
State Monad
learn how it works

follow Alvin Alexander’s example-driven build up to the State Monad

and then branch off into a detailed look at its inner workings

Alvin Alexander @alvinalexander @philip_schwarzPhilip Schwarz

the State monad is a wrapper that makes the concept of
“state” easier to work with in for expressions. The next few
lessons will first demonstrate the problems of trying to work
with state without a State monad, and then I’ll show how
the State monad helps to alleviate those problems.

If you don’t happen to have a State monad laying around, you can still handle state in Scala/FP. The
basic ideas are:
• First, create some sort of construct to model the state of your application at any moment in time.

Typically this is a case class, but it doesn’t have to be.
• Next, create a “helper” function that takes a) the previous state and b) some sort of increment

or “delta” to that state. The function should return a new state based on those two values.

Imagine that you’re on the first hole of a golf course, and you swing at a ball three times, with these
results:
• The first ball goes 20 yards
• The second ball goes 15 yards
• The third swing is a “swing and a miss,” so technically the ball goes 0 yards

Alvin Alexander @alvinalexander

One way to model the state after each stroke is with a simple case class that stores the cumulative distance of all my swings:

case class GolfState(distance: Int)

Given that model, I can create a “helper” function named nextStroke. It takes the previous GolfState and the distance of the next stroke to
return a new GolfState:

def nextStroke(previousState: GolfState, distanceOfNextHit: Int) =
GolfState(previousState.distance + distanceOfNextHit)

val state1 = GolfState(20)
val state2 = nextStroke(state1, 15)
val state3 = nextStroke(state2, 0)
println(state3) //prints "GolfState(35)"

Now I can use those two pieces of code to create an application that models my three swings:

The first three lines simulate my three swings at the ball. The last line of code prints the final golf state
as GolfState(35), meaning that the total distance of my swings is 35 yards.

This code won’t win any awards — it’s repetitive and error-prone — but it does show how you have
to model changing state in a Scala/FP application with immutable state variables. (In the
following lessons I show how to improve on this situation by handling state in a for expression.)

Alvin Alexander @alvinalexander

Alvin Alexander @alvinalexander

Knowing that I wanted to get my code working in a for expression, I attempted to create my own
State monad. I modeled my efforts after the Wrapper and Debuggable classes I shared about 10-20
lessons earlier in this book. Starting with that code, and dealing with only Int values, I created the
following first attempt at a State monad:

/**
* this is a simple (naive) attempt at creating a State monad
*/

case class State(value: Int) {

def flatMap(f: Int => State): State = {
val newState = f(value)
State(newState.value)

}

def map(f: Int => Int): State = State(f(value))
}

val result = for {
a <- State(20)
b <- State(a + 15) // manually carry over 'a'
c <- State(b + 0) // manually carry over 'b'

} yield c

println(s"result: $result") // prints "State(35)"

With this State monad in hand, I can write the following for
expression to model my golf game:

The good news about this code is:
• It shows another example of a wrapper class that implements flatMap and

map
• As long as I just need Int values, this code lets me use a concept of

state in a for expression
Unfortunately, the bad news is that I have to manually carry over values
like a and b (as shown in the comments), and this approach is still
cumbersome and error-prone. Frankly, the only improvement I’ve made over
the previous lesson is that I now have “something” working in a for
expression.
What I need is a better State monad.

This code is very similar to the Wrapper
and Debuggable classes I created earlier
in this book, so please see those lessons if
you need a review of how this code works.

@philip_schwarz
https://www.slideshare.net/pjschwarz/writer-monad-for-logging-execution-of-functions

While it is not necessary for the purposes of this slide deck, if
you want to know more about the Debuggable class
mentioned in the previous slide then see the following

https://www.slideshare.net/pjschwarz/writer-monad-for-logging-execution-of-functions

Alvin Alexander @alvinalexander

Fortunately some other people worked on this problem long before me, and they created a better
State monad that lets me handle the problem of my three golf strokes like this:

Unlike the code in the previous lesson, notice that there’s no need to manually carry values over
from one line in the for expression to the next line. A good State monad handles that
bookkeeping for you. In this lesson I’ll show what you need to do to make this for expression work.

val stateWithNewDistance: State[GolfState, Int] = for {
_ <- swing(20)
_ <- swing(15)
totalDistance <- swing(0)

} yield totalDistance

object Golfing3 extends App {

case class GolfState(distance: Int)

def swing(distance: Int): State[GolfState, Int] =
State { (s: GolfState) =>
val newAmount = s.distance + distance
(GolfState(newAmount), newAmount)

}

val stateWithNewDistance: State[GolfState, Int] =
for {

_ <- swing(20)
_ <- swing(15)

totalDistance <- swing(0)
} yield totalDistance

// initialize a `GolfState`
val beginningState = GolfState(0)

// run/execute the effect. …
val result: (GolfState, Int) =
stateWithNewDistance.run(beginningState)

println(s"GolfState: ${result._1}") //GolfState(35)
println(s"Total Distance: ${result._2}") //35

}

Alvin Alexander @alvinalexander

With a properly-written State monad
I can write an application to simulate
my golf game like this

I’ll explain this code in the
remainder of this lesson.

Alvin spends the rest of chapter 85
explaining that code and then in chapter 86
he shows us the code for the State monad.

@philip_schwarz

Alvin Alexander @alvinalexander
Until this point I treated the State monad code as a black box: I asked you to use it as though it
already existed in the Scala libraries, just like you use String, List, and hundreds of other classes
without thinking about how they’re implemented.

My reason for doing this is that the State code is a little complicated. You have to be a real
master of for expressions to be able to write a State monad that works like this.

Note: A “master of for expressions” is a goal to shoot for!

In a way, the State monad just implements map and flatMap methods, so it’s similar to the
Wrapper and Debuggable classes I created previously. But it also takes those techniques to
another level by using generic types, by-name parameters, and anonymous functions in several
places.

Here is the source code for the State monad I used in the
previous lesson.

In this code the generic type S stands for “state,” and then A
and B are generic type labels, as usual.

In this first version of this book I’m not going to attempt
to fully explain that code, but I encourage you to work
with it and modify it until you understand how it works.

I decided not to show you the code for the
State monad yet (see the next slide for why).

As we just saw, Alvin said that

• the State monad’s code is a little complicated

• He is not fully explaining the code in the first edition of his book

• The best way to understand the code is to work with it and modify it until we understand
how it works

So instead of explaining Alvin’s code that uses the State monad, and instead of showing
you straight away the State monad code he presented in the book, I am going to have a go
at deriving the code for the State monad based on (a) how Alvin’s code uses the monad
and (b) the known properties of a monad.

