Scala and Java Side by Side
The Result of Martin Fowler’s 15t Refactoring Example

Java’s records, sealed interfaces and text blocks are catching up with Scala’s case classes, sealed traits and multiline strings
Judge for yourself in this quick IDE-based visual comparison

of the Scala and Java translations of Martin Fowler’s refactored Javascript code

te Jeveec
SN £
2
=
)
/ &>

< W)
.A/L ‘

(% ¢
L e
K% ;nm.\“‘e

R EFACTORING

JavaScript

Martin Fowler

Martin Fowler
u@martinfowler

SEcoND EDITION

https://www.slideshare.net/pjschwarz/natural-transformations

Java is in a constant process of catching up with some of the features found in other languages. \

With this visual comparison of the Java and Scala translations of the refactored Javascript code from the 1%t refactoring example of Martin Fowler’s
famous book, you can get some rapid and concrete evidence of some of the effects that Java’s evolution is having on programming in that language.

The code provides you with a simple example of the following Java features incorporated into long-term support (LTS) version JDK 17 (the previous
LTS version being JDK 11):

1 @philip_schwarz * Text blocks (JDK 15)
* Records (JDK 16)
* Sealed interfaces (JDK 17)

Qyou want to know how the Java and Scala translations of the Javascript code came about, see the following pair of slide decks and repositories /

EScala (52 Java

Refactoring: A First Example

Martin Fowler’s First Example of Refactoring, Adapted to Scala
follow in the footsteps of refactoring guru Martin Fowler
as he improves the design of a program in a simple yet instructive refactoring example

whose JavaScript code and associated refactoring is herein adapted to Scala
based on the second edition of ‘the’ Refactoring book

Refactoring: A First Example

Martin Fowler’s First Example of Refactoring, Adapted to Java
follow in the footsteps of refactoring guru Martin Fowler
as he improves the design of a program in a simple yet instructive refactoring example

whose JavaScript code and associated refactoring is herein adapted to Java
based on the second edition of ‘the’ Refactoring book

R EFACTORING

' v
di
D 1IN
Crsro BB
—

JavaScript : ti_f) Java

Martin Fowl
Ed@martinfowler

https://www.slideshare.net/pijschwarz/refactoring-a-first-example-martin-fowlers-first-example-of-refactoring-adapted-to-(java|scala)

https://github.com/philipschwarz/refactoring-a-first-example-(java| scala)

https://github.com/philipschwarz/refactoring-a-first-example-scala
https://www.slideshare.net/pjschwarz/refactoring-a-first-example-martin-fowlers-first-example-of-refactoring-adapted-to-(java%7Cscala)
https://www.slideshare.net/pjschwarz/refactoring-a-first-example-martin-fowlers-first-example-of-refactoring-adapted-to-(java%7Cscala)

@main def main(): Unit =

assert(
statement(invoices(9), plays)

"""|Statement for BigCo

| Hamlet: $650.00 (55 seats)

| As You Like It: $580.00 (35 seats)
| Othello: $500.00 (40 seats)

| Amount owed is $1,730.00

|You earned 47 credits

| """ . stripMargin

)

assert(
htmlStatement(invoices(9), plays)

"""|<h1>Statement for BigCo</h1>
| <table>
| <tr><th>play</th><th>seats</th><th>cost</th></tr>
| <tr><td>Hamlet</td><td>55</td><td>$650.00</td></tr>
| <tr><td>As You Like It</td><td>35</td><td>$580.00</td></tr>
| <tr><td>0thello</td><td>40</td><td>$500.00</td></tr>
|</table>
| <p>Amount owed is $1,730.00</p>
| <p>You earned 47 credits</p>
| """ .stripMargin

public static void main(String[] args) {

if (!Statement.statement(invoices.get(®), plays).equals(
Statement for BigCo
Hamlet: $650.00 (55 seats)
As You Like It: $580.00 (35 seats)
Othello: $500.00 (40 seats)
Amount owed is $1,730.00
You earned 47 credits

