
Function Applicative for Great Good
of Leap Year Function

Polyglot FP for Fun and Profit – Haskell and Scala

K

Starling

𝐵𝑙𝑢𝑒𝑏𝑖𝑟𝑑

Kestrel

B

S

PhoenixΦ

leap_year :: Integral a => a -> Bool
leap_year = liftA2 (>) (gcd 80) (gcd 50)

liftA2 f g = S (B f g)

liftA2 = Φ

liftA2 f g h = S (S (K f) g) h

@philip_schwarzslides by https://fpilluminated.com/

http://fpilluminated.com/

This deck is about the leap_year function shown in the tweet below. It is being defined in a Haskell REPL.

Given an integer representing a year, the function returns a boolean indicating if that year is a leap year.

@philip_schwarz

https://x.com/Iceland_jack/status/1802659835642528217

https://x.com/Iceland_jack/status/1802659835642528217

The leap_year function uses built-in functions (>) and gcd

 -- Greater Than function
 > :type (>)
 (>) :: Ord a => a -> a -> Bool

 > (>) 2 3
False

> (>) 3 2
True

 -- Greatest Common Divisor function
> :type gcd
gcd :: Integral a => a -> a -> a

> gcd 10 15
5

> gcd 10 16
2

> gcd 10 17
1

> gcd 10 18
2

> gcd 10 19
1

> gcd 10 20
10

leap_year = liftA2 (>) (gcd 80) (gcd 50)

> leap_year = liftA2 (>) (gcd 80) (gcd 50)

> :type leap_year
leap_year :: Integral a => a -> Bool

> leap_year 2024
True

> leap_year 2025
False

> fmap leap_year [1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400]
[True,False,False,False,True,False,False,False,True]

leap_year also uses liftA2, which is a function provided by Applicative.

 > import Control.Applicative

 > :type liftA2
 liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c

Let’s define leap_year and take it for a quick spin.

leap_year = liftA2 (>) (gcd 80) (gcd 50)

Operator Definition

¬𝑃 𝑛𝑜𝑡 𝑃

𝑃 ∨ 𝑄 𝑃 𝑜𝑟 𝑄

𝑃 ∧ 𝑄 𝑃 𝑎𝑛𝑑 𝑄

𝑃 → 𝑄 𝑖𝑓 𝑃 𝑡ℎ𝑒𝑛 𝑄

𝑃 ⟺ 𝑄 𝑃 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑄

The following slide uses logic operators ¬, ∧, ∨, → and ⟺.

Here is a reminder of their definition.

It looks like leap_year is exploiting the algorithm
described in the following twitter/x thread.

leap_year = liftA2 (>) (gcd 80) (gcd 50)

https://x.com/chordbug/status/1497912619784720384/photo/1

https://x.com/chordbug/status/1497912619784720384

https://x.com/chordbug/status/1497912619784720384/photo/1
https://x.com/chordbug/status/1497912619784720384/photo/1

By the way, in case you are asking yourself how the previous slide refactored this

𝑛 𝑖𝑠 𝑎 𝑙𝑒𝑎𝑝 𝑦𝑒𝑎𝑟 ⟺ 4 | 𝑛 ∧ ¬ 100 𝑛 ∧ ¬ 400 𝑛))

to this

𝑛 𝑖𝑠 𝑎 𝑙𝑒𝑎𝑝 𝑦𝑒𝑎𝑟 ⟺ 4 | 𝑛 ∧ (100 𝑛 → 400 𝑛)

see below for how I explained it to myself.

If we apply De Morgan’s law, i.e.