Functional Programming in Scala

We’ve seen three minimal sets of primitive Monad combinators, and instances of Monad will
have to provide implementations of one of these sets:
• unit and flatMap
• unit and compose
• unit, map, and join
And we know that there are two monad laws to be satisfied, associativity and identity, that can be
formulated in various ways. So we can state plainly what a monad is :

A monad is an implementation of one of the minimal sets of monadic
combinators, satisfying the laws of associativity and identity.

That’s a perfectly respectable, precise, and terse definition. And if we’re being precise, this is the
only correct definition. (by Paul Chiusano and Runar Bjarnason)

@pchiusano @runarorama

As we can see below in FPiS, there are three minimal sets of primitive combinators that can be used to
implement a monad:

• unit, flatMap
• unit, compose
• unit, map, join

I am going to pick the first set.

@philip_schwarz

https://twitter.com/pchiusano
https://twitter.com/runarorama

So here is the trait a monad has to implement

trait Monad[F[_]] {
def unit[A](a: => A): F[A]
def flatMap[A,B](ma: F[A])(f: A => F[B]): F[B]

}

val optionMonad: Monad[Option] = new Monad[Option] {
override def unit[A](a: => A): Option[A] = Some(a)
override def flatMap[A, B](ma: Option[A])(f: A => Option[B]): Option[B] =

ma match {
case None => None
case Some(a) => f(a)

}
}

e.g. here is a monad instance for Option

val maybeName = optionMonad.unit("Fred")
val maybeSurname = optionMonad.unit("Smith")

val maybeFullName =
optionMonad.flatMap(maybeName){ name =>

optionMonad.flatMap(maybeSurname){ surname =>
optionMonad.unit(s"$name $surname")

}
}

assert(maybeSomeFullName == optionMonad.unit("Fred Smith"))

and here is an example of using the Option monad

flatMap is used to bind a variable to a pure
value in an effectful monadic box/context
and unit is used to lift a pure value into an
effectful monadic box/context.

In Scala, the unit function of each
monad has a different name: the
Option monad calls it Some, the
Either monad calls it Right, the List
monad calls it List, etc.

Every monad is also a Functor because the map function of Functor
can be defined in terms of the unit and flatMap functions of Monad

trait Functor[F[_]] {
def map[A, B](ma: F[A])(f: A => B): F[B]

}

trait Monad[F[_]] extends Functor[F] {
def unit[A](a: => A): F[A]
def flatMap[A,B](ma: F[A])(f: A => F[B]): F[B]
override def map[A, B](ma: F[A])(f: A => B): F[B] =

flatMap(ma)(a => unit(f(a)))
}

To map a function f over a monadic context we
use flatMap to first apply f to the pure value
found in the monadic context and then use unit
to lift the result into an unwanted monadic
context that flatMap strips out.

val maybeFullName =
optionMonad.flatMap(maybeName){ name =>

optionMonad.flatMap(maybeSurname){ surname =>
optionMonad.unit(s"$name $surname")

}
}

Now that our Monad definition includes a map function we
can simplify our sample usage of the Option monad

val maybeFullName =
optionMonad.flatMap(maybeName){ name =>

optionMonad.map(maybeSurname){ surname =>
s"$name $surname"

}
}

In the above, we defined the Functor and Monad traits ourselves because there are no such traits in Scala.

What about in plain Scala, i.e. without rolling our own Functor and Monad traits and without using the
Functor and Monad traits provided by an FP library like Scalaz or Cats, how is a Monad implemented?

Alvin Alexander @alvinalexander

When speaking casually, some people like to say that any Scala class that implements map and flatMap
is a monad. While that isn’t 100% true, it’s in the ballpark of truth.

As Gabriele Petronella wrote in a Stack Overflow post:

“The only thing monads are relevant for, from a Scala language perspective, is the ability of being
used in a for-comprehension.”

By this he means that while monads are defined more formally in a language like Haskell, in Scala there
is no base Monad trait to extend; all you have to do is implement map and flatMap so your class can be
used as a generator in for expressions.

case class Foo[A](n:A) {
def map[B](f: A => B): Foo[B] = Foo(f(n))
def flatMap[B](f: A => Foo[B]): Foo[B] = f(n)

}

case class Foo[A](n:A)

val fooTwo = Foo(2)
val fooThree = Foo(3)
val fooFive = Foo(5)

Alvin is referring to the fact that in Scala I
can take any class, e.g. Foo here on the left
hand side, and turn it into a monad by giving
it a map function and a flatMap function, as
shown here on the right hand side

val result =
fooTwo flatMap { x =>

fooThree map { y =>
x + y

}
}

assert(result == fooFive)

val result =
for {

x <- fooTwo
y <- fooThree

} yield x + y

assert(result == fooFive)

And as a result, instead of having to write
code that looks like the example on the left
hand side, I can write code using the
syntactic sugar of the for comprehension on
the right hand side, i.e. the compiler
translates (desugars) the code on the right
hand side to the code on the left hand side.

assert(
(for {

name <- Some("Fred")
surname <- Some("Smith")

} yield s"$name $surname")
== Some("Fred Smith")

)

I imagine that because in Scala each monad calls the
unit function differently, the compiler is not able to
desugar the above code to the code on the left hand
side, which would only require the monad to have a
flatMap function and a unit function (called Some in
this case), so instead monads in Scala have to have a
map function because the compiler can then translate
the above code to the code on the right hand side.

assert(
Some("Fred").flatMap{ name =>

Some("Smith").flatMap{ surname =>
Some(s"$name $surname")

}
}
== Some("Fred Smith")

)

assert(
Some("Fred").flatMap{ name =>

Some("Smith").map{ surname =>
s"$name $surname"

}
}
== Some("Fred Smith")

)

@philip_schwarz

object Golfing3 extends App {

case class GolfState(distance: Int)

def swing(distance: Int): State[GolfState, Int] =
State { (s: GolfState) =>

val newAmount = s.distance + distance
(GolfState(newAmount), newAmount)

}

val stateWithNewDistance: State[GolfState, Int] =
for {

_ <- swing(20)
_ <- swing(15)

totalDistance <- swing(0)
} yield totalDistance

// initialize a `GolfState`
val beginningState = GolfState(0)

// run/execute the effect. …
val result: (GolfState, Int) =

stateWithNewDistance.run(beginningState)

println(s"GolfState: ${result._1}") //GolfState(35)
println(s"Total Distance: ${result._2}") //35

}

Alvin‘s first attempt at a State monad was a case class and
we’ll use the same approach.

We can see from Alvin’s code here on the right that
State[GolfState, Int] has a parameter that is a
function from GolfState to (GolfState, Int) and
that the parameter is called run.

GolfState is the type of the state whose current value is
consumed by the monad‘s run function and whose next
(successor) value is computed by the run function. Int is the
type of the result (the distance) that is computed by the run
function.

