] {
def flatMap[B](f: A => IO[B]): IO[B] =
FlatMap(this, f)

def map[B](f: A => B): IO[B] =
flatMap(f andThen (Return(_)))

}
case class Return[A](a: A) extends IO[A]
case class Suspend[A](resume: () => A) extends IO[A]
case class FlatMap[A,B](sub: IO[A], k: A => IO[B]) extends IO[B]

This new IO type has three data constructors, representing the three different kinds of control flow that we want the interpreter of
this data type to support. Return represents an IO action that has finished, meaning that we want to return the value a without any
further steps. Suspend means that we want to execute some effect to produce a result. And the FlatMap data constructor lets us
extend or continue an existing computation by using the result of the first computation to produce a second computation.

The flatMap method’s implementation can now simply call the FlatMap data constructor and return immediately. When the
interpreter encounters FlatMap(sub, k), it can interpret the subcomputation sub and then remember to call the
continuation k on the result. Then k will continue executing the program.

Runar Bjarnason
@runarorama

Paul Chiusano
@pchiusanoFunctional Programming

in Scala

A pure computation that
immediately returns an A
without any further steps.
When run sees this
constructor, it knows the
computation has finished.

A suspension of the computation
where resume is a function that
takes no arguments, but has some
effect and yields a result.

A composition of two steps. Reifies flatMap as a data
constructor rather than a function. When run sees this,
it should first process the subcomputation sub and then
continue with k once sub produces a result.

We’ll get to the interpreter shortly, but first let’s rewrite our printLine example to use this new IO type:

def printLine(s: String): IO[Unit] =
Suspend(() => println(s))

val p: IO[Unit] = IO.forever(printLine("Still going..."))

What this actually creates is an infinite nested structure, much like a Stream. The “head” of the stream
is a Function0, and the rest of the computation is like the “tail”:

FlatMap(Suspend(() => println(s)),
_ => FlatMap(Suspend(() => println(s)),

_ => FlatMap(...)))

And here’s the tail-recursive interpreter that traverses the structure and performs the effects:

@annotation.tailrec def run[A](io: IO[A]): A = io match {
case Return(a) => a
case Suspend(r) => r()
case FlatMap(x, f) => x match {
case Return(a) => run(f(a))
case Suspend(r) => run(f(r()))
case FlatMap(y, g) => run(y flatMap (a => g(a) flatMap f))

}
}

Runar Bjarnason
@runarorama

Paul Chiusano
@pchiusano

Functional Programming
in Scala

We could just say
run(f(run(x)))
here, but then the inner
call to run wouldn’t be
in tail position. Instead,
we match on x to see
what it is.

Here x is a
Suspend(r),
so we force
the r thunk
and call f on
the result.

In this case, io is an expression like
FlatMap(FlatMap(y, g), f). We reassociate
this to the right in order to be able to call run in tail
position, and the next iteration will match on y.

head

tail

In the hope of aiding comprehension, on the next
slide I have renamed some variables as follows:

r à resume
x à subComputation
f à continuation
y à subSubComputation
g à subContinuation

@annotation.tailrec
def run[A](io: IO[A]): A = io match {
case Return(a) => a
case Suspend(resume) => resume()
case FlatMap(subComputation, continuation) => subComputation match {
case Return(a) => run(continuation(a))
case Suspend(resume) => run(continuation(resume()))
case FlatMap(subSubComputation, subContinuation) =>
run(subSubComputation flatMap (a => subContinuation(a) flatMap continuation))

Note that instead of saying run(continuation(run(subComputation))) in the FlatMap(
subComputation, continuation) case (thereby losing tail recursion), we instead pattern match on subComputation, since
it can only be one of three things. If it’s a Return, we can just call continuation on the pure value inside. If it’s a Suspend, then
we can just execute its resumption, call FlatMap with continuation on its result, and recurse. But if subComputation is itself
a FlatMap constructor, then we know that io consists of two FlatMap constructors nested on the left like this:
FlatMap(FlatMap(subSubComputation, subContinuation), continuation).

In order to continue running the program in that case, the next thing we naturally want to do is look at subSubComputation to see if
it is another FlatMap constructor, but the expression may be arbitrarily deep and we want to remain tail-recursive. We reassociate
this to the right, effectively turning
(subSubComputation flatMap subContinuation) flatMap continuation into
subSubComputation flatMap (a => subContinuation(a) flatMap continuation).

We’re just taking advantage of the monad associativity law! Then we call run on the rewritten expression, letting us remain tail-
recursive. Thus, when we actually interpret our program, it will be incrementally rewritten to be a right-associated sequence of
FlatMap constructors:

FlatMap(a1, a1 =>
FlatMap(a2, a2 =>
FlatMap(a3, a3 =>
...
FlatMap(aN, aN => Return(aN)))))

Runar Bjarnason
@runarorama

Paul Chiusano
@pchiusano

Functional
Programming

in Scala

The flatMap function of a monad is subject to the following monadic Law of Associativity:

(m flatMap f) flatMap g ≡ m flatMap (x => f(x) flatMap g)

This holds for all values m, f and g of the appropriate types (see right).

While on the left hand side of the equation the invocations of flatMap are being chained, on the right hand
side of the equation the invocations are being nested.

an operation ✽ is associative if it doesn’t
matter whether we parenthesize it
((x ✽ y) ✽ z) or (x ✽ (y ✽ z))

e.g. in the run interpreter function on the previous slide we have the following:

(subSubComputation flatMap subContinuation) flatMap continuation ≡
subSubComputation flatMap (a => subContinuation(a) flatMap continuation)

m: M[A]
f: A => M[B]
g: B => M[C]

@philip_schwarz

The monadic Law of Associativity played a key role on the previous slide, so
here is a description of the law, as a reminder, or as a quick introduction.

If we now pass our example program p to run, it’ll continue running indefinitely without a stack overflow, which is what we want.
Our run function won’t overflow the stack, even for infinitely recursive IO programs.

scala> val p: IO[Unit] = IO.forever(printLine("Still going..."))
p: IO[Unit] = FlatMap(Suspend(Main$$$Lambda$5081/83769710@e380654),

Monad$$Lambda$5082/300931283@7bf87bb4)

scala> run(p)
Still going...
Still going...
Still going...
Still going...
Still going...
Still going...
<carries on indefinitely>

What have we done here? When a program running on the JVM makes a function call, it’ll push a frame onto the call stack in
order to remember where to return after the call has finished so that the execution can continue. We’ve made this program
control explicit in our IO data type. When run interprets an IO program, it’ll determine whether the program is requesting to
execute some effect with a Suspend(s), or whether it wants to call a subroutine with FlatMap(subComputation,
continuation). Instead of the program making use of the call stack, run will call subComputation() and then continue
by calling continuation on the result of that. And continuation will immediately return either a Suspend, a
FlatMap, or a Return, transferring control to run again. Our IO program is therefore a kind of coroutine6 that executes
cooperatively with run. It continually makes either Suspend or FlatMap requests, and every time it does so, it suspends its
own execution and returns control to run. And it’s actually run that drives the execution of the program forward, one such
suspension at a time. A function like run is sometimes called a trampoline, and the overall technique of returning control to a
single loop to eliminate the stack is called trampolining.

Runar Bjarnason
@runarorama

Paul Chiusano
@pchiusano

Functional
Programming

in Scala

Let’s try it out.

Yes, it works.