¬ 𝑃 ∧ 𝑄 = ¬𝑃 ∨ ¬𝑄

to

¬ 100 𝑛 ∧ ¬ 400 𝑛))

we get

𝑛 𝑖𝑠 𝑎 𝑙𝑒𝑎𝑝 𝑦𝑒𝑎𝑟 ⟺ 4 𝑛 ∧ ¬(100 𝑛 ∨ 400 | 𝑛))

Next, if we apply ¬𝑃 ∨ 𝑄 = 𝑃 → 𝑄

to

¬ 100 𝑛) ∨ 400 𝑛)

we get

𝑛 𝑖𝑠 𝑎 𝑙𝑒𝑎𝑝 𝑦𝑒𝑎𝑟 ⟺ 4 | 𝑛 ∧ (100 𝑛 → 400 𝑛)

which reads as follows:

𝑛 is a leap year if and only if both of the following are true
• it is divisible by 4
• if it is divisible by 100, then it is also divisible by 400

refactor

refactor

Why is it that, given function definition

 leap_year = liftA2 (>) (gcd 80) (gcd 50)

and given some input year

e.g. 2024

evaluating leap_year year, amounts to evaluating

 (gcd 80 year) > (gcd 50 year)

e.g.

 (gcd 80 2024) > (gcd 50 2024)

?

Here is the definition of Applicative function liftA2

https://hackage.haskell.org/package/base-4.20.0.1/docs/Prelude.html#liftA2

https://hackage.haskell.org/package/base-4.20.0.1/docs/Prelude.html

But given that the signature of liftA2 is

 liftA2 :: (a -> b -> c) -> f a -> f b -> f c c

how does

 liftA2 (>) (gcd 80) (gcd 50) 2024

map to

 (gcd 80 2024) > (gcd 50 2024)

?

The first step that we are going to take to answer this question, is to consider the actual parameters of liftA2 in

 liftA2 (>) (gcd 80) (gcd 50) 2024

The first one, i.e. (>), is a function with type Int -> Int -> Bool.

The second one, i.e. (gcd 80) is the result of applying a function of type Int -> Int -> Int to 80, which results in a
function Int -> Int.

The third one, i.e. (gcd 50) is the result of applying a function of type Int -> Int -> Int to 50, which also results in a
function Int -> Int.

Given that the type of leap_year is Int -> Bool, it follows that in

 liftA2 (>) (gcd 80) (gcd 50) 2024

the signature of liftA2 is

 liftA2 :: (Int -> Int -> Bool) -> (Int -> Int) -> (Int -> Int) -> (Int -> Bool)

leap_year = liftA2 (>) (gcd 80) (gcd 50)

But what abstraction does f need to be in order for

 liftA2 :: (a -> b -> c) -> f a -> f b -> f c

to become

 liftA2 :: (Int -> Int -> Boolean) -> (Int -> Int) -> (Int -> Int) -> (Int -> Boolean)

?

Let us define f to be a function of type r -> ?, where r is some specific type, and ? is some yet to be specified type.

Now let’s update the signature of liftA2 to reflect the above definition of f:

 liftA2 :: (a -> b -> c) -> (r -> ?1) -> (r -> ?2) -> (r -> ?3)

In the case at hand, i.e.

 liftA2 (>) (gcd 80) (gcd 50) 2024

we already know that

1. (a -> b -> c) is (Int -> Int -> Bool), i.e. the type of (>),
2. (r -> ?3) is (Int -> Boolean), i.e. the type of leap_year
3. (r -> ?1) and (r -> ?2) are (Int -> Int), i.e. the type of both (gcd 80) and (gcd 50)

so we see that with r = Int, ?1 = Int, ?2 = Int and ?3 = Bool, the signature of liftA2 is indeed the sought one:

 liftA2 :: (Int -> Int -> Bool) -> (Int -> Int) -> (Int -> Int) -> (Int -> Bool)

leap_year = liftA2 (>) (gcd 80) (gcd 50)

So, to arrive at the liftA2 signature that is applicable in

 liftA2 (>) (gcd 80) (gcd 50) 2024

i.e.