So let’s start coding the State monad.

We’ll use S for the type of the state that is both consumed
and produced by the monad’s run function. We’ll use A for
the type of the result that is computed by the monad’s run
function using the state.

case class State[S, A](run: S => (S, A))

In Alvin’s program we can see four State monad instances being created.

Three instances are created by the three calls to the swing function in the
for comprehension.

The fourth instance is the result of the whole for comprehension.

We can see where the run function of the fourth instance is being invoked.

What about the run functions of the other three instances? When are they
invoked? There are no references to them anywhere!!!

To answer that we look at the desugared version of the for comprehension:

The only usage of the State monad instances created by the swing
function consists of calls to the map and flatMap functions of the instances.
Their run functions are not invoked. So it must be their map and flatMap
functions that invoke their run functions.

swing(20) flatMap { _ =>
swing(15) flatMap { _ =>

swing(0) map { totalDistance =>
totalDistance

}
}

}

object Golfing3 extends App {

case class GolfState(distance: Int)

def swing(distance: Int): State[GolfState, Int] =
State { (s: GolfState) =>

val newAmount = s.distance + distance
(GolfState(newAmount), newAmount)

}

val stateWithNewDistance: State[GolfState, Int] =
for {

_ <- swing(20)
_ <- swing(15)

totalDistance <- swing(0)
} yield totalDistance

// initialize a `GolfState`
val beginningState = GolfState(0)

// run/execute the effect. …
val result: (GolfState, Int) =

stateWithNewDistance.run(beginningState)

println(s"GolfState: ${result._1}") //GolfState(35)
println(s"Total Distance: ${result._2}") //35

}

Let’s turn to the task of implementing the map and flatMap functions of the State monad.

Let’s start with map, the easiest of the two.

case class State[S, A](run: S => (S, A)) {

def map[B](f: A => B): State[S, B] = ???

}

def map[B](f: A => B): State[S,B] =
State { s =>

???
}

def map[B](f: A => B): State[S,B] =
State { s =>

val s1 = ???
val b = ???
(s1,b)

}

def map[B](f: A => B): State[S,B] =
State { s =>

val a = ???
val s1 = ???
val b = f(a)
(s1,b)

}

def map[B](f: A => B): State[S,B] =
State { s =>

val result = run(s)
val a = result._2
val s1 = result._1
val b = f(a)
(s1,b)

}

def map[B](f: A => B): State[S,B] =
State { s =>

val (s1,a) = run(s)
val b = f(a)
(s1,b)

}

def map[B](f: A => B): State[S,B] =
State { s =>

val (s1, a) = run(s)
(s1, f(a))

}

map returns a new State monad instance the instance’s run function returns an S and a B If we have an A then we can get a B by calling f

we can get S and A by calling our run function simplify using pattern matching inline b

1 2

4 5 6

3

Now let’s implement flatMap. case class State[S, A](run: S => (S, A)) {

def map[B](f: A => B): State[S, B] =
State { s =>

val (s1, a) = run(s)
(s1, f(a))

}

def flatMap[B](g: A => State[S, B]): State[S, B] = ???
}

def flatMap[B](f:A=>State[S,B]):State[S,B] =
State { s =>

val (s1,a) = run(s)
f(a).run(s1)

}

the instance’s run function returns an S and a B we can get an S and a B if we have a State[S,B] simplify

If we have an A then we can get a State[S,B] by calling f We can get an A by calling our own run function inline state and use s1 in second call to run

def flatMap[B](f:A=>State[S,B]):State[S,B] =
State { s =>

val (s1,a) = run(s)
val state: State[S, B] = f(a)
state.run(s)

}

def flatMap[B](f:A=>State[S,B]):State[S,B] =
State { s =>

???
}

flatMap returns a new State monad instance

def flatMap[B](f:A=>State[S,B]):State[S,B] =
State { s =>

val s1 = ???
val b = ???
(s1,b)

}

def flatMap[B](f:A=>State[S,B]):State[S,B] =
State { s =>

val state: State[S, B] = ???
val result = state.run(s)
val s1 = result._1
val b = result._2
(s1, b)

}

def flatMap[B](f:A=>State[S,B]):State[S,B] =
State { s =>

val state: State[S, B] = ???
state.run(s)

}

def flatMap[B](f:A=>State[S,B]):State[S,B] =
State { s =>

val a = ???
val state: State[S, B] = f(a)
state.run(s)

}

1

2 4

5 6 7

3

@philip_schwarz

Remember how earlier we saw that every monad is also a
Functor because the map function of Functor can be
defined in terms of the unit and flatMap functions of Monad?

Let’s implement the unit function of the State monad so that
we can simplify the implementation of the map function.

def unit[S,A](a: =>A): State[S,A] =
State { s =>

???
}

def unit[S,A](a: =>A): State[S,A] =
State { s =>

val s1 = ???
val a = ???
(s1,a)

}

def unit[S,A](a: =>A): State[S,A] =
State { s =>

(s, a)
}

unit returns a new State monad instance the instance’s run function returns an S and a A we can just use the A and S that we are given

1 2 3

Now we can simplify the map function as follows

def map[B](f: A => B): State[S,B] =
State { s =>

val (s1,a) = run(s)
f(a).run(s1)

}

def map[B](f: A => B): State[S,B] =
flatMap(a => unit(f(a)))

case class State[S, A](run: S => (S, A)) {

def flatMap[B](g: A => State[S, B]): State[S, B] = State { (s0: S) =>
val (s1, a) = run(s0)
g(a).run(s1)

}

def map[B](f: A => B): State[S, B] = flatMap(a => State.point(f(a)))
}

object State {
def point[S, A](v: A): State[S, A] = State(run = s => (s, v))

}

object State {

def unit[S, A](a: => A): State[S, A] =
State { s =>

(s, a)
}

}

import State._
case class State[S, A](run: S => (S, A)) {

def map[B](f: A => B): State[S, B]
flatMap(a => unit(f(a)))

def flatMap[B](f: A => State[S, B]): State[S, B] =
State { s =>

val (s1, a) = run(s)
f(a).run(s1)

}
}

Alvin Alexander @alvinalexander
Below is the State monad implementation we ended
up with and on the right hand side you can see the
implementation presented by Alvin in his book.

The only real difference is that the unit function is
called point and its parameter is passed by name
rather than by value.

A minor difference is that the function parameter of
flatMap is called g whereas that of map is called f.

Alvin Alexander @alvinalexander Don’t be intimidated!

I’ll also make two other points at this time. First, I doubt that anyone wrote a State monad like
this on their first try. I’m sure it took several efforts before someone figured out how to get
what they wanted in a for expression.

Second, while this code can be hard to understand in one sitting, I’ve looked at some of the
source code inside the Scala collections classes, and there’s code in there that’s also hard to
grok. (Take a look at the sorting algorithms and you’ll see what I mean.)

