
Arrive at Monads by going
from composition of pure functions

to composition of effectful functions
summary/overview of

Functional Programming Effects
by Rob Norris

@philip_schwarzslides by http://fpilluminated.com/

http://fpilluminated.com/

[In functional programming] all we have are values and pure functions.
We have given up a lot of expressiveness to do this.

• Functions have to have an answer, but in Java sometimes you return null. How
do we deal with that?

• We are in the world of expressions, and expressions don’t throw exceptions.
• Functions have to have exactly one answer
• The power of FP comes from, it gives us the ability to reason locally about stuff,

and if we have this sort of big global scope that is introducing stuff that any part
of our program might depend on then that hinders our ability to do that.

• Logging is a side effect, right? The whole point of logging is to see when things
are happening, and in FP we are dealing with expressions, we don’t care when
things happen: it doesn’t matter. So what happens to logging [in FP]?

• Mutable state, obviously we don’t have var any more.
• And imperative programming in general: where does it go?

It seems like a lot to give up, right? And a big barrier to learning FP is understanding what to do
when you need one of these things and what FP principles do you apply to solve these problems
that you run into all the time when you are writing programs. This is where effects come into play

Effect is a very vague term and that is ok because we
are trying to talk about something that is outside the
language. Effect and side effect are not the same thing.
Effects are good. Side effects are bugs.

Their lexical similarity is really unfortunate because it
leads to a lot of people conflating these ideas when
they read about them and people using one instead of
the other so it leds to a lot of confusion. So when you
see effect, think a little bit about what is going on
because it is a continual point of confusion.

So what I want to do is talk about six of the effects,
they are kind of the first ones you learn when you
start doing FP. They are kind of the first things in your
toolbox.

There are many more and many ways to classify them
but we are going to start small. We are going to talk
about these effects… what they mean and … so
hopefully by the end we’ll have a pretty precise
definition of what these things have in common.

Rob Norris @tpolecat

Partiality: we can define functions that
might not return an answer.
If we could combine f and g the effects
would have to be combined. If either of
them failed, we couldn’t possibly get a C
out.
So if we had a way of smashing them
together by doing function composition
that would be pretty powerful but we
can’t.

You can have functions that might fail but
also give you a reason why they failed.
This kind of gives us exceptions back.
We can’t compose f and g. If you were able
to compose them together, if you finally got
a C out, you would know that both of the
computations worked. If one of them failed
you woud get a Left and you would get the
first Left that was encountered because the
computation would have to stop there
because it wouldn’t have a vaue to pass on.
But again that composition operator isn’t
defined. But can you see the power that
you would get by being able to do that, by
chaning these things together?

In FP we take an interesting
interpretation of List, we sometimes
think about it as a kind of
nondeterminism. We can define
functions that might return any
number of answers. And if we were to
compose these two together end to
end we would want to get every
possible answer that we could have got
from these two functions. But again:
we can’t do that.

We can compute values that have a
dependency.
I can construct this computation p with a
path and then I can run it with different
hosts and I’ll get a different answer back.
It’s just sort of a currying thing at this
point, a partial application thing, but if
we were to compose these things we can
have multiple computations that were
dependent on that same configuration.
We could compose them together and
get a new computation and pass the
configuration in and get our complete
answer back. We can’t do that because
we haven’t yet defined function
composition for that type.

This is another effect, that’s a pair of
some value W and an answer A. And
the intuition here is functions that can
annotate the values that they
compute…[with some info] and the
info might be a log message.
If we were able to compose these
things together, what we would get
are computations that can talk about
what thery are doing and then if we
had a way to smash those infos
together we could make a big
computation, run it, and get an
answer and some kind of extra
collected bits of information like a log
for instance.

A computation that takes some input
state and computes a value and returns
another state that might have been
modified.
And if we were able to compose these
things together then we would have our
state threaded through our computation,
which is nice, that kind of gives us
mutability back, or a lot of the cases that
mutabiity is used for.

Partiality

Nondeterminism

Logging
Mutability

Dependency Injection

Exceptions

Functional Programming with Effects
https://www.youtube.com/watch?v=po3wmq4S15A

Rob Norris @tpolecat

Because effectful value takes too long to
say, we sometimes call them programs

That’s our problem. So what can we do?
What would it take to make them compose?

Here is our function diagram for pure function composition. And if we sort of replace things with effectful
functions, they look like this, so we have something like andThen, looks something like a fish, and every type
has an id, we are calling it pure. If we were able to define this and make it compose then we would get
that power that we were talking about. So how do we write this in Scala?

We can implement compose, the fish operator using flatMap, so the fish
operator is something we can derive later really, the operation we need is
flatMap.

Rob Norris @tpolecat

So we implemented the fish operator and we can do this kind of
composition, but what we have forgotten about are all the rules for the
category.

So what we want to do is figure out what this means in
terms of flatMap

So I am going to tell you what we have been
doing: this is called the Kleisli category.

And this Fishy typeclass that ve derived, from nothing,
using math, is Monad. So this scary thing, it just comes
naturally and I haven’t seen people talk about getting
to it from this direction. And so I hope that was helpful.

We also derived all the laws, but notice that unlike the rules for function composition,
which we proved were true and are necessarily true from the types, this is not the case for
Monad. You can satisfy this type and break the laws. So when we define instances we have
to verify that they satisfy the laws, and Cats and Scalaz both provide some machinery to
make this very easy for you to do. So if you define instances, you have to check them.

So we have pure and
flatMap that are abstract
but we can define some
familiar operations in
terms of them, e.g. map
and tuple. We can define a syntax class that adds these methods so that anything that is an

F[A], if there is a Monad instance, gets these operations by syntax.

Rob Norris @tpolecat

Let’s not, because I have to
introduce Monoids to do that.
The gist of it is you can get
logging back

Partiality Exceptions

Nondeterminism

Dependency Injection

Logging

Mutability

Rob Norris @tpolecat