 liftA2 :: (Int -> Int -> Bool) -> (Int -> Int) -> (Int -> Int) -> (Int -> Bool)

we first take the minimal definition of Functor

 class Functor f where
 fmap :: (a -> b) -> f a -> f b

and a minimal definition of Applicative, but with liftA2 added to it

 class Functor f => Applicative f where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b
 liftA2 :: (a -> b -> c) -> f a -> f b -> f c

We then take the Function Functor and Function Applicative, i.e. the Functor and Applicative instances for ((->) r),
in which f is defined to be a function from some specific type r to some yet unspecified type. Here are the function
signatures of the resulting instances:

 fmap :: (a -> b) -> (r -> a) -> (r -> b)
 pure :: a -> (r -> a)
 (<*>) :: (r -> a -> b) -> (r -> a) -> (r -> b)
 liftA2 :: (a -> b -> c) -> (r -> a) -> (r -> b) -> (r -> c)

If we define r = Int, a = Int, b = Int and c = Bool, then liftA2 takes on the desired signature:

 liftA2 :: (Int -> Int -> Bool) -> (Int -> Int) -> (Int -> Int) -> (Int -> Bool)

Now let’s get back to the question that we are looking to answer.

Why is it that given function definition

 leap_year = liftA2 (>) (gcd 80) (gcd 50)

and given some input year, evaluating leap_year year, amounts to evaluating

 (gcd 80 year) > (gcd 50 year)

?

Or in other words, since leap_year is defined in terms of liftA2, why is it that

 liftA2 (>) (gcd 80) (gcd 50) year

evaluates to

 (gcd 80 year) > (gcd 50 year)

?

It turns out that the liftA2 function of the Function Applicative is a combinatory
logic function (a combinator) called the phoenix.

To answer the question restated in the previous slide, instead of looking at the code
for liftA2, in the next slide we are going to exploit the fact that liftA2 = phoenix.

liftA2 :: (a -> b -> c) -> (r -> a) -> (r -> b) -> (r -> c)

Φ 𝑥 𝑦 𝑧 𝑤 = 𝑥(𝑦 𝑤)(𝑧 𝑤)

Φ 𝑓 𝑔 ℎ 𝑥 = 𝑓(𝑔 𝑥)(ℎ 𝑥)

𝑃ℎ𝑜𝑒𝑛𝑖𝑥

https://hackage.haskell.org/package/data-aviary-0.4.0/docs/Data-Aviary-Birds.html

rename variables for additional clarity

Φ = λ𝑓. λ𝑔. λℎ. λ𝑥. 𝑓 𝑔 𝑥 ℎ 𝑥

make ‘point free’

https://hackage.haskell.org/package/data-aviary-0.4.0/docs/Data-Aviary-Birds.html

Φ = λ𝑓. λ𝑔. λℎ. λ𝑥. 𝑓 𝑔 𝑥 ℎ 𝑥

Equation Action

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = 𝑙𝑖𝑓𝑡𝐴2 > 𝑔𝑐𝑑 80 𝑔𝑐𝑑 50 𝑙𝑖𝑓𝑡𝐴2 = Φ

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = Φ > 𝑔𝑐𝑑 80 𝑔𝑐𝑑 50 Φ = λ𝑓. λ𝑔. λℎ. λ𝑥. 𝑓 𝑔 𝑥 ℎ 𝑥

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = λ𝑓. λ𝑔. λℎ. λ𝑥. 𝑓 𝑔 𝑥 ℎ 𝑥 > 𝑔𝑐𝑑 80 𝑔𝑐𝑑 50 𝑓 = >

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = (λ𝑔. λℎ. λ𝑥. > 𝑔 𝑥 ℎ 𝑥) 𝑔𝑐𝑑 80 𝑔𝑐𝑑 50 𝑔 = 𝑔𝑐𝑑 80

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = (λℎ. λ𝑥. > 𝑔𝑐𝑑 80 𝑥 ℎ 𝑥) 𝑔𝑐𝑑 50 ℎ = 𝑔𝑐𝑑 50