13.3.2 Trampolining: a general solution to stack overflow
Nothing says that the resume functions in our IO monad have to perform side effects. The IO type we have so far is in fact a
general data structure for trampolining computations— even pure computations that don’t do any I/O at all! The
StackOverflowError problem manifests itself in Scala wherever we have a composite function that consists of more function
calls than there’s space for on the call stack. This problem is easy to demonstrate:

scala> val f = (x: Int) => x
f : Int => Int = $$Lambda$4211/1718489889@2303c77b
scala> val g = List.fill(100_000)(f).foldLeft(f)(_ compose _)
g: Int => Int = scala.Function1$$Lambda$4243/448419723@35da7769
scala> g(42)
java.lang.StackOverflowError

at scala.runtime.java8.JFunction1$mcII$sp.apply(JFunction1$mcII$sp.scala:17)
at scala.Function1.$anonfun$compose$1(Function1.scala:77)
…<hundreds of identical intervening lines>
at scala.Function1.$anonfun$compose$1(Function1.scala:77)

scala>

And it’ll likely fail for much smaller compositions. Fortunately, we can solve this with our IO monad:

scala> val f: Int => IO[Int] = (x: Int) => Return(x)
f: Int => IO[Int] = $$Lambda$4429/341969473@3ab7d11c
scala> val g = List.fill(100_000)(f).foldLeft(f) {

| (a, b) => x => Suspend(() => a(x).flatMap(b))
| }

g: Int => IO[Int] = $$Lambda$4432/1504554235@272067f
scala> val x1 = run(g(0))
x1: Int = 0
scala> val x2 = run(g(42))
x2: Int = 42
scala>

But there’s no I/O going on here at all. So IO is a bit of a misnomer. It really gets that name from the fact that Suspend can
contain a side-effecting function. But what we have is not really a monad for I/O—it’s actually a monad for tail-call elimination!

Runar Bjarnason
@runarorama

Paul Chiusano
@pchiusano

Functional
Programming

in Scala

Create a large,
left-nested chain
of flatMap calls.

Let’s change its name to reflect that:

We can use the TailRec data type to add trampolining to any function type A => B by modifying the return type B to TailRec[B] instead. We just
saw an example where we changed a program that used Int => Int to use Int => TailRec[Int]. The program just had to be modified to use flatMap
in function composition7 and to Suspend before every function call. Using TailRec can be slower than direct function calls, but its advantage is that we
gain predictable stack usage.

7 This is just Kleisli composition from chapter 11. In other words, the trampolined function uses Kleisli composition in the TailRec monad instead of ordinary function composition.

Runar Bjarnason @runaroramaPaul Chiusano @pchiusano Functional Programming in Scala

val g = List.fill(100_000)(f).foldLeft(f) {
(a, b) => x => Suspend(() => ()).flatMap { _ => a(x).flatMap(b)}

}

val g = List.fill(100_000)(f).foldLeft(f) {
(a, b) => x => TailRec.suspend { a(x).flatMap(b) }

}

https://github.com/fpinscala/fpinscala/wiki/Errata
@philip_schwarz

The errata page of FPiS informs us of an error in
the code for function g on the slide before last.

It makes sense for the suspend function to live in the TailRec
object, which reminds me that we have not yet migrated the IO
object to TailRec (the FPiS book did not mention it). If we look in
the FPiS github repo, we see that there is a TailRec object and that
the suspend function has been added to it.

object TailRec extends Monad[TailRec] {
def unit[A](a: => A): TailRec[A] =

Return(a)
def flatMap[A,B](a: TailRec[A])(f: A => TailRec[B]): TailRec[B] =

fa flatMap f
def suspend[A](a: => TailRec[A]) =

Suspend(() => ()).flatMap { _ => a }
}

Here is the corrected g function without using the
new helper function.

And here is the corrected g function again, but this time
using the new helper function, which is very convenient.

object IO extends Monad[IO] {
def unit[A](a: => A): IO[A] =

new IO[A] { def run = a }
def flatMap[A,B](fa: IO[A])(f: A => IO[B]) =

fa flatMap f
def apply[A](a: => A): IO[A] =

unit(a)
}

Just for reference,
here on the right is
the IO object as it
was at the time
that TailRec was
introduced

https://github.com/fpinscala/fpinscala/wiki/Errata

We have just seen that a program that composes a function with itself a
sufficiently large number of times results in a StackOverflowError.

E.g. if we take a function f that does nothing (i.e. it simply returns its
argument)

val f = (x: Int) => x

and we compose f with itself 100,000 times, producing composite
function g

val g = List.fill(100_000)(f).foldLeft(f)(_ compose _)

then running g results in a StackOverflowError:

scala> g(42)
java.lang.StackOverflowError

But if we make the following changes to the program and the function:

1. add trampolining to the function by changing it to return its result wrapped in
TailRec i.e. change the function’s type from A => B to A => TailRec[B]

2. use flatMap in function composition
3. Suspend before every function call

e.g. if we redefine f as follows:

val f: Int => TailRec[Int] = (x: Int) => Return(x)

and compose the fs as follows:

val g = List.fill(100_000)(f).foldLeft(f) {
(a, b) => x => TailRec.suspend { a(x).flatMap(b) }

}

Then running g no longer results in a StackOverflowError:

assert(run(g(42)) == 42)

See the next slide for a recap of all the code necessary to run the above example.

sealed trait TailRec[A] {
def flatMap[B](f: A => TailRec[B]): TailRec[B] =
FlatMap(this, f)

def map[B](f: A => B): TailRec[B] =
flatMap(f andThen (Return(_)))

}

case class Return[A](a: A) extends TailRec[A]
case class Suspend[A](resume: () => A) extends TailRec[A]
case class FlatMap[A,B](sub: TailRec[A], k: A => TailRec[B]) extends TailRec[B]

implicit object TailRec extends Monad[TailRec] {
def unit[A](a: => A): TailRec[A] = Return(a)
def flatMap[A,B](a: TailRec[A])(f: A => TailRec[B]): TailRec[B] = a flatMap f
def suspend[A](a: => TailRec[A]) =
Suspend(() => ()).flatMap { _ => a }

}

@annotation.tailrec def run[A](t: TailRec[A]): A = t match {
case Return(a) => a
case Suspend(r) => r()
case FlatMap(x, f) => x match {
case Return(a) => run(f(a))
case Suspend(r) => run(f(r()))
case FlatMap(y, g) => run(y flatMap (a => g(a) flatMap f))

}
}

trait Functor[F[_]] {
def map[A,B](a: F[A])(f: A => B): F[B]

}

trait Monad[F[_]] extends Functor[F] {
def unit[A](a: => A): F[A]
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
def map[A,B](a: F[A])(f: A => B): F[B] =
flatMap(a)(a => unit(f(a)))

}

val f: Int => TailRec[Int] = (x: Int) => Return(x)
val g = List.fill(100_000)(f).foldLeft(f) {
(a, b) => x => TailRec.suspend { a(x).flatMap(b) }

}

assert(run(g(0)) == 0)
assert(run(g(42)) == 42)

To better understand how to add trampolining to a function, let’s add it to a very simple and familiar function: factorial.

def factorial(n: Int): Int = {
if (n == 0) 1
else n * factorial(n - 1)

}

On my laptop, if I first run export SBT_OPTS=-Xss1M to arrange for the JVM stack size to be set to 1MB, and then run sbt
console, I can then use the above factorial function to compute up to 12!

scala> assert(factorial(12) == 479_001_600)

But 13! is 6,227,020,800 and does not fit into an Int, so the function computes the incorrect value 1,932,053,504.

If in the signature of factorial, we switch from Int to Long, then we are able to compute up to 20!

scala> assert(factorial(20) == 2_432_902_008_176_640_000L)

But 21! is 51,090,942,171,709,440,000 and does not fit into a Long, so the function computes the incorrect value
-4,249,290,049,419,214,848.