)) throw new AssertionError();

if (!Statement.htmlStatement(invoices.get(©), plays).equals(

<hl>Statement for BigCo</hl>

<table>

<tr><th>play</th><th>seats</th><th>cost</th></tr>
<tr><td>Hamlet</td><td>55</td><td>$650.00</td></tr>
<tr><td>As You Like It</td><td>35</td><td>$580.00</td></tr>
<tr><td>0thello</td><td>40</td><td>$500.00</td></tr>
</table>

<p>Amount owed is $1,730.00</p>

<p>You earned 47 credits</p>

)) throw new AssertionError();

val invoices:

List[Invoice] = List(

Invoice(customer = "BigCo",
performances = List(Performance(playID
Performance(playID
Performance(playID

)

val plays =
"hamlet"
"as-1like"
"othello"

)

"hamlet"”, audience
"as-1like", audience
"othello", audience

Map (

-> Play(name = "Hamlet", “type’ = "tragedy"),

-> Play(name = "As You Like It", “type = "comedy"),
> Play(name = "Othello", “type = "tragedy")

55),
35

40)))

static final
List.of(

List<Invoice> invoices =

new Invoice(

"BigCo'

1
J

List.of(new Performance("hamlet", 55),

static final
"hamlet" ,
"as-like",
"othello",

new Performance("as-like", 35),
new Performance("othello", 48))));

Map<String,Play> plays = Map.of(

new Play("Hamlet", "tragedy"),

new Play("As You Like It", "comedy"),
new Play("Othello", "tragedy"));

g Java

Statement for BigCo
Hamlet: $650.00 (55 seats)
As You Like It: $580.00 (35 seats)
Othello: $500.00 (40 seats)

Amount owed is $1,730.00

You earned 47 credits

case class Play(

name: 5
“type :

)

case class Performance(
playID: ,
audience: Int

)

case class EnrichedPerformance(
playID: ,

play: Play,
audience: Int,
amount: Int,
volumeCredits: Int
)
case class Invoice(
customer:)
performances: [Performance]
)
case class StatementData(
customer:)
performances: [EnrichedPerformance],

totalAmount: Int,
totalVolumeCredits: Int

EScala

Statement for BigCo
Hamlet: $650.00 (55 seats)
As You Like It: $580.00 (35 seats)
Othello: $500.00 (40 seats)

Amount owed is $1,730.00

You earned 47 credits

record Play(
String name,
String type
) {1}

record Performance(
String playID,
int audience

) 1}

record EnrichedPerformance(
String playID,
Play play,
int audience,
int amount,
int volumeCredits

) 1}

record Invoice(
String customer,
List<Performance> performances

) 1}

record StatementData(
String customer,
List<EnrichedPerformance> performances,
int totalAmount,
int totalVolumeCredits,

) 1}

def renderPlainText(data: StatementData): String =
s"Statement for ${data.customer}\n" + (
for
perf <- data.performances

yield s" ${perf.play.name}: ${usd(perf.amount/100)} (${perf.audience} seats)\n"

).mkString +

s"""|Amount owed is ${usd(data.totalAmount/100)}
[You earned ${data.totalVolumeCredits} credits
[. stripMargin

def renderHtml(data: StatementData): String =
s"""|<hil>Statement for ${data.customer}</hi>
|<table>
|<tr><th>play</th><th>seats</th><th>cost</th></tr>
[""".stripMargin + (
for
perf <- data.performances

yield s"<tr><td>${perf.play.name}</td><td>${perf.audience}</td>"

s"<td>${usd(perf.amount/100)}</td></tr>\n"
).mkString +
s"""|</table>
[<p>Amount owed is ${usd(data.totalAmount/100)}</p>
[<p>You earned ${data.totalVolumeCredits} credits</p>
[. stripMargin

Statement for BigCo
Hamlet: $650.00 (55 seats)
As You Like It: $580.00 (35 seats)
Othello: $500.00 (40 seats)