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = λ𝑥. > 𝑔𝑐𝑑 80 𝑥 𝑔𝑐𝑑 50 𝑥 > 𝑥 𝑦 = 𝑥 > 𝑦

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = λ𝑥. 𝑔𝑐𝑑 80 𝑥 > 𝑔𝑐𝑑 50 𝑥 apply 𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 to 2024

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 2024 =(λ𝑥. 𝑔𝑐𝑑 80 𝑥 > 𝑔𝑐𝑑 50 𝑥) 2024 𝑥 = 2024

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 2024 = 𝑔𝑐𝑑 80 2024 > 𝑔𝑐𝑑 50 2024 Q.E.D.

Thanks to the phoenix, we have not needed to look at the implementation of liftA2 in order to understand how it works. Still, what does
the implementation look like? It uses <*> and fmap:

 liftA2 :: (a -> b -> c) -> f a -> f b -> f c
 liftA2 f x = (<*>) (fmap f x)

It turns out that in the Function Functor, fmap is the Bluebird combinator, and
in the Function Applicative, <*> is the Starling combinator. So again, instead of
looking at the code for fmap and <*>, in the next slide we are going to exploit the fact that fmap = bluebird and <*> = starling.

fmap :: (a -> b) -> (r -> a) -> (r -> b)

𝐵 𝑥 𝑦 𝑧 = 𝑥(𝑦 𝑧) 𝐵 𝑓 𝑔 𝑥 = 𝑓(𝑔 𝑥)𝐵𝑙𝑢𝑒𝑏𝑖𝑟𝑑

https://hackage.haskell.org/package/data-aviary-0.4.0/docs/Data-Aviary-Birds.html

𝐵 = λ𝑓. λ𝑔. 𝑥. 𝑓 𝑔 𝑥

(<*>) :: (r -> a -> b) -> (r -> a) -> (r -> b)

𝑆 𝑥 𝑦 𝑧 = (𝑥 𝑧)(𝑦 𝑧) 𝑆 𝑓 𝑔 𝑥 = (𝑓 𝑥)(𝑔 𝑥)𝑆𝑡𝑎𝑟𝑙𝑖𝑛𝑔 𝑆 = λ𝑓. λ𝑔. λ𝑥. 𝑓 𝑥 𝑔 𝑥

liftA2 f x = (<*>)(fmap f x)

liftA2 f g = S(B f g)

The function composition function. Given two functions 𝑓
and 𝑔, it returns a function ℎ that is 𝑓 composed with 𝑔,
i.e. ℎ 𝑥 = 𝑓(𝑔 𝑥). Also known as Compositor.

Also known as Distributor.

https://hackage.haskell.org/package/data-aviary-0.4.0/docs/Data-Aviary-Birds.html

Equation Action

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = 𝑙𝑖𝑓𝑡𝐴2 > 𝑔𝑐𝑑 80 𝑔𝑐𝑑 50 𝑙𝑖𝑓𝑡𝐴2 𝑓 𝑔 = 𝑆(𝐵 𝑓 𝑔)

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = 𝑆(𝐵 > 𝑔𝑐𝑑 80) 𝑔𝑐𝑑 50 𝑆 = λ𝑓. λ𝑔. λ𝑥. 𝑓 𝑥 𝑔 𝑥

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = (λ𝑓. λ𝑔. λ𝑥. 𝑓 𝑥 𝑔 𝑥)(𝐵 > 𝑔𝑐𝑑 80) 𝑔𝑐𝑑 50 𝑓 = 𝐵 > 𝑔𝑐𝑑 80

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = (λ𝑔. λ𝑥. 𝐵 > 𝑔𝑐𝑑 80 𝑥 𝑔 𝑥) 𝑔𝑐𝑑 50 𝑔 = 𝑔𝑐𝑑 50