If in the signature of factorial, we switch from Long to BigDecimal, then we are able to compute factorial for some very large
numbers, e.g.

scala> assert(factorial(3_249) == BigDecimal("6.412337688276552183884096303056808E+10000"))

But if we try to compute !10,000 say, we get a stack overflow error:

scala> factorial(10_000)
java.lang.StackOverflowError

n n!
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880
10 3628800
11 39916800
12 479001600
13 6227020800
14 87178291200
15 1307674368000
16 20922789888000
17 355687428096000
18 6402373705728000
19 121645100408832000
20 2432902008176640000
25 1.551121004×1025

50 3.041409320×1064

70 1.197857167×10100

100 9.332621544×10157

450 1.733368733×101000

1000 4.023872601×102567

3249 6.412337688×1010000

10000 2.846259681×1035659

25206 1.205703438×10100000

100000 2.824229408×10456573

205023 2.503898932×101000004

1000000 8.263931688×105565708

10100 1010101.998109775482

https://en.wikipedia.org/wiki/Googol

Let’s fix that by adding trampolining to factorial.

def factorial(n: BigDecimal): BigDecimal = {
if (n == 0) 1
else n * factorial(n - 1)

}

def factorial(n: BigDecimal): BigDecimal = {
if (n == 0) 1
else {

val f: BigDecimal => BigDecimal = factorial _
val g: BigDecimal => BigDecimal = res => n * res
(f andThen g)(n - 1)

}
}

Step 1: refactor expression n * factorial(n - 1) by extracting functions f and g and rewriting the expression in terms of the
composition of f and g, i.e. (f andThen g)(n - 1)

def factorial(n: BigDecimal): TailRec[BigDecimal] = {
if (n == 0) Return(1)
else {

val f: BigDecimal => TailRec[BigDecimal] = factorial _
val g: BigDecimal => TailRec[BigDecimal] = res => Return(n * res)
TailRec.suspend(f(n-1).flatMap(g))

}
}

Step 2: apply trampolining rules: (1) return result wrapped in TailRec, (2) use flatMap in function composition, (3) Suspend before every function call

def factorial(n: BigDecimal): BigDecimal = {
if (n == 0) 1
else {

val f: BigDecimal => BigDecimal = factorial _
val g: BigDecimal => BigDecimal = res => n * res
(f andThen g)(n - 1)

}
}

refactor

refactor

1

23

def suspend[A](a: => TailRec[A]) =
Suspend(() => ()).flatMap { _ => a }

1

def flatMap[B](f: A => TailRec[B]): TailRec[B] =
FlatMap(this, f)

ordinary function composition: f andThen g = g compose f

Kleisli composition using flatMap

1

1

1

1 2 3

def factorial(n: BigDecimal): TailRec[BigDecimal] = {
if (n == 0) Return(1)
else TailRec.suspend(

factorial(n-1).flatMap(res => Return(n * res))
)

}

Now that we have added trampolining, we are able to compute the factorial of large
numbers without stack overflow. E.g. earlier we were unable to compute !10,000, but
now we can compute not only that, but even much larger ones, say !1,000,000.

@philip_schwarz

Step 3: inline f and g

def factorial(n: BigDecimal): TailRec[BigDecimal] = {
if (n == 0) Return(1)
else {

val f: BigDecimal => TailRec[BigDecimal] = factorial _
val g: BigDecimal => TailRec[BigDecimal] = res => Return(n * res)
TailRec.suspend(f(n-1).flatMap(g))

}
}

refactor

10,000!

scala> assert(run(factorial(10_000)) == BigDecimal("2.846259680917054518906413212119839E+35659"))

25,206!

scala> assert(run(factorial(25_206)) == BigDecimal("1.205703438159232693561585375515968E+100000"))

1,000,000!

scala> assert(run(factorial(1_000_000)) == BigDecimal("8.263931688331240062376646103174463E+5565708"))

n n!
0 1
1 1
2 2
3 6
4 24
5 120
… …
3249 6.412337688×1010000

10000 2.846259681×1035659

25206 1.205703438×10100000

100000 2.824229408×10456573

205023 2.503898932×101000004

1000000 8.263931688×105565708

10100 1010101.998109775482

https://en.wikipedia.org/wiki/Googol

About the second rule used to add trampolining to factorial:

“use flatMap in function composition”

Remember the following footnote to that rule?

This is just Kleisli composition from chapter 11. In other words, the
trampolined function uses Kleisli composition in the TailRec monad
instead of ordinary function composition.

What does that mean e.g. in the context of our trampolined factorial function?

The next 5 slides are a quick reminder of (or intro to) Kleisli composition.

Consider three functions f, g and h of the following types:

f: A => B
g: B => C
h: C => D

e.g.

We can compose these functions ourselves:

assert(h(g(f(12345))) == "1,2,3,4,5")

Or we can compose them into a single function using compose, the
higher-order function for composing ordinary functions :

val hgf = h compose g compose f

assert(hgf(12345) == "1,2,3,4,5")

Alternatively, we can compose them using andThen:

val hgf = f andThen g andThen h

assert(hgf(12345) == "1,2,3,4,5")

What about Kleisli arrows, which are functions of types like A =>
F[B], where F is a monadic type constructor: how can they be
composed?

val f: Int => String = _.toString
val g: String => Array[Char] = _.toArray
val h: Array[Char] => String = _.mkString(",")

Consider three Kleisli arrows f, g and h:

f: A => F[B]
g: B => F[C]
h: C => F[D]

How can we compose f, g and h?

We can do so using Kleisli composition. Here is how we compose the three
functions using the fish operator, which is the infix operator for Kleisli
Composition:

And here is the signature of the fish operator:

e.g. here are the Kleisli composition functions for Option and List:

case class Insurance(name:String)
case class Car(insurance: Option[Insurance])
case class Person(car: Option[Car])

val car: Person => Option[Car] =
person => person.car

val insurance: Car => Option[Insurance] =
car => car.insurance

val toChars: String => List[Char] = _.toList
val toAscii: Char => List[Char] =
_.toInt.toString.toList

assert(toChars("AB") == List('A','B'))
assert(toAscii('A') == List('6','5'))

val carInsurance: Person => Option[Insurance] =
car >=> insurance

val non-driver= Person(car=None)
val uninsured = Person(Some(Car(insurance=None)))
val insured = Person(Some(Car(Some(Insurance("Acme")))))

assert(carInsurance(non-driver).isEmpty)
assert(carInsurance(uninsured).isEmpty)
assert(carInsurance(insured).contains(Insurance("Acme")))

val toCharsAscii: String => List[Char] =
toChars >=> toAscii

assert(toCharsAscii("AB") == List('6','5','6','6'))

Here are examples of using Kleisli composition for Option and List.

@philip_schwarz

Note that it is the OptionFunctionOps and ListFunctionOps
implicits that are making the fish operator >=> available on
car and toChars (by wrapping around them):

OptionFunctionOps(car) >=> insurance
ListFunctionOps(toChars) >=> toAscii

>=> example for Option >=> example for List

While we have seen Kleisli composition defined separately for Option and for List,
it is possible to define it in terms of the Monad interface, i.e. define a Kleisli
composition operator that works for every instance of the Monad interface

trait Functor[F[_]] {
def map[A,B](a: F[A])(f: A => B): F[B]

}

trait Monad[F[_]] extends Functor[F] {
def unit[A](a: => A): F[A]
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
def map[A,B](a: F[A])(f: A => B): F[B] =

flatMap(a)(a => unit(f(a)))
}

implicit class MonadFunctionOps[F[_], A, B](f: A => F[B]) {
def >=>[C](g: B => F[C])(implicit M:Monad[F]): A => F[C] =

a => M.flatMap(f(a))(g)
}

Note that unlike the >=> for Option and List, the generic >=> above
takes an implicit Monad instance as a parameter.