Amount owed is $1,730.00

You earned 47 credits

<h1>Statement for BigCo</h1l>

<table>

<tr><th>play</th><th>seats</th><th>cost</th></tr>
<tr><td>Hamlet</td><td>55</td><td>$650.00</td></tr>
<tr><td>As You Like It</td><td>35</td><td>$580.00</td></tr>
<tr><td>0thello</td><td>40</td><td>$500.00</td></tr>
</table>

<p>Amount owed is $1,730.00</p>

<p>You earned 47 credits</p>

static String renderPlainText(StatementData data) {
return
"Statement for %s\n".formatted(data.customer()) +
data.performances()

.stream()

.map(p ->
" %s: %s (%d seats)\n”
.formatted(p.play().name(), usd(p.amount()/100), p.audience())

).collect(Collectors.joining()) +

Amount owed is %s
You earned %d credits
""" formatted(usd(data.totalAmount()/100), data.totalVolumeCredits());

}

static String renderHtml(StatementData data) {
return

<h1>Statement for %s</hl>

<table>

<tr><th>play</th><th>seats</th><th>cost</th></tr>

""" _formatted(data.customer()) +

data
.performances()
.stream()
.map(p -> "<tr><td>%s</td><td>%d</td><td>%s</td></tr>\n"
.formatted(p.play().name(),p.audience(),usd(p.amount()/100))

).collect(Collectors.joining()) +

</table>

<p>Amount owed is %s</p>

<p>You earned %d credits</p>

""" formatted(usd(data.totalAmount()/100), data.totalVolumeCredits());

/(Java

def statement(invoice: Invoice, plays: [, Play]):

renderPlainText(createStatementData(invoice,plays))
def htmlStatement(invoice: Invoice, plays: [, Play]):
renderHtml (createStatementData(invoice,plays))

def usd(aNumber: Int): =
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))
formatter.format(aNumber)

public class Statement {

static String statement(Invoice invoice, Map<String, Play> plays) {

return renderPlainText(CreateStatementData.createStatementData(invoice,plays));

}

static String htmlStatement(Invoice invoice, Map<String, Play> plays) {
return renderHtml(CreateStatementData.createStatementData(invoice, plays));

}

static String usd(int aNumber) {
final var formatter = NumberFormat.getCurrencyInstance(Locale.US);
formatter.setCurrency(Currency.getInstance(Locale.US));
return formatter.format(aNumber);

}

& Java

Statement for BigCo
Hamlet: $650.00 (55 seats)
As You Like It: $580.00 (35 seats)
Othello: $500.00 (40 seats)

Amount owed is $1,730.00

You earned 47 credits

<h1>Statement for BigCo</hl>

<table>

<tr><th>play</th><th>seats</th><th>cost</th></tr>
<tr><td>Hamlet</td><td>55</td><td>$650.00</td></tr>
<tr><td>As You Like It</td><td>35</td><td>$580.00</td></tr>
<tr><td>0Othello</td><td>40</td><td>$500.00</td></tr>
</table>

<p>Amount owed is $1,730.00</p>

<p>You earned 47 credits</p>

def createStatementData(invoice: Invoice, plays: [,Play]): StatementData =

def playFor(aPerformance: Performance): Play =
plays(aPerformance.playID)

def totalVolumeCredits(performances: [EnrichedPerformance]): Int =
performances.map(_.volumeCredits).sum

def totalAmount(performances: [EnrichedPerformance]): Int =
performances.map(_.amount).sum

public class CreateStatementData {
static StatementData createStatementData(Invoice invoice, Map<String, Play> plays) {

Function<Performance, Play> playFor =
aPerformance -> plays.get(aPerformance.playID());

Function<List<EnrichedPerformance>, Integer> totalVolumeCredits = (performances) ->
performances.stream().mapToInt(EnrichedPerformance::volumeCredits).sum();