Personally, the only way I can understand complex code like this is to put it in a Scala IDE
and then modify it until I make it my own.

Where State comes from

I believe the original version of this State code came from this Github URL:

• github.com/jdegoes/lambdaconf-2014-introgame

As the text at that link states, “This repository contains the material for Introduction to
Functional Game Programming with Scala, held at LambdaConf 2014 in Boulder, Colorado.”

While I find a lot of that material to be hard to understand without someone to explain it (such as
at a conference session), Mr. De Goes created his own State monad for that training
session, and I believe that was the original source for the State monad I just showed.

Much of the inspiration for this book comes from attending that conference and thinking, “I have
no idea what these people are talking about.”@jdegoes

John A De Goes

http://github.com/jdegoes/lambdaconf-2014-introgame

Deriving the implementation of map and flatMap starting from their signatures is doable in that the types in play pretty much
dictate the implementation.

But to truly understand how the State monad works I had to really study those methods and visualise what they do.

So in the rest of this slide deck I will have a go at visualising, in painstaking detail, how the map and flatMap functions operate.

In order to eliminate any unnecessary source of distraction I will do this in the context of an example that is even simpler than
Alvin’s golfing example.

I’ll use the State monad to implement a trivial counter that simply gets incremented on each state transition. That way it will be
even easier to concentrate purely on the essentials of how the State monad works.

@philip_schwarz

def increment: State[Int, Int] =
State { (count: Int) =>

val nextCount = count + 1
(nextCount, nextCount)

}

val tripleIncrement: State[Int, Int] =
for {

_ <- increment
_ <- increment
result <- increment

} yield result

val initialState = 10

val (finalState, result) =
tripleIncrement.run(initialState)

assert(finalState == 13)
assert(result == 13)

In Alvin’s golfing example the state consisted of a GolfState case class that
wrapped a distance of type Int. In our minimal counter example the state is simply
going to be an Int: we are not going to bother wrapping it in a case class.

So instead of our State[S, A] instances being of type State[GolfState, Int],
they are going to be of type State[Int, Int].

And instead of the run functions S => (S, A) of our State[S, A] instances being
of type GolfState => (GolfState, Int), they are going to be of type Int
=>(Int,Int)

Each <- binds to a variable the A result of invoking the S=>(S,A) run function of a
State[S,A] instance created by an invocation of the increment function. Since
our State[S,A] instances have type State[Int,Int], each <- binds an Int count
result to a variable.

In the first two cases the variable is _ because we don’t care about intermediate
counter values. In the third case the variable is called result because the final value of
the counter is what we care about.

What the for comprehension does is compose three State[Int,Int] instances
whose run functions each perform a single increment, into a single State[Int,Int]
instance whose run function performs three increments.

We invoke the run function of the composite State[Int,Int] instance with an initial
count state of 10.

The function increments the count three times and returns both the final state at the end
of the increments and the value of the counter, which is the same as the state.

val tripleIncrement: State[Int, Int] =
increment flatMap { _ =>

increment flatMap { _ =>
increment map { result =>

result
}

}
}

val tripleIncrement: State[Int, Int] =
increment flatMap { a1 =>

increment flatMap { a2 =>
increment map { a3 =>

a3
}

}
}

val tripleIncrement: State[Int, Int] =
for {

_ <- increment
_ <- increment
result <- increment

} yield result

One more slide to further explain why the values that the for comprehension binds to
variables _, _, and result below are indeed the A values obtained by invoking the S=>(S,A)
run functions of the State[S, A] instances created by invoking the increment function.

If we look at the signature of the map and flatMap functions again, we are reminded that they
both take a function whose domain is type A.

So the anonymous lambda functions you see passed to map and flatMap below, on the right
hand side, have domain A, which we indicated by naming their variables a1, a2 and a3.

In the case of this counter example, the intermediate A results, i.e. the first two, are of no
interest and so we have greyed out the first two variables, which are unused.

def map[B](f: A => B): State[S, B]
def flatMap[B](f: A => State[S, B]): State[S, B]

original desugared variables renamed

type State[S,+A] = S => (A,S)

Here State is short for computation that carries some state along, or state action, state transition, or even
statement (see the next section). We might want to write it as its own class, wrapping the underlying function like this:

case class State[S,+A](run: S => (A,S))

I got a bit tired of repeating the words ‘State monad instance’, so in what
follows I will instead take inspiration from FPiS and say ’state action‘.

Functional
Programming

in Scala

In order to fully understand how the State monad works, in the rest of this
slide deck we are going to examine and visualise, in painstaking detail, how
the following desugared for comprehension is executed:

We are going to be using the State monad code in Alvin’s book (see below)
because this part of the slide deck came before the part in which I had a go at
deriving the State monad code.

increment flatMap { a1 =>
increment flatMap { a2 =>

increment map { a3 =>
a3

}
}

}

case class State[S, A](run: S => (S, A)) {

def flatMap[B](g: A => State[S, B]): State[S, B] =
State { (s0: S) =>

val (s1, a) = run(s0)
g(a).run(s1)

}

def map[B](f: A => B): State[S, B] =
flatMap(a => State.point(f(a)))

}

object State {
def point[S, A](v: A): State[S, A] = State(run = s => (s, v))

}

Actually that is not the full story.

What the desugared for comprehension does is
compose the state actions returned by the
invocations of the increment function into a new
composite state action.

Once the desugared for comprehension has
produced this composite state action, we’ll want
to execute its run function, passing in an integer
that represents the initial state of a counter.

The run function should return (13, 13) i.e. a final
state of 13 and a result value of 13.

increment flatMap { a1 =>
increment flatMap { a2 =>

increment map { a3 =>
a3

}
}

}.run(10)

We want to evaluate this expression:

The function passed to flatMap is called g:

So to simplify the expression to be evaluated, let’s take the
function passed to the first flatMap invocation

and let’s replace it with the name g

def flatMap[B](g: A => State[S, B]): State[S, B]

increment flatMap g

increment flatMap {

}

a1 => increment flatMap {
a2 => increment map {

a3 => a3
}

}

increment flatMap {

}

a1 => increment flatMap {
a2 => increment map {

a3 => a3
}

}

g

@philip_schwarz

In the next slide we are going to get started
first evaluating increment flatMap g
and then invoking the run function of the
resulting state action.

We are going to go very slow to make sure
everything is easy to understand.

It is going to take almost 60 slides.

If you get tired, just grasp the main ideas and
jump to the last six slides for some final
remarks/observations.

increment flatMap g

(s’, a)

s

State[S,A]

run

increment

run

g

a

(s’’, b)

S’

State[S,A]

run

flatMap

(s’’, b)

s

State[S,A]

run

increment flatMap {

}

a1 => increment flatMap {
a2 => increment map {
a3 => a3

}
}

when invoked, both increment
and flatMap return a state
action. function g is passed as a

parameter to flatMap. function g takes
parameter a of
type A.

when invoked, function g
returns a state action.