Let’s go back to the question that led us to look at Kleisli composition.

What does FPiS mean, e.g. in the context of our trampolined factorial function, when it first says that to add trampolining we must

“use flatMap in function composition”

and then says the following about flatMap

This is just Kleisli composition from chapter 11. In other words, the trampolined function uses Kleisli composition in the TailRec monad
instead of ordinary function composition.

Now that we have defined a generic >=> operator, let’s go back to how the origina factorial function and the trampolined factorial function looked like
before inlining f and g

On the next slide we are going to see the above two function definitions again, but after extracting (in both) a function h that is the composition of f and g.

def factorial(n: BigDecimal): TailRec[BigDecimal] = {
if (n == 0) Return(1)
else {

val f: BigDecimal => TailRec[BigDecimal] = factorial _
val g: BigDecimal => TailRec[BigDecimal] = res => Return(n * res)
TailRec.suspend(f(n-1).flatMap(g))

}
}

def factorial(n: BigDecimal): BigDecimal = {
if (n == 0) 1
else {

val f: BigDecimal => BigDecimal = factorial _
val g: BigDecimal => BigDecimal = res => n * res
(f andThen g)(n - 1)

}
}

def factorial(n: BigDecimal): BigDecimal = {
if (n == 0) 1
else {

val f: BigDecimal => BigDecimal =
factorial _

val g: BigDecimal => BigDecimal =
res => n * res

val h = f andThen g
h(n - 1)

}
}

original factorial function
composes f and g using ordinary function composition

def factorial(n: BigDecimal): TailRec[BigDecimal] = {
if (n == 0) Return(1)
else {

val f: BigDecimal => TailRec[BigDecimal] =
factorial _

val g: BigDecimal => TailRec[BigDecimal] =
res => Return(n * res)

val h = a => f(a).flatMap(g)
TailRec.suspend(h(n - 1))

}
}

trampolined factorial function
composes f and g using flatMap

The f and g in the original factorial function are ordinary functions of type BigDecimal => BigDecimal, whereas the f and g in the trampolined factorial
are Kleisli arrows of type BigDecimal => TailRec[BigDecimal].

In the original factorial function we are composing two functions f and g using ordinary function composition, which in Scala can be written either as f
andThen g or as g compose f (g after f), and which in mathematics is written as g ∘ f. In the refactored factorial function instead, we are composing Kleisli
arrows using Kleisli composition, which becomes more obvious when we consider the following definition of Kleisli composition in terms of flatMap:

Let’s make that even more explicit by refactoring the trampolined function so that instead of computing the Kleisli composition of f and g using flatMap, it
does so using the fish operator (notice the TailRec monad, in light gray, being passed into the fish operator implicitly).

def factorial(n: BigDecimal): TailRec[BigDecimal] = {
if (n == 0) Return(1)
else {

val f: BigDecimal => TailRec[BigDecimal] =
factorial _

val g: BigDecimal => TailRec[BigDecimal] =
res => Return(n * res)

val h = (f >=> g)(TailRec)
TailRec.suspend(h(n - 1))

}
}

trampolined factorial function
that composes f and g using >=>

After that look at Klesli composition, let’s now go back to solving the problem that we are facing with our
Scala Game of Life program, i.e. that the IO monad currently used by the program causes the program to
encounter a StackOverflowError, unless we either reduce the number of IO actions created by the wait
function from 1 million down to 10,000, which speeds up the rate at which new generations are displayed
on the screen, or we increase the stack size to a hefty 70MB.

FPiS says the following:

“If we use TailRec as our IO type, this solves the stack overflow problem”

So let’s have a go at doing that.

On the next slide we take all the Game of Life functions that reference the IO monad and replace those
references with references to TailRec.

@philip_schwarz

def putStr(s: String): IO[Unit] =
IO { scala.Predef.print(s) }

def cls: IO[Unit] =
putStr("\u001B[2J")

def goto(p: Pos): IO[Unit] =
p match { case (x,y) => putStr(s"\u001B[${y};${x}H") }

def writeAt(p: Pos, s: String): IO[Unit] =
for {

_ <- goto(p)
_ <- putStr(s)

} yield ()

def showCells(b: Board): IO[Unit] =
IO.sequence_(b.map{ writeAt(_, "O") })

def wait(n:Int): IO[Unit] =
IO.sequence_(List.fill(n)(IO.unit(())))

def life(b: Board): IO[Unit] =
for {

_ <- cls
_ <- showCells(b)
_ <- goto(width+1,height+1) // move cursor out of the way
_ <- wait(1_000_000)
_ <- life(nextgen(b))

} yield ()

val main: IO[Unit] = life(pulsar)

def putStr(s: String): TailRec[Unit] =
TailRec { scala.Predef.print(s) }

def cls: TailRec[Unit] =
putStr("\u001B[2J")

def goto(p: Pos): TailRec[Unit] =
p match { case (x,y) => putStr(s"\u001B[${y};${x}H") }

def writeAt(p: Pos, s: String): TailRec[Unit] =
for {

_ <- goto(p)
_ <- putStr(s)

} yield ()

def showCells(b: Board): TailRec[Unit] =
TailRec.sequence_(b.map{ writeAt(_, "O") })

def wait(n:Int): TailRec[Unit] =
TailRec.sequence_(List.fill(n)(TailRec.unit(())))

def life(b: Board): TailRec[Unit] =
for {

_ <- cls
_ <- showCells(b)
_ <- goto(width+1,height+1) // move cursor out of the way
_ <- wait(1_000_000)
_ <- life(nextgen(b))

} yield ()

val main: TailRec[Unit] = life(pulsar)

That was easy, but there is a problem: as you may have noticed when we looked at the FPiS errata page, the TailRec object that
we got from the FPiS github repository does not have an apply function, so the body of the putStr function does not compile.

Let’s take the apply function provided by
the IO monad and migrate it to TailRec.

def apply[A](a: => A): IO[A] =
unit(a)

def apply[A](a: => A): TailRec[A] =
unit(a)

So now we are ready to run the program. But there is a surprise. If we execute
run(main), we see that the three repeating pulsar generations now get flattened!!!

OOO OOO

O O O O
O O O O
O O O O
OOO OOO

OOO OOO
O O O O
O O O O
O O O O

OOO OOO

O O
O O
OO OO

OOO OO OO OOO
O O O O O O
OO OO

OO OO
O O O O O O

OOO OO OO OOO

OO OO
O O
O O

OO OO
OO OO

O O O O O O
OOO OO OO OOO
O O O O O O
OOO OOO

OOO OOO
O O O O O O
OOO OO OO OOO
O O O O O O

OO OO
OO OO

1 2 3

OO

OO

OO

1

2

3

@philip_schwarz

scala>

scala>

scalprogram: GameOfLife.TailRec[Unit] =
FlatMap(FlatMap(FlatMap(FlatMap(FlatMap(Return(()),GameOfLife$$$Lambda$4228/1447
24440@5150d661),GameOfLife$Monad$$Lambda$4233/1670634729@288d85be),GameOfLife$Mo
nad$$Lambda$4233/1670634729@599881b0),GameOfLife.Monad$$Lambda$4234/423129645@91
2eafe),GameOfLife$Monad$$Lambda$4233/1670634729@5ea6c663)

scala> run(program)
OOOO

scala>

scala>

scala>

scala>

scala>

scala>

scala>

scala>

scala>

scala>

scala> val program: TailRec[Unit] = showCells(List((2,2),(3,3),(4,4),(5,5)))

If we simply call the showCells function with a board consisting of four cells lying
on a diagonal line, and then run the resulting TailRec action, we also see some
strange behavior.