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = (λ𝑥. 𝐵 > 𝑔𝑐𝑑 80 𝑥 𝑔𝑐𝑑 50 𝑥) 𝐵 = λ𝑓. λ𝑔. λ𝑥. 𝑓 𝑔 𝑥 = λ𝑓. λ𝑔. λ𝑦. 𝑓 𝑔 𝑦

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = (λ𝑥. (λ𝑓. λ𝑔. λ𝑦. 𝑓 𝑔 𝑦) > 𝑔𝑐𝑑 80 𝑥 𝑔𝑐𝑑 50 𝑥) 𝑓 = >

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = (λ𝑥. (λ𝑔. λ𝑦. > 𝑔 𝑦) 𝑔𝑐𝑑 80 𝑥 𝑔𝑐𝑑 50 𝑥) 𝑔 = 𝑔𝑐𝑑 80

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = (λ𝑥. (λ𝑦. > 𝑔𝑐𝑑 80 𝑦) 𝑥 𝑔𝑐𝑑 50 𝑥) 𝑦 = 𝑥

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = (λ𝑥. > 𝑔𝑐𝑑 80 𝑥 𝑔𝑐𝑑 50 𝑥) > 𝑥 𝑦 = 𝑥 > 𝑦

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = (λ𝑥. 𝑔𝑐𝑑 80 𝑥 > 𝑔𝑐𝑑 50 𝑥) apply 𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 to 2024

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 2024 = λ𝑥. 𝑔𝑐𝑑 80 𝑥 > 𝑔𝑐𝑑 50 𝑥 2024 𝑥 = 2024

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 2024 = 𝑔𝑐𝑑 80 2024 > 𝑔𝑐𝑑 50 2024 Q.E.D.

𝐵 = λ𝑓. λ𝑔. 𝑥. 𝑓 𝑔 𝑥 𝑆 = λ𝑓. λ𝑔. λ𝑥. 𝑓 𝑥 𝑔 𝑥 liftA2 f g = S(B f g)

In previous slides, we saw this definition of liftA2

 liftA2 :: (a -> b -> c) -> f a -> f b -> f c
 liftA2 f x = (<*>) (fmap f x)

Here is the same definition, but using the infix operator equivalent of function fmap, and the infix operator equivalent of function (<*>).

 liftA2 f g h = f <$> g <*> h x

The above is a more convenient version of the following:

 liftA2 f g h = pure f <*> g <*> h

(<$>) :: Functor f => (a -> b) -> f a -> f b
(<$>) = fmap

https://hackage.haskell.org/package/base-4.20.0.1/docs/Control-Applicative.html

https://hackage.haskell.org/package/base-4.20.0.1/docs/Control-Applicative.html

On the previous slide we saw the following possible implementation of liftA2

 liftA2 :: (a -> b -> c) -> f a -> f b -> f c
 liftA2 f g h = pure f <*> g <*> h

In the Function Applicative, <*> is the Starling combinator that we saw
earlier, and pure is the Kestrel combinator. So again, instead of looking at
the code for pure and <*>, in the next slide we are going to exploit the fact
that pure = kestrel and <*> = starling.

pure :: a -> (r -> a)

𝐾𝑥 𝑦 = 𝑥 𝐾 𝑓 𝑔 = 𝑓𝐾𝑒𝑠𝑡𝑟𝑒𝑙

https://hackage.haskell.org/package/data-aviary-0.4.0/docs/Data-Aviary-Birds.html

𝐾 = λ𝑓. λ𝑔. 𝑓

(<*>) :: (r -> a -> b) -> (r -> a) -> (r -> b)

𝑆 𝑥 𝑦 𝑧 = (𝑥 𝑧)(𝑦 𝑧) 𝑆 𝑓 𝑔 𝑥 = (𝑓 𝑥)(𝑔 𝑥)𝑆𝑡𝑎𝑟𝑙𝑖𝑛𝑔 𝑆 = λ𝑓. λ𝑔. λ𝑥. 𝑓 𝑥 𝑔 𝑥

liftA2 f x = (<*>) (fmap f x)

liftA2 f g h = f <$> g <*> h

liftA2 f g h = pure f <*> g <*> h

liftA2 f g h = S (S (K f) g) h

Also known as
Cancellator.