The first step in evaluating our
expression is the invocation of the
increment function. See next slide.

increment flatMap g

increment

run

g

a

(s’’, b)

S’

State[S,A]

run

increment

flatMap

(s’’, b)

s

State[S,A]

run

(s’, a)

s

State[S,A]

run

increment flatMap {

}

a1 => increment flatMap {
a2 => increment map {
a3 => a3

}
}

The increment function
returns state action State1.State1

def increment: State[Int, Int] =
State { (count: Int) =>
val nextCount = count + 1
(nextCount, nextCount)

}

g

increment flatMap g

(s’, a)

s

State[S,A]

run run

g

a

(s’’, b)

S’

State[S,A]

run

flatMap

(s’’, b)

s

State[S,A]

run

increment increment flatMap {

}

a1 => increment flatMap {
a2 => increment map {
a3 => a3

}
}

State1

The increment subexpression evaluated
to new state action State1. The next
step is to call the flatMap function of
State1, passing in g as a parameter.

g

@philip_schwarz

increment flatMap g

(s’, a)

s

State[S,A]

run run

g

a

(s’’, b)

S’

State[S,A]

run

flatMap

increment

(s’’, b)

s

State[S,A]

runrun

increment flatMap {

}

a1 => increment flatMap {
a2 => increment map {
a3 => a3

}
}

Invoking State1’s flatMap
function produces new
state action State2.State1 State2

def flatMap[B](g: A => State[S, B]): State[S, B] =
State { (s0: S) =>
val (s1, a) = run(s0)
g(a).run(s1)

}

g

(s’, a)

s

State[S,A]

run

(s’’, b)

s

State[S,A]

run

(s0: S) =>
val (s1, a) = run(s0)
g(a).run(s1)

run

g

a

(s’’, b)

S’

State[S,A]

run

increment flatMap gincrement increment flatMap {

}

a1 => increment flatMap {
a2 => increment map {
a3 => a3

}
}

So the value of the expression increment
flatMap g is state action State2 and we
are done!

Not quite. As we said before, this is not
the whole story. Now that we have a
composite state action we need to invoke
its run function with an Int that represents
the initial state of a counter.

We are going to start counting at 10 (see
next slide).

State1 State2

g

(s’, a)

s

State[S,A]

run

(s’’, b)

s0

State[S,A]

run

(s0: S) =>
val (s1, a) = run(s0)
g(a).run(s1)

run

g

a

(s’’, b)

S’

State[S,A]

run

increment flatMap gincrement (increment flatMap {

}).run(s0)

a1 => increment flatMap {
a2 => increment map {
a3 => a3

}
}

Let’s feed the run
function of State2 an
initial state s0 of 10.State1 State2

s0 = 10

g

@philip_schwarz

(s’, a)

s

State[S,A]

run

(s’’, b)

s0

State[S,A]

run

(s0: S) =>
val (s1, a) = run(s0)
g(a).run(s1)

run

g

a

(s’’, b)

S’

State[S,A]

run

increment flatMap gincrement (increment flatMap {

}).run(s0)

a1 => increment flatMap {
a2 => increment map {
a3 => a3

}
}

State1 State2

Let’s pass state s0 into
the body of State2’s run
function.

s0 = 10

g

(s’, a)

s

State[S,A]

run

(s’’, b)

State[S,A]

run

(s0: S) =>
val (s1, a) = run(s0)
g(a).run(s1)

run

g

a

(s’’, b)

S’

State[S,A]

run

increment flatMap gincrement

s0

(increment flatMap {

}).run(s0)

a1 => increment flatMap {
a2 => increment map {
a3 => a3

}
}

State1 State2

Let’s evaluate the body
of State2’s run function.

s0 = 10

g

(s1, a1)

s0

State[S,A]

run

(s0: S) =>
val (s1, a1) = run(s0)
g(a1).run(s1)

run

g

a

(s’’, b)

S’

State[S,A]

run

increment flatMap gincrement

(s’’, b)

State[S,A]

run

s0

(increment flatMap {

}).run(s0)

a1 => increment flatMap {
a2 => increment map {
a3 => a3

}
}

State1 State2

The first thing that the run
function of State2 does is
call the run function of
State1, passing in state s0.

This returns (s1,a1) i.e.
the next state and a result
counter, both being 11.

(count: Int) =>
val nextCount = count + 1
(nextCount, nextCount)

s0 = 10
s1 = 11
a1 = 11

g

(s1, a1)

s0

State[S,A]

run

(s0: S) =>
val (s1, a1) = run(s0)
g(a1).run(s1)

run

g

a

(s’’, b)

S’

State[S,A]

run

increment flatMap gincrement

(s’’, b)

State[S,A]

run

s0

(increment flatMap {

}).run(s0)

a1 => increment flatMap {
a2 => increment map {
a3 => a3

}
}

State1 State2

The run function of State2
receives (s1, a1), the
result of invoking the run
function of State1.

s0 = 10
s1 = 11
a1 = 11

g

(s1, a1)

s0

State[S,A]

run

(s0: S) =>
val (s1, a1) = run(s0)
g(a1).run(s1)

run

g

a

(s’’, b)

S’

State[S,A]

run

increment flatMap gincrement

(s’’, b)

State[S,A]

run

s0

(increment flatMap {

}).run(s0)

a1 => increment flatMap {
a2 => increment map {
a3 => a3

}
}

State1 State2

s1 and a1 are referenced in
the body of the run function
of State2.

s0 = 10
s1 = 11
a1 = 11

g

@philip_schwarz

(s1, a1)

s0

State[S,A]

run

(s0: S) =>
val (s1, a1) = run(s0)
g(a1).run(s1)

run

g

a

(s’’, b)

S’

State[S,A]

run

increment flatMap gincrement

(s’’, b)

State[S,A]

run

s0

(increment flatMap {

}).run(s0)

a1 => increment flatMap {
a2 => increment map {
a3 => a3

}
}

State1 State2

The next thing that the run function of
State2 does is call function g with the a1
value computed by State1’s run function.