1
When I call showCells, the cells do not get displayed on the console, as expected, but
oddly, the REPL cursor moves to screen positions (2,2), (3,3), (4,4) and (5,5) in sequence,
and as a result, the REPL’s console output showing the value of the program variable
gets displayed at screen position (5,5)!

And when I later pass the program variable to the run function, the cells do get
displayed on the console, as expected, but not at the expected screen positions: they are
displayed on the next line and in a straight line.

2

def showCells(b: Board): TailRec[Unit] =
TailRec.sequence_(b.map{ writeAt(_, "O") })

def writeAt(p: Pos, s: String): TailRec[Unit] =
for {

_ <- goto(p)
_ <- putStr(s)

} yield ()

def goto(p: Pos): TailRec[Unit] =
p match { case (x,y) =>

putStr(s"\u001B[${y};${x}H") }

def putStr(s: String): TailRec[Unit] =
TailRec { scala.Predef.print(s) }

If we look back at how showCells is implemented, we are reminded that both the
actions that move the cursor about on the screen and the actions that display the
cells, are created by the putStr function, which creates an action by calling the apply
function of the TailRec object.

If we make calls to putStr and goto, we see that as things stand, both of them actually
have side effects, despite returning a TailRec[Unit]:

// actually moves the cursor about on the screen
goto((15,15))

// actually displays ‘O’ on the screen
putStr("O")

Why is that? Since goto is defined in terms of putStr, we can just examine the
behavior of putStr. The following

TailRec { print("X") }

does not cause X to be displayed on the screen, because the argument of TailRec’s
apply function is a thunk (a by-name parameter). The above evaluates to the following

TailRec.unit(print("X"))

which also does not cause X to be printed to the screen, because the argument of the
TailRec monad’s unit function is also a thunk. The above evaluates to the following

Return(print("X"))

Which, of course, does cause X to be displayed on the screen, since the parameter of
case class constructor Return is not a thunk, it is a plain, by-value parameter.

def apply[A](a: => A): TailRec[A] =
unit(a)

def unit[A](a: => A): TailRec[A] =
Return(a)

case class Return[A](a: A) extends TailRec[A]

By the way, if you could do with an explanation of the
term by-name parameter, then see the following

https://www.slideshare.net/pjschwarz/non-strict-functions-bottom-and-scala-byname-parameters

https://www.slideshare.net/pjschwarz/non-strict-functions-bottom-and-scala-byname-parameters

So TaiRec’s apply function is not suspending the computations that it is being passed: it allows the
computations to be carried out, which results in side effects happening immediately, when
actions get created, rather than at a later time when the actions are interpreted by TailRec’s run
function.

But why is it that when we execute run(life(pulsar)) we see each generation of cells being
displayed as a flat line of cells? It is as if the the side effects of the actions created by the goto
function all happen together, before or after the side effects of the actions that display the cells,
rather than interspersed with them.

The reason is that writeAt first calls goto and then calls putStr, and it does so in a for
comprehension, which means that the two calls get composed using flatMap.

While direct calls to goto and putStrln immediately result in side effects, when the two are
chained together using flatMap, only the first one results in an immediate side effect.

e.g. invoking goto((15,15)) in the REPL causes the cursor to move on the console, and
invoking putStr("O") in the REPL causes "O " to be displayed on the console, but executing
goto((15,15)).flatMap(_ => putStr("O")) only causes the cursor movement, because
while goto((15,15)) gets evaluated and its side effect takes place, rather than flatMap
invoking _ => putStr("O") with the result, thereby causing a second side effect, flatMap just
creates a FlatMap object containing both the result and the _ => putStr("O") function.

scala> res0:
gameoflife.GameOfLifeFPiSTrampolinedIO.TailRec[Unit] =
FlatMap(Return(()),$$Lambda$4234/1708992557@50969c5e)

scala>
…
scala> goto((15,15)).flatMap(_ => putStr("O"))

The putStr("O") in the FlatMap object will only get executed if/when the result of the
flatMap gets interpreted by TailRec’s run function.

def writeAt(p: Pos, s: String): TailRec[Unit] =
for {
_ <- goto(p)
_ <- putStr(s)

} yield ()

def apply[A](a: => A): TailRec[A] =
unit(a)

That explains why the cursor
movements for a generation in the
Game of Life all happen before any of
the generation’s cells get displayed,
which results in all the cells being
displayed on a single line, one after
the other.

def apply[A](a: => A): TailRec[A] =
unit(a)

def apply[A](a: => A): TailRec[A] =
Suspend(() => a)

case class Suspend[A](resume: () => A) extends TailRec[A]

So all we have to do to fix the problem is change the apply
function of TailRec so that it suspends the computation
represented by the parameter it is passed.

OOO OOO

O O O O
O O O O
O O O O
OOO OOO

OOO OOO
O O O O
O O O O
O O O O

OOO OOO

O O
O O
OO OO

OOO OO OO OOO
O O O O O O
OO OO

OO OO
O O O O O O

OOO OO OO OOO

OO OO
O O
O O

OO OO
OO OO

O O O O O O
OOO OO OO OOO
O O O O O O
OOO OOO

OOO OOO
O O O O O O
OOO OO OO OOO
O O O O O O

OO OO
OO OO

1 2 3

OO

OO

OO

1

2

3

Now if we decrease the stack from 70MB down to a very low 0.5MB (export SBT_OPTS=-Xss512K), and we bring
the number of dummy actions created by the wait function back up from 10,000 to 1,000,000, and invoke
run(main) in the REPL, the flattened generations are replaced by two-dimensional ones, new generations are
displayed at a convenient rate of once per second, and the program just keeps running and running: it no longer
encounters a StackOverflowError.

@philip_schwarz

We have learned how to write an IO monad, albeit one susceptible to StackOverflowError, and how to write TailRec, a monad that
improves on IO by eliminating the StackOverflowError.

While Haskell provides a predefined IO monad, Scala does not.

But Scala developers are not expected to write monads like IO and TailRec by themselves. The Cats functional programming library,
for example provides an IO monad, and its flatMap function is trampolined:

Note how the FPiS IO.unit function is called IO.pure in Cats (IO is actually in Cats Effect btw, but sometimes we’ll just say it is in Cats).