https://hackage.haskell.org/package/data-aviary-0.4.0/docs/Data-Aviary-Birds.html

Equation Action

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = 𝑙𝑖𝑓𝑡𝐴2 > 𝑔𝑐𝑑 80 𝑔𝑐𝑑 50 𝑙𝑖𝑓𝑡𝐴2 𝑓 𝑔 ℎ = 𝑆 𝑆 𝐾 𝑓 𝑔 ℎ

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = 𝑆 𝑆 𝐾 > 𝑔𝑐𝑑 80 𝑔𝑐𝑑 50 𝑆 = λ𝑓. λ𝑔. λ𝑥. 𝑓 𝑥 𝑔 𝑥

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = (λ𝑓. λ𝑔. λ𝑥. 𝑓 𝑥 𝑔 𝑥) 𝑆 𝐾 > 𝑔𝑐𝑑 80 𝑔𝑐𝑑 50 𝑓 = 𝑆 𝐾 > 𝑔𝑐𝑑 80

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = (λ𝑔. λ𝑥. 𝑆 𝐾 > 𝑔𝑐𝑑 80 𝑥 𝑔 𝑥) 𝑔𝑐𝑑 50 𝑔 = 𝑔𝑐𝑑 50

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = λ𝑥. 𝑆 𝐾 > 𝑔𝑐𝑑 80 𝑥 𝑔𝑐𝑑 50 𝑥 𝑆 = λ𝑓. λ𝑔. λ𝑥. 𝑓 𝑥 𝑔 𝑥 = λ𝑓. λ𝑔. λ𝑦. 𝑓 𝑦 𝑔 𝑦

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = λ𝑥. λ𝑓. λ𝑔. λ𝑦. 𝑓 𝑦 𝑔 𝑦 𝐾 > 𝑔𝑐𝑑 80 𝑥 𝑔𝑐𝑑 50 𝑥 𝑓 = (𝐾 >)

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = λ𝑥. (λ𝑔. λ𝑦. 𝐾 > 𝑦 𝑔 𝑦) 𝑔𝑐𝑑 80 𝑥 𝑔𝑐𝑑 50 𝑥 𝑔 = 𝑔𝑐𝑑 80

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = λ𝑥. (λ𝑦. 𝐾 > 𝑦 𝑔𝑐𝑑 80 𝑦) 𝑥 𝑔𝑐𝑑 50 𝑥 𝑦 = 𝑥

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = λ𝑥. 𝐾 > 𝑥 𝑔𝑐𝑑 80 𝑥 𝑔𝑐𝑑 50 𝑥 K = λ𝑓. λ𝑔. 𝑓

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = λ𝑥. (λ𝑔. >) 𝑥 𝑔𝑐𝑑 80 𝑥 𝑔𝑐𝑑 50 𝑥 𝑓 = >

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = λ𝑥. (λ𝑔. >) 𝑥 𝑔𝑐𝑑 80 𝑥 𝑔𝑐𝑑 50 𝑥 𝑔 = 𝑥

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = λ𝑥. (>) 𝑔𝑐𝑑 80 𝑥 𝑔𝑐𝑑 50 𝑥 > 𝑥 𝑦 = 𝑥 > 𝑦

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 = λ𝑥. 𝑔𝑐𝑑 80 𝑥 > 𝑔𝑐𝑑 50 𝑥 apply 𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 to 2024

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 2024 = λ𝑥. 𝑔𝑐𝑑 80 𝑥 > 𝑔𝑐𝑑 50 𝑥 2024 𝑥 = 2024

𝑙𝑒𝑎𝑝_𝑦𝑒𝑎𝑟 2024 = 𝑔𝑐𝑑 80 2024 > 𝑔𝑐𝑑 50 2024 Q.E.D.