In this simple example, in which the
State monad is simply used to increment
a counter a number of times, the a1 and
a2 values in the desugared for
comprehension are not actually used, and
so we could rename them to _ if we so
wished.

a3 on the other hand _is_ used: it is
returned as the result/value of the whole
computation.

s0 = 10
s1 = 11
a1 = 11

(s1, a1)

s0

State[S,A]

run

(s0: S) =>
val (s1, a1) = run(s0)
g(a1).run(s1)

run

g

a1

(s’’, b)

S’

State[S,A]

run

increment flatMap gincrement

(s’’, b)

State[S,A]

run

s0

(increment flatMap { a1 =>

}).run(s0)

increment flatMap {

}

a2 => increment map {
a3 => a3

}

State1 State2

The body of g consists of another
case of flatMapping a function, g’
say, over the result of invoking the
increment function.

g

g’

s0 = 10
s1 = 11
a1 = 11

(s1, a1)

s0

State[S,A]

run

(s0: S) =>
val (s1, a1) = run(s0)
g(a1).run(s1)

run

g

(s’’, b)

S’

State[S,A]

run

increment flatMap gincrement

(s’’, b)

State[S,A]

run

s0

(increment flatMap { a1 =>

}).run(s0)

increment flatMap {

}

a2 => increment map {
a3 => a3

}

State1 State2

The evaluation of increment flatMap g’,
over the next 7 slides, will proceed in the
same way as the evaluation of increment
flatMap g, so feel free to fast-forward
through it.

g

g’

s0 = 10
s1 = 11
a1 = 11

increment flatMap g’

(s’, a)

s

State[S,A]

run

increment

run

g’

a

(s’’, b)

S’

State[S,A]

run

flatMap

(s’’, b)

s

State[S,A]

run

(increment flatMap { a1 =>

}).run(s0)

increment flatMap {

}

a2 => increment map {
a3 => a3

}

g

s0 = 10
s1 = 11
a1 = 11

g’

increment flatMap g’

(s’, a)

s

State[S,A]

run

increment

run

g’

a

(s’’, b)

S’

State[S,A]

run

flatMap

(s’’, b)

s

State[S,A]

run

(increment flatMap { a1 =>

}).run(s0)

increment flatMap {

}

a2 => increment map {
a3 => a3

}

g

s0 = 10
s1 = 11
a1 = 11

increment flatMap g’

increment

run

g’

a

(s’’, b)

S’

State[S,A]

run

increment

flatMap

(s’’, b)

s

State[S,A]

run

(s’, a)

s

State[S,A]

run

(increment flatMap { a1 =>

}).run(s0)

increment flatMap {

}

a2 => increment map {
a3 => a3

}

State3

g’

g
def increment: State[Int, Int] =
State { (count: Int) =>
val nextCount = count + 1
(nextCount, nextCount)

}

increment flatMap g’

(s’, a)

s

State[S,A]

run run

g’

a

(s’’, b)

S’

State[S,A]

run

flatMap

(s’’, b)

s

State[S,A]

run

increment (increment flatMap { a1 =>

}).run(s0)

increment flatMap {

}

a2 => increment map {
a3 => a3

}

State3

g’

g

s0 = 10
s1 = 11
a1 = 11

increment flatMap g’

(s’, a)

s

State[S,A]

run run

g’

a

(s’’, b)

S’

State[S,A]

run

flatMap

increment

(s’’, b)

s

State[S,A]

runrun

(increment flatMap { a1 =>

}).run(s0)

increment flatMap {

}

a2 => increment map {
a3 => a3

}

State3 State4

g’

g

def flatMap[B](g: A => State[S, B]): State[S, B] =
State { (s0: S) =>
val (s1, a) = run(s0)
g(a).run(s1)

}

(s’, a)

s

State[S,A]

run

(s’’, b)

s

State[S,A]

run run

g’

a

(s’’, b)

S’

State[S,A]

run

increment flatMap g’increment (increment flatMap { a1 =>

}).run(s0)

increment flatMap {

}

a2 => increment map {
a3 => a3

}

State3 State4

g’

g

s0 = 10
s1 = 11
a1 = 11

(s’, a)

s

State[S,A]

run

(s’’, b)

s

State[S,A]

run

(s0: S) =>
val (s1, a) = run(s0)
g(a).run(s1)

run

g’

a

(s’’, b)

S’

State[S,A]

run

increment flatMap g’increment

We have finished computing increment
flatMap g’ in the same way we had
already computed increment flatMap g.

The result is state action State4. In the
next slide we return to the execution of
the run method of State2, which will now
make use of State4.

(increment flatMap { a1 =>

}).run(s0)

increment flatMap {

}

a2 => increment map {
a3 => a3

}

State3 State4

g’

g

s0 = 10
s1 = 11
a1 = 11

@philip_schwarz

(s1, a1)

s0

State[S,A]

run

(s0: S) =>
val (s1, a1) = run(s0)
g(a1).run(s1)

run

g’

increment flatMap gincrement

(s’’, b)

State[S,A]

run

s0

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

run

(s’’, b)

S’

State[S,A]

run

State2State1

State3 State4

State4

g’

g

s0 = 10
s1 = 11
a1 = 11

We are back to the execution of the run
function of state action State2, at the point
where g has returned state action State4.

(s1, a)

s0

State[S,A]

run

(s0: S) =>
val (s1, a1) = run(s0)
g(a1).run(s1)

run

increment flatMap gincrement

(s’’, b)

State[S,A]

run

s0

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

State2State1

In the next slide, the run function of state action
State2 is going to invoke the run function of
state action State4.

g

g’

State3 State4

s0 = 10
s1 = 11
a1 = 11

(s1, a)

s0

State[S,A]

run

(s0: S) =>
val (s1, a1) = run(s0)
g(a1).run(s1)

increment flatMap gincrement

(s’’, b)

State[S,A]

run

s0

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

State2State1

g

s0 = 10
s1 = 11
a1 = 11

The run function of state action State4 is being
invoked with the latest state s1 as a parameter.

Turn to slide 83 if you want to skip to the point
where the result of the invocation is returned.

increment map {
a3 => a3

} g’

(s’, a)

s

State[S,A]

run

(s’’, b)

s1

State[S,A]

run

(s0: S) =>
val (s1, a) = run(s0)
g(a).run(s1)

run

g’

a

(s’’, b)

S’

State[S,A]

run

increment flatMap g’increment

Here we feed the run function
of state action State4 the state
produced by State1, i.e. s1.

State3 State4

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

} g’

g

s0 = 10
s1 = 11
a1 = 11

(s’, a)

s

State[S,A]

run

(s’’, b)

s1

State[S,A]

run

(s1: S) =>
val (s2, a2) = run(s1)
g(a2).run(s2)

run

a

(s’’, b)

S’

State[S,A]

run

increment flatMap g’increment

Let’s pass s1 into the body
of State4’s run function.State3 State4

g’

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

} g’

g

s0 = 10
s1 = 11
a1 = 11

@philip_schwarz

(s2, a2)

s1

State[S,A]

run

(s1: S) =>
val (s2, a2) = run(s1)
g(a2).run(s2)

run

a

(s’’, b)

S’

State[S,A]

run

increment flatMap g’increment

(s’’, b)

State[S,A]

run

s1

g’

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

} g’

g

State3 State4

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12

(count: Int) =>
val nextCount = count + 1
(nextCount, nextCount)

The first thing that the run
function of State4 does is
call the run function of
State3, passing in state s1.