Let’s see, on the next slide, how the factorial function, which we have already migrated to the FPiS TailRec monad (in order to avoid
stack overflow errors), can be migrated to the Cats IO monad.

https://typelevel.org/cats-effect/datatypes/io.html

https://typelevel.org/cats-effect/datatypes/io.html

def factorial(n: BigDecimal)
: BigDecimal =

if (n == 0)
1

else
n * factorial(n-1)

def factorial(n: BigDecimal)
: TailRec[BigDecimal] =

if (n == 0)
Return(1)

else
TailRec.suspend(

factorial(n-1).flatMap(
res => Return(n * res)))

import cats.effect.IO

def factorial(n: BigDecimal)
: IO[BigDecimal] =

if (n == 0)
IO.pure(1)

else
IO.suspend(

factorial(n-1).flatMap(
res => IO.pure(n * res)))

def factorial(n: BigDecimal)
: IO[BigDecimal] =

if (n == 0)
IO.unit(1)

else
factorial(n-1).flatMap(

res => IO.unit(n * res))

initial factorial function using the FPiS IO monad using the FPiS TailRec monad using the Cats IO monad

val fac10: BigDecimal =
factorial(10)

assert(
fac10
==
3_628_800

)

val fac10: IO[BigDecimal] =
factorial(10)

assert(
fac10.run
==
3_628_800

)

val fac10: TailRec[BigDecimal] =
factorial(10)

assert(
run(fac10)
==
3_628_800

)

val fac10: IO[BigDecimal] =
factorial(10)

assert(
fac10.unsafeRunSync
==
3_628_800

)

factorial(1_000_000) factorial(1_000_000).run run(factorial(1_000_000))

BigDecimal("8.263931688331240062376646103174463E+5565708")java.lang.StackOverflowError

factorial(1_000_000).unsafeRunSync

What is that unsafeRunSync method that we are calling
on the Cats IO monad returned by factorial?

factorial(1_000_000).unsafeRunSync

Remember how in Haskell, the unsafePerformIO function
is the opposite of the return function?

Graham Hutton
@haskellhutt

The function return provides a bridge from pure expressions without side-effects to impure actions
with side-effects.

return :: a -> IO a
return v = ...

Crucially, there is no bridge back — once we are impure we are impure for ever, with no possibility
for redemption!

As a result, we may suspect that impurity quickly permeates entire programs, but in practice this is
usually not the case. For most Haskell programs, the vast majority of functions do not involve
interaction, with this being handled by a relatively small number of interactive functions at the
outermost level.
…
For specialised applications, a bridge back from impure actions to pure expressions is in fact available
via the function unsafePerformIO :: IO a -> a in the library System.IO.Unsafe. However, as suggested
by the naming, this function is unsafe and should not be used in normal Haskell programs as it
compromises the purity of the language.

@philip_schwarz

/**
* Produces the result by running the encapsulated effects as impure
* side effects.
*
* If any component of the computation is asynchronous, the current
* thread will block awaiting the results of the async computation.
* On JavaScript, an exception will be thrown instead to avoid
* generating a deadlock. By default, this blocking will be
* unbounded. To limit the thread block to some fixed time, use
* `unsafeRunTimed` instead.
*
* Any exceptions raised within the effect will be re-thrown during
* evaluation.
*
* As the name says, this is an UNSAFE function as it is impure and
* performs side effects, not to mention blocking, throwing
* exceptions, and doing other things that are at odds with
* reasonable software. You should ideally only call this function
* *once*, at the very end of your program.
*/
final def unsafeRunSync(): A = ...

/**
* Suspends a pure value in `IO`.
*
* This should ''only'' be used if the value in question has
* "already" been computed! In other words, something like
* `IO.pure(readLine)` is most definitely not the right thing to do!
* However, `IO.pure(42)` is correct and will be more efficient
* (when evaluated) than `IO(42)`, due to avoiding the allocation of
* extra thunks.
*/
def pure[A](a: A): IO[A] = Pure(a)

/**
* Suspends a synchronous side effect which produces an `IO` in `IO`.
*
* This is useful for trampolining (i.e. when the side effect is
* conceptually the allocation of a stack frame). Any exceptions
* thrown by the side effect will be caught and sequenced into the
* `IO`.
*/
def suspend[A](thunk: => IO[A]): IO[A] =
Suspend(() => thunk)

IO.pure and IO.unsafeRunSync are the Cats equivalent of
Haskell’s return and unsafePerformIO functions.

Also shown on this slide, the IO.suspend function
that we used when we migrated factorial to Cats.

What we are going to do next is take our Scala Game of Life actions and
adapt them so that instead of using the hand-rolled IO and TailRec
abstractions that we have seen so far, they use the Cats Effect IO monad.

import cats.implicits._
import cats.effect.IO

def putStr(s: String): IO[Unit] =
IO { scala.Predef.print(s) }

def cls: IO[Unit] =
putStr("\u001B[2J")

def goto(p: Pos): IO[Unit] = p match {
case (x,y) => putStr(s"\u001B[${y};${x}H")

}

def writeAt(p: Pos, s: String): IO[Unit] =
for {
_ <- goto(p)
_ <- putStr(s)

} yield ()

def showCells(b: Board): IO[Unit] =
(for { p <- b } yield writeAt(p, "O")).sequence_

def wait(n:Int): IO[Unit] =
List.fill(n)(IO.unit).sequence_

def life(b: Board): IO[Unit] =
for {
_ <- cls
_ <- showCells(b)
_ <- goto(width+1,height+1)
_ <- wait(1_000_000)
_ <- life(nextgen(b))

} yield ()

val main: IO[Unit] = life(pulsar)

main.unsafeRunSync

def putStr(s: String): IO[Unit] =
IO { scala.Predef.print(s) }

def cls: IO[Unit] =
putStr("\u001B[2J")

def goto(p: Pos): IO[Unit] = p match {
case (x,y) => putStr(s"\u001B[${y};${x}H")

}

def writeAt(p: Pos, s: String): IO[Unit] =
for {
_ <- goto(p)
_ <- putStr(s)

} yield ()

def showCells(b: Board): IO[Unit] =
IO.sequence_(for { p <- b } yield writeAt(p, "O"))

def wait(n:Int): IO[Unit] =
IO.sequence_(List.fill(n)(IO.unit(())))

def life(b: Board): IO[Unit] =
for {
_ <- cls
_ <- showCells(b)
_ <- goto(width+1,height+1)
_ <- wait(1_000_000)
_ <- life(nextgen(b))

} yield ()

val main: IO[Unit] = life(pulsar)

main.run

To migrate the IO actions
from the FPiS IO monad to
the Cats Effect IO monad,
there is very little to do!

See the next slide for why in
Cats we are able to invoke
sequence_ this way.

Also, in Cats Effect, IO.unit
is an alias for IO.pure(()).

IO IO

In our two usages of sequence_ on the previous slide we have some list x of type List[IO[Unit]], and Cats makes available type class instances
Foldable[List] and Applicative[IO] (available implicitly and also summonable), so we can say Foldable[List].sequence_(x).

final class NestedFoldableOps[F[_], G[_], A](private val fga: F[G[A]]) extends AnyVal {
def sequence_(implicit F: Foldable[F], G: Applicative[G]): G[Unit] = F.sequence_(fga)

…

But we prefer to take advantage of
syntax (syntactic sugar), which allows us
instead to just say x.sequence_.

Every Monad, e.g. IO,
is also an Applicative

scala> val x: IO[Unit] = List(
IO{ print("a") }, IO{ print("b") }, IO{ print("c") }

).sequence_
scala> x.unsafeRunSync
abc
scala>

Foldable[List]; Applicative[IO]
F = List; G = IO; A = Unit; F[G[A]] = List[IO[Unit]]
sequence_(fga: List[IO[Unit]]): IO[Unit]

We can exploit the fact that IO is an Applicative, by using Applicative’s right
shark function (AKA right bird) to simplify the following two functions

def writeAt(p: Pos, s: String): IO[Unit] =
for {

_ <- goto(p)
_ <- putStr(s)

} yield ()

def life(b: Board): IO[Unit] =
for {

_ <- cls
_ <- showCells(b)
_ <- goto(width+1,height+1)
_ <- wait(1_000_000)
_ <- life(nextgen(b))

} yield ()

Let’s do it

def writeAt(p: Pos, s: String): IO[Unit] =
goto(p) *> putStr(s)

def writeAt(p: Pos, s: String): IO[Unit] =
for {

_ <- goto(p)
_ <- putStr(s)

} yield ()

In the above for comprehensions, we are forced to assign the result of an effectful function call to a
val, even if we are not interested in the result, which in this case is IO[Unit]. Although this is made
slightly more palatable by choosing _ as the val, it is still annoying.