Function<List<EnrichedPerformance>, Integer> totalAmount = (performances) ->
performances.stream().mapToInt(EnrichedPerformance: :amount).sum();

def enrichPerformance(aPerformance: Performance): EnrichedPerformance =

val calculator =

PerformanceCalculator(aPerformance,playFor(aPerformance))

EnrichedPerformance(
aPerformance.playlID,
calculator.play,
aPerformance.audience,
calculator.amount,
calculator.volumeCredits)

val enrichedPerformances =
invoice.performances.map(enrichPerformance)
StatementData(
invoice.customer,
enrichedPerformances,
totalAmount(enrichedPerformances),
totalVolumeCredits(enrichedPerformances))

EScala

Function<Performance, EnrichedPerformance> enrichPerformance = aPerformance -> {

final var calculator =

PerformanceCalculator.instance(aPerformance,playFor.apply(aPerformance));
return new EnrichedPerformance(

aPerformance.playID(),

calculator.play(),

aPerformance.audience(),

calculator.amount(),

calculator.volumeCredits());

}s

final var enrichedPerformances =
invoice.performances().stream().map(enrichPerformance).collect(toList());
return new StatementData(
invoice.customer(),
enrichedPerformances,
totalAmount.apply(enrichedPerformances),
totalVolumeCredits.apply(enrichedPerformances));

sealed trait PerformanceCalculator:

def performance: Performance

def play: Play

def amount: Int

def volumeCredits: Int = math.max(performance.audience - 30, 0)

object PerformanceCalculator:
def apply(aPerformance: Performance, aPlay: Play): PerformanceCalculator =
aPlay. type match
case "tragedy" => TragedyCalculator(aPerformance, aPlay)
case "comedy" => ComedyCalculator(aPerformance, aPlay)
case other => throw (s"unknown type ${aPlay. type }")

sealed interface PerformanceCalculator {

Performance performance();

Play play();

int amount();

default int volumeCredits() { return Math.max(performance().audience() - 30, ©); }

static PerformanceCalculator instance(Performance aPerformance, Play aPlay) {
return switch (aPlay.type()) {
case "tragedy" -> new TragedyCalculator(aPerformance, aPlay);
case "comedy" -> new ComedyCalculator(aPerformance, aPlay);
default -> throw new (String.format("unknown type '%s'", aPlay.type()));
}s
}
}

case class TragedyCalculator(performance: Performance, play: Play) extends PerformanceCalculator:

def amount: Int =
val basicAmount = 40 000
val largeAudiencePremiumAmount =
if performance.audience <= 30 then 0 else 1 000 * (performance.audience - 30)
basicAmount + largeAudiencePremiumAmount

record TragedyCalculator(Performance performance, Play play) implements PerformanceCalculator {

@Override public int amount() {
final var basicAmount = 40 000;
final var largeAudiencePremiumAmount =
performance.audience() <= 30 ? 0 : 1 000 * (performance.audience() - 30);
return basicAmount + largeAudiencePremiumAmount;

}

case class ComedyCalculator(performance: Performance, play: Play) extends PerformanceCalculator:

def amount: Int =
val basicAmount = 30 000
val largeAudiencePremiumAmount =
if performance.audience <= 20 then 0 else 10 000 + 500 * (performance.audience - 20)
val audienceSizeAmount = 300 * performance.audience
basicAmount + largeAudiencePremiumAmount + audienceSizeAmount

override def volumeCredits: Int =
super.volumeCredits + math.floor(performance.audience / 5).toInt

record ComedyCalculator(Performance performance, Play play) implements PerformanceCalculator {

@Override public int amount() {
final var basicAmount = 30 000;
final var largeAudiencePremiumAmount =
performance.audience() <= 20 ? @ : 10 000 + 500 * (performance.audience() - 20);
final var audienceSizeAmount = 300 * performance.audience();
return basicAmount + largeAudiencePremiumAmount + audienceSizeAmount;

@Override public int volumeCredits() {
return PerformanceCalculator.super.volumeCredits() + (int) Math.floor(performance().audience() / 5);

}

That’s all.

| hope you found it useful.