This returns (s2,a2) i.e.
the next state and a result
counter, both being 12.

(s2, a2)

s1

State[S,A]

run

(s1: S) =>
val (s2, a2) = run(s1)
g(a2).run(s2)

run

a

(s’’, b)

S’

State[S,A]

run

increment flatMap g’increment

(s’’, b)

State[S,A]

run

s1

The run function of State3
returns new state s2 and
value a2.

g’

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

} g’

g

State3 State4

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12

(s2, a2)

s1

State[S,A]

run

(s1: S) =>
val (s2, a2) = run(s1)
g(a2).run(s2)

run

a

(s’’, b)

S’

State[S,A]

run

increment flatMap g’increment

(s’’, b)

State[S,A]

run

s1

s2 and a2 are referenced in
the body of the run function
of State4.

g’

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

} g’

g

State3 State4

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12

(s2, a2)

s1

State[S,A]

run

(s1: S) =>
val (s2, a2) = run(s1)
g(a2).run(s2)

run

g’

a2

(s’’, b)

S’

State[S,A]

run

increment flatMap g’increment

(s’’, b)

State[S,A]

run

s1

The next thing that the run
function of State4 does is call
function g with the a2 value
computed by State3.

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

} g’

f

g

State3 State4

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12

@philip_schwarz

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

(s2, a2)

s0

State[S,A]

run

(s1: S) =>
val (s2, a2) = run(s1)
g(a2).run(s2)

g’

increment flatMap g’increment

(s’’, b)

State[S,A]

run

s0

State4State3

f

g’

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12

(s’’, b)

S’

State[S,A]

run

The second part of the evaluation of
increment map f, over the next 8 slides, is
a bit different from the evaluation of
increment flatMap g’, so you probably
only want to fast-forward through the
next 4 slides.

increment map f

(s’, a)

s

State[S,A]

run

increment

run

f

a

(s’’, b)

s’

State[S,A]

run

map

(s’’, b)

s

State[S,A]

run

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12 f

g’

increment map f

(s’, a)

s

State[S,A]

run

increment

run

f

a

(s’’, b)

s’

State[S,A]

run

(s’’, b)

s

State[S,A]

run

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

map

g’

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12

increment map f

increment

run

f

a

(s’’, b)

S’

State[S,A]

run

increment

(s’’, b)

s

State[S,A]

run

(s’, a)

s

State[S,A]

run

State5

map

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

f

g’

def increment: State[Int, Int] =
State { (count: Int) =>
val nextCount = count + 1
(nextCount, nextCount)

}

increment map f

(s’, a)

s

State[S,A]

run run

f

a

(s’’, b)

S’

State[S,A]

run

(s’’, b)

s

State[S,A]

run

increment

map

State5

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

f

g’

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12

increment map f

(s’, a)

s

State[S,A]

run run

f

a

(s’’, b)

S’

State[S,A]

run

map

increment

(s’’, b)

s

State[S,A]

runrun

State5 State6

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

f

g’
def map[B](f: A => B): State[S, B] =
flatMap(a => State.point(f(a)))

map(f) is defined as follows

flatMap(a => State.point(f(a)))

In this case f is a3 => a3 i.e. the identity
function, so after applying f we are left with

flatMap(a => State.point(a))

If we then inline the call to point, we are left with

flatMap(a => State(run = s=>(s,a)))

so map(f) is flatMap(g ’’) where g’’ is

a => State(run = s => (s, a))

The next slide is a new version of this slide with the
above changes made.

increment map f

(s’, a)

s

State[S,A]

run run

g’’

a

(s’’, b)

S’

State[S,A]

run

increment

(s’’, b)

s

State[S,A]

runrun

State5 State6

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

f

g’

flatMap

def flatMap[B](g: A => State[S, B]): State[S, B] =
State { (s0: S) =>
val (s1, a) = run(s0)
g(a).run(s1)

}

a => State(run = s => (s, a))

Following the points made on the
previous slide, instead of invoking the
map function of State5 with f, we
invoke its flatMap function with g’’ .

We do this because (1) it is similar to
what we have been doing so far,
which means it is easier to explain
and understand (2) it reminds us that
map is not strictly necessary, i.e.
flatMap and point are sufficient
(map can be implemented in terms
of flatMap and point).

(s’, a)

s

State[S,A]

run

(s’’, b)

s

State[S,A]

run

(s0: S) =>
val (s1, a) = run(s0)
g(a).run(s1)

run

g’’

a

(s’’, b)

S’

State[S,A]

run

increment map fincrement

State5 State6

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

We have finished computing increment map f. The
result is action state State6.

In the next slide we return to the execution of the
run function of State4, which will now make use of
State6.

f

a => State(run = s => (s, a))

g’

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12

@philip_schwarz

(s2, a2)

s1

State[S,A]

run

(s1: S) =>
val (s2, a2) = run(s1)
g(a2).run(s2)

run

g’

increment flatMap g’increment

(s’’, b)

State[S,A]

run

s1

run

(s’’, b)

S’

State[S,A]

run

State4State3

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

} g’

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12 f

We are back to the execution of the run
function of state action State4, at the point
where g has returned state action State6.

(s2, a2)

s1

State[S,A]

run

(s1: S) =>
val (s2, a2) = run(s1)
g(a2).run(s2)

run

increment flatMap g’increment

(s’’, b)

State[S,A]

run

s1

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

State4State3

g

g’

f

State3 State4

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12

In the next slide, the run function of state action
State4 is going to invoke the run function of
state action State6.

(s2, a2)

s1

State[S,A]

run

(s1: S) =>
val (s2, a2) = run(s1)
g(a2).run(s2)

run

increment flatMap g’increment

(s’’, b)

State[S,A]

run

s1

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

State4State3

State3 State4State3 State4 State5

g

g’

f

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12

The run function of state action State6 is being
invoked with the latest state s2 as a parameter.

Turn to slide 80 if you want to skip to the point
where the result of the invocation is returned.

(s’, a)

s

State[S,A]

run

(s’’, b)

s2

State[S,A]

run

(s0: S) =>
val (s1, a) = run(s0)
g(a).run(s1)

run

g’’

a

(s’’, b)

S’

State[S,A]

run

increment map fincrement

State5 State6

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

f

a => State(run = s => (s, a))

g’

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12

Here we feed the run function
of state action State6 the state
produced by State3, i.e. s2.