By using Applicative’s right shark function *>, we can get rid of the for comprehensions altogether.

simplify

@philip_schwarz

If you are new to Applicative, then the next four slides provide a quick
introduction to *>. Feel free to skip them if you are on familiar ground. If you
could do with an in-depth introduction to Applicative, then the following slide
decks may be of interest:

https://www.slideshare.net/pjschwarz/applicative-functor-116035644
https://www.slideshare.net/pjschwarz/applicative-functor-part-2
https://www.slideshare.net/pjschwarz/applicative-functor-part-3

https://www.slideshare.net/pjschwarz/applicative-functor-116035644
https://www.slideshare.net/pjschwarz/applicative-functor-part-2
https://www.slideshare.net/pjschwarz/applicative-functor-part-3

To explain *>, I am first going to explain <*> (AKA Tie Fighter, or angry parent). Consider a function that squares its parameter:

def square: Int => Int = n => n * n

This function can only be applied to an Int. What if we want to apply it to an effectful value, e.g. an Option[Int], a number that may or may not be available?

Option is a Functor:

sealed trait Functor[F[_]] {
def map[A,B](f: A => B): F[A] => F[B]

}

Notice how the signature of the above map function differs slightly from the following, more customary signature:

def map[A,B](ma: F[A])(f: A => B): F[B]

We have simply swapped the first and second parameters of the above map function and then pushed the second parameter into the return type. The map
function with the less customary signature lifts any function into context F, i.e. it is a function which, given any function f, returns a new function which takes
an A wrapped in an effect F, gains access, if possible, to the wrapped a of type A, computes f(a), and returns the resulting B wrapped in F.

So if we get a Functor instance for Option

implicit val optionFunctor = new Functor[Option] {
def map[A,B](f: A => B): Option[A] => Option[B] =

oa => oa map f
}

We can now use map to apply square to an Option[Int] value

import optionFunctor.map

assert(map(square)(Option(3)) == Option(9))
assert(map(square)(None) == None)

sealed trait Functor[F[_]] {
def map[A,B](f: A => B): F[A] => F[B]

}

implicit val optionFunctor = new Functor[Option] {
def map[A,B](f: A => B): Option[A] => Option[B] =

oa => oa map f
}

def map[A,B](ma: F[A])(f: A => B): F[B]

What if the function we are interested in does not take just one parameter, but many? e.g. if we have a function that takes three integers and returns the largest?

val max3: Int => Int => Int => Int = x => y => z => Math.max(x, Math.max(y, z))

What if we want to apply the function to effectful values, e.g. to Option[Int] values, numbers that may or may not be available? Option can be modeled as an
Applicative:

sealed trait Applicative[F[_]] extends Functor[F] {
def ap[A,B](fab: F[A => B])(fa: F[A]): F[B]

}

While Functor’s map function allows us to lift any one-arg function into a context F, the combination of Applicative’s pure and ap functions allows us to lift into a
context F any function with multiple arguments. If we get an Applicative instance for Option

implicit val maybeApplicative: Applicative[Option] = new Applicative[Option] {
def ap[A,B](of: Option[A => B])(oa: Option[A]): Option[B] = (of, oa) match {

case (None, _) => None
case (_, None) => None
case (Some(f), Some(a)) => Some(f(a))

}
def map[A,B](f: A => B): Option[A] => Option[B] =

a => ap(Some(f))(a)
}

and we define some syntax allowing us to call ap as infix operator <*>

implicit class ApplicativeOps[A,B,F[_]](of: F[A => B]) {
def <*>(oa: F[A])(implicit AP: Applicative[F]) = AP.ap(of)(oa)

}

then we can use pure and <*> to apply max3 to Option[Int] values:

assert(pure(max3) <*> Option(3) <*> Option(2) <*> Option(4) == Option(4))

sealed trait Applicative[F[_]] extends Functor[F] {
def pure[A](a: => A): F[A]
def ap[A,B](fab: F[A => B]): F[A] => F[B]

}

implicit val maybeApplicative = new Applicative[Option] {
def pure[A](a: => A): Some(a)
def ap[A,B](of: Option[A => B]): Option[A] => Option[B] = oa =>

(of, oa) match {
case (None, _) => None
case (_, None) => None
case (Some(f), Some(a)) => Some(f(a))

}
def map[A,B](f: A => B): Option[A] => Option[B] =

a => ap(Some(f))(a)
}

Just as I did for the map function in Functor, I have
rearranged the signature of ap (AKA apply) so that it returns
a function F[A] => F[B], just as it does in Haskell.

A typical use of pure and <*> has the following form:

pure g <*> x1 <*> x2 <*> ... <*> xn

Such expressions are said to be in applicative style, because of the
similarity to normal function application notation g x1 x2 ... xn.

In both cases, g is a curried function that takes n arguments of type a1 ... an
and produces a result of type b. However, in applicative style, each
argument xihas type f ai rather than just ai, and the overall result has type
f b rather than b.

(<*>) :: f (a -> b) -> f a -> f b
Sequential application.

Like every monad, the IO monad is also an Applicative, so let’s see how we can use the pure and <*> functions provided by the Cats Effect IO monad to apply the
max3 function to values in an IO context.

Let’s define a function to read an Int from the console:

def getInt: IO[Int] = IO { scala.io.StdIn.readInt() }

We can use pure and <*> to apply max3 to three Int values read from the console:

val maximum: IO[Int] = IO.pure(max3) <*> getInt <*> getInt <*> getInt

If we now run the maximum IO action:

println(s"the maximum is ${maximum.unsafeRunSync}")

We can enter three numbers at the console and watch how the maximum of the three numbers gets announced on the console:

3
2
4
the maximum is 4

Now consider a scenario in which rather than reading a number of integers from the console, we are writing them to the console. So we have putStr

def putStr(s: String): IO[Unit] = IO { print(s) }

We call putStr a number of times, and each time we do that, we don’t care about the IO[Unit] value that it returns. This is where Applicative’s *> function
comes in handy:
:

scala> val putStrings = putStr("a") *> putStr("b") *> putStr("c")
putStrings: cats.effect.IO[Unit] = IO$591439568
scala> putStrings.unsafeRunSync

(<*>) :: f (a -> b) -> f a -> f b
Sequential application.

scala> val putStrings = putStr("a") *> putStr("b") *> putStr("c")
putStrings: cats.effect.IO[Unit] = IO$591439568
scala> putStrings.unsafeRunSync
abc
scala>

(*>) :: f a -> f b -> f b
Sequence actions, discarding the value of the first argument.

val max3: Int => Int => Int => Int = x => y => z =>
Math.max(x, Math.max(y, z))

def writeAt(p: Pos, s: String): IO[Unit] =
goto(p) *> putStr(s)

def writeAt(p: Pos, s: String): IO[Unit] =
for {

_ <- goto(p)
_ <- putStr(s)

} yield ()

simplify

We have already used *> to simplify the writeAt IO action

IO.pure(max3) <*> getInt <*> getInt <*> getInt

putStr("a") *> putStr("b") *> putStr("c")

(<*>) :: f (a -> b) -> f a -> f b
Sequential application.

(*>) :: f a -> f b -> f b
Sequence actions, discarding the value of the first argument.

The reason why I explained <*> before explaining *> is that once you
understand <*>, it is very easy to grasp what *> does and why it might be
useful, especially in an IO context.