𝐾 = λ𝑓. λ𝑔. 𝑓 𝑆 = λ𝑓. λ𝑔. λ𝑥. 𝑓 𝑥 𝑔 𝑥 liftA2 f g h = S (S (K f) g) h

We had a go at understanding the following functions of the Function Applicative, without the need to look
at their code: fmap, pure, <*> and liftA2.

We did this by looking at their equivalent combinators: Bluebird, Kestrel, Starling and Phoenix.

While we have now seen the code for liftA2, we have not yet seen that for fmap, pure and <*>.

Now the we are familiar with the combinators, the code for fmap, pure and <*> does not present any
surprises, and can be seen on the following slide, which acts as a recap of the correspondence between the
functions and the combinators.

instance Applicative ((->) r) where
 pure x = (_ -> x)
 f <*> g = \x -> f x (g x)
 liftA2 f x = (<*>) (fmap f x)

instance Functor ((->) r) where
 fmap = (.)

B

(<$>) :: Functor f => (a -> b) -> f a -> f b
(<$>) = fmap

Starling

Kestrel 𝐾 𝑥 𝑦 = 𝑥

𝐵𝑙𝑢𝑒𝑏𝑖𝑟𝑑 𝐵 𝑓 𝑔 𝑥 = 𝑓 𝑔 𝑥

(<*>)

pure

fmap

(<$>)

class Functor f => Applicative f where
 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b
 liftA2 :: (a -> b -> c) -> f a -> f b -> f c

class Functor f where
 fmap :: (a -> b) -> f a -> f b

K

𝑆 𝑓 𝑔 𝑥 = (𝑓 𝑥)(𝑔 𝑥)S

Phoenix liftA2Φ 𝑓 𝑔 ℎ 𝑥 = 𝑓(𝑔 𝑥)(ℎ 𝑥)Φ

The next slide shows the Scala code for the definition of leap_year in
terms of the following alternative equivalent implementations of liftA2:

 liftA2 f x = (<*>) (fmap f x)

 liftA2 f g h = f <$> g <*> h x

 liftA2 f g h = pure f <*> g <*> h

for
 leapYear <- List(leapYear1, leapYear2, leapYear3)
 _ = assert(List.range(2000,2025).filter(leapYear) == List(2000, 2004, 2008, 2012, 2016, 2020, 2024))
 _ = assert(List(1600, 1700, 1800, 1900, 2000).filter(leapYear) == List(1600, 2000))
yield ()

extension [A,B](f: A => B)
def `<$>`[F[_]: Functor](fa: F[A]): F[B] = fa.map(f)

import cats.*
import cats.implicits.*

val gcd: Int => Int => Int =
x => y => x.gcd(y).intValue

val `(>)`: Int => Int => Boolean =
x => y => x > y

val leapYear1: Int => Boolean =
liftA2_v1(`(>)`)(gcd(80), gcd(50))

def liftA2_v1[A,B,C,F[_]: Applicative](f: A => B => C)(fa: F[A], fb: F[B]): F[C] =
fa.map(f) <*> fb

val leapYear3: Int => Boolean =
liftA2_v3(`(>)`)(gcd(80), gcd(50))

val leapYear2: Int => Boolean =
liftA2_v2(`(>)`)(gcd(80), gcd(50))

def liftA2_v2[A,B,C,F[_]: Applicative](f: A => B => C)(fa: F[A], fb: F[B]): F[C] =
f `<$>` fa <*> fb

def liftA2_v3[A,B,C,F[_]: Applicative](f: A => B => C)(fa: F[A], fb: F[B]): F[C] =
f.pure <*> fa <*> fb

import scala.math.BigInt.int2bigInt

That’s all. I hope you found it useful.

If you would like a more comprehensive introduction to the Function Applicative, consider checking out the following deck.

https://fpilluminated.com/

https://fpilluminated.com/

	Slide 1: Function Applicative for Great Good of Leap Year Function
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