<*> consumes effectful expressions wrapping values that we are interested in
because we want to feed the values to max3

*> consumes effectful expressions wrapping values that we are not interested in
because it is the side effects produced by the expressions that are of value to us

On the next slide, we do the same for the life function

@philip_schwarz

def life(b: Board): IO[Unit] =
for {

_ <- cls
_ <- showCells(b)
_ <- goto(width+1,height+1)
_ <- wait(1_000_000)
_ <- life(nextgen(b))

} yield ()

simplify

def life(b: Board): IO[Unit] =
cls *>
showCells(b) *>
goto(width+1,height+1) *>
wait(1_000_000) *>
life(nextgen(b))

Unfortunately, if we do that, the
Game of Life program stops
displaying anything and the CPU
load shoots up.

Until I stop the program, at which
point the CPU load goes gradually
back to normal.

/**
* Runs the current IO, then runs the parameter, keeping its result.
* The result of the first action is ignored.
* If the source fails, the other action won't run.
* */

def *>[B](another: IO[B]): IO[B] = ...

/**
* Alias for `fa.flatMap(_ => fb)`.
*
* Unlike `*>`, `fb` is defined as a by-name parameter, allowing this
* method to be used in cases where computing `fb` is not stack safe
* unless suspended in a `flatMap`.
*/

def >>[B](fb: => F[B])(implicit F: FlatMap[F]): F[B] = ...

def life(b: Board): IO[Unit] =
cls *>
showCells(b) *>
goto(width+1,height+1) *>
wait(1_000_000) *> this invocation of *> never gets to run
life(nextgen(b)) since this expression never terminates

Fabio also pointed out that there is an alternative operator called >> that can be used to
avoid the problem, because its single parameter is passed in by-name rather than by-value.

I asked for help in https://gitter.im/typelevel/cats and Fabio Labella immediately identified the issue.

The problem is that *> is eager in its single parameter, i.e. its argument is passed in by-value, so it gets
evaluated before *> executes, therefore when *> is passed life(nextgen(b)), which is an infinite
computation (since the life function calls itself recursively), the body of *> never gets to run!

def life(b: Board): IO[Unit] =
cls *>
showCells(b) *>
goto(width+1,height+1) *>
wait(1_000_000) >>
life(nextgen(b))

So all we have to do is replace the last
usage of *> in the life function with >> and
the Game of Life program goes back to
running normally.

@philip_schwarz

https://gitter.im/typelevel/cats

https://impurepics.com/posts/2019-02-09-operator-wars-reality.html

As I was putting the finishing touches on this slide deck I realised that
@impurepics has a diagram on this potential problem with *>

https://impurepics.com/posts/2019-02-09-operator-wars-reality.html

def life(b: Board): IO[Unit] =
for {

_ <- cls
_ <- showCells(b)
_ <- goto(width+1,height+1)
_ <- wait(1_000_000)
_ <- life(nextgen(b))

} yield ()

By the way, another point that Fabio Labella made, this time about the original version of the recursive
life function, the one using the for comprehension, is that there is a potential memory problem if
better-monadic-for is not used, since those yield () get transformed into a massive chain of map calls.

https://github.com/oleg-py/better-monadic-for

A Scala compiler plugin to give patterns and for-comprehensions the love they deserve

https://github.com/oleg-py/better-monadic-for

To conclude this slide deck, the next two slides show the final Scala code for the Game of Life.

type Pos = (Int, Int)

type Board = List[Pos]

val width = 20

val height = 20

def neighbs(p: Pos): List[Pos] = p match {
case (x,y) => List(

(x - 1, y - 1), (x, y - 1),
(x + 1, y - 1), (x - 1, y),
(x + 1, y), (x - 1, y + 1),
(x, y + 1), (x + 1, y + 1)) map wrap }

def wrap(p:Pos): Pos = p match {
case (x, y) => (((x - 1) % width) + 1,

((y - 1) % height) + 1) }

def survivors(b: Board): List[Pos] =
for {

p <- b
if List(2,3) contains liveneighbs(b)(p)

} yield p

def births(b: Board): List[Pos] =
for {

p <- rmdups(b flatMap neighbs)
if isEmpty(b)(p)
if liveneighbs(b)(p) == 3

} yield p

def rmdups[A](l: List[A]): List[A] = l match {
case Nil => Nil
case x::xs => x::rmdups(xs filter(_ != x)) }

def nextgen(b: Board): Board =
survivors(b) ++ births(b)

def isAlive(b: Board)(p: Pos): Boolean =
b contains p

def isEmpty(b: Board)(p: Pos): Boolean =
!(isAlive(b)(p))

def liveneighbs(b:Board)(p: Pos): Int =
neighbs(p).filter(isAlive(b)).length

val glider: Board = List((4,2),(2,3),(4,3),(3,4),(4,4))

val gliderNext: Board = List((3,2),(4,3),(5,3),(3,4),(4,4))

val pulsar: Board = List(
(4, 2),(5, 2),(6, 2),(10, 2),(11, 2),(12, 2),

(2, 4),(7, 4),(9, 4),(14, 4),
(2, 5),(7, 5),(9, 5),(14, 5),
(2, 6),(7, 6),(9, 6),(14, 6),

(4, 7),(5, 7),(6, 7),(10, 7),(11, 7),(12, 7),

(4, 9),(5, 9),(6, 9),(10, 9),(11, 9),(12, 9),
(2,10),(7,10),(9,10),(14,10),
(2,11),(7,11),(9,11),(14,11),
(2,12),(7,12),(9,12),(14,12),

(4,14),(5,14),(6,14),(10,14),(11,14),(12,14)])

FUNCTIONAL CORE

import cats.implicits._, cats.effect.IO

def putStr(s: String): IO[Unit] = IO { scala.Predef.print(s) }

def cls: IO[Unit] = putStr("\u001B[2J")

def goto(p: Pos): IO[Unit] = p match {
case (x,y) => putStr(s"\u001B[${y};${x}H")

}

def writeAt(p: Pos, s: String): IO[Unit] =
goto(p) *> putStr(s)

def showCells(b: Board): IO[Unit] =
(for { p <- b } yield writeAt(p, "O")).sequence_

def wait(n:Int): IO[Unit] = List.fill(n)(IO.unit).sequence_

def life(b: Board): IO[Unit] =
cls *>
showCells(b) *>
goto(width+1,height+1) *>
wait(1_000_000) >>
life(nextgen(b))

val main: IO[Unit] = life(pulsar)

main.unsafeRunSync

trait Monad[F[_]] {
def unit[A](a: => A): F[A]
def flatMap[A,B](fa: F[A])(f: A => F[B]): F[B]
…
def sequence_[A](fs: List[F[A]]): F[Unit] =
sequence_(fs.toStream)

def sequence_[A](fs: Stream[F[A]]): F[Unit] =
foreachM(fs)(skip)

…
}

sealed trait IO[A] { self =>
def run: A
def map[B](f: A => B): IO[B] =
new IO[B] { def run = f(self.run) }

def flatMap[B](f: A => IO[B]): IO[B] =
new IO[B] { def run = f(self.run).run }

}

object IO extends Monad[IO] {
def unit[A](a: => A): IO[A] =
new IO[A] { def run = a }

def flatMap[A,B](fa: IO[A])(f: A => IO[B]) =
fa flatMap f

def apply[A](a: => A): IO[A] =
unit(a)

}

IMPERATIVE SHELL FPiS simple IO monad replaced by Cats Effect IO monad

That’s it for Part 3.

Translation of the Game of Life into Unison slips to part 4.

See you there!