(s’, a)

s

State[S,A]

run

(s’’, b)

s2

State[S,A]

run

(s2: S) =>
val (s3, a3) = run(s2)
g(a3).run(s3)

run

g’’

a

(s’’, b)

S’

State[S,A]

run

increment map fincrement

State5 State6

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

f

a => State(run = s => (s, a))

g’

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12

Let’s pass s2 into the body
of State4’s run function.

@philip_schwarz

(s3, a3)

s2

State[S,A]

run

(s’’, b)

s2

State[S,A]

run

(s2: S) =>
val (s3, a3) = run(s2)
g(a3).run(s3)

run

g’’

a

(s’’, b)

S’

State[S,A]

run

increment map fincrement

State5 State6

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

f

a => State(run = s => (s, a))

run

g’

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12
s3 = 13
a3 = 13

(count: Int) =>
val nextCount = count + 1
(nextCount, nextCount)

The first thing that the run
function of State6 does is
call the run function of
State5, passing in state s2.

This returns (s3,a3) i.e.
the next state and a result
counter, both being 13.

(s3, a3)

s2

State[S,A]

run

(s’’, b)

s2

State[S,A]

run

(s2: S) =>
val (s3, a3) = run(s2)
g(a3).run(s3)

run

g’’

a

(s’’, b)

S’

State[S,A]

run

increment map fincrement

State5 State6

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

f

a => State(run = s => (s, a))

run

g’

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12
s3 = 13
a3 = 13

The run function of State5
returns new state s3 and
value a3.

(s3, a3)

s2

State[S,A]

run

(s’’, b)

s2

State[S,A]

run

(s2: S) =>
val (s3, a3) = run(s2)
g(a3).run(s3)

run

g’’

a

(s’’, b)

S’

State[S,A]

run

increment map fincrement

State5 State6

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

f

a => State(run = s => (s, a))

run

g’

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12
s3 = 13
a3 = 13

s3 and a3 are referenced in
the body of the run function
of State6.

(s3, a3)

s2

State[S,A]

run

(s’’, b)

s2

State[S,A]

run

(s2: S) =>
val (s3, a3) = run(s2)
g(a3).run(s3)

run

g’’

a

(s’’, b)

S’

State[S,A]

run

increment map fincrement

State5 State6

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

f

a => State(run = s => (s, a))

run

g’

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12
s3 = 13
a3 = 13

The next thing that the run
function of State6 does is call
function g with the a3 value
computed by State5.

(s3, a3)

s2

State[S,A]

run

(s’’, b)

s2

State[S,A]

run

(s2: S) =>
val (s3, a3) = run(s2)
g(a3).run(s3)

run

g’’

a3

(s’’, b)

S’

State[S,A]

run

increment map fincrement

State5 State6

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

f

a => State(run = s => (s, a))

run

g’

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12
s3 = 13
a3 = 13

Applying g’’ to a3 is trivial
and produces a new state
action. See next slide.

@philip_schwarz

(s3, a3)

s2

State[S,A]

run

(s’’, b)

s2

State[S,A]

run

(s2: S) =>
val (s3, a3) = run(s2)
g(a3).run(s3)

run

increment map fincrement

State5 State6

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

f

run

g’

run

State[S,A]

(s’’, b)

S’

s => (s, a)

run

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12
s3 = 13
a3 = 13

State7

Applying g’’ to a3 produced new
state action State7.

In the next slide, the run function of
State6 is going to invoke the run
function of State7.

(s3, a3)

s2

State[S,A]

run

(s’’, b)

s2

State[S,A]

run

(s2: S) =>
val (s3, a3) = run(s2)
g(a3).run(s3)

run

increment map fincrement

State5 State6

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

f

run

g’

run

State[S,A]

(s’’, b)

s3

run

s => (s, a)
s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12
s3 = 13
a3 = 13

State7

The run function of State6 invokes
the run function of State7, passing
in the latest state s3 that was
produced by State 5.

(s3, a3)

s2

State[S,A]

run

(s3, a3)

s2

State[S,A]

run

(s0: S) =>
val (s3, a3) = run(s2)
g(a3).run(s3)

run

(s3, a3)

s3

State[S,A]

run

increment map fincrement

State5 State6

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

We have finished executing the run function of
action state State7. The result is (s3,a3) , i.e. (13,13).

That is also the result of executing the run function
of state action State6.

In the next slide we return to the execution of the
run method of State4, which will now make use of
result (s3,a3).

f

g’

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12
s3 = 13
a3 = 13

State7

(s2, a2)

s1

State[S,A]

run

(s1: S) =>
val (s2, a2) = run(s1)
g(a2).run(s2)

run

increment flatMap g’increment

(s’’, b)

State[S,A]

run

s1

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

State4State3

State3 State4State3 State4 State5

g

g’

f

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12
s3 = 13
a3 = 13

We have finished executing the run
function of action state State6. The
result is (s3,a3) , i.e. (13,13).

(s1, a1)

s0

State[S,A]

run

increment flatMap g’increment

(s’’, b)

State[S,A]

run

s1

(s3, a3)

s2

State[S,A]

State4State3 State6

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12
s3 = 13
a3 = 13

run

(s1: S) =>
val (s2, a2) = run(s1)
g(a2).run(s2)

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

g

g’

f

The result of the run function of action state
State6 is also the result of the run function of
action state State4: see next slide.

@philip_schwarz

(s1, a1)

s0

State[S,A]

run

increment flatMap g’increment

(s3, a3)

State[S,A]

run

s1

(s3, a3)

s2

State4State3 State6

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12
s3 = 13
a3 = 13

run

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

g

g’

f

State[S,A]

The result of the run function of action state
State4 is (s3,a3) , i.e. (13,13).

In the next slide we return to the execution
of the run method of State2, which will now
make use of result (s3,a3).

(s3, a3) = (13, 13)

(s1, a)

s0

State[S,A]

run

(s0: S) =>
val (s1, a1) = run(s0)
g(a1).run(s1)

increment flatMap gincrement

(s’’, b)

State[S,A]

run

s0

(s3, b)

s1

run

State2State1

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12
s3 = 13
a3 = 13

State7

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

g

g’

f

We have finished executing the run
function of action state State4. The
result is (s3,a3) , i.e. (13,13).

(s1, a1)

s0

State[S,A]

run

(s0: S) =>
val (s1, a1) = run(s0)
g(a1).run(s1)

increment flatMap gincrement

(s’’, b)

State[S,A]

run

s0

(s3, a3)

s1

State[S,A]

State2State1 State4

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12
s3 = 13
a3 = 13

run

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

g

g’

f

The result of the run function of action state
State4 is also the result of the run function of
action state State2: see next slide.

(s1, a1)

s0

State[S,A]

run

increment flatMap gincrement

(s3, a3)

State[S,A]

run

s0

(s3, a3)

s1

State[S,A]

run

State2State1 State4

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12
s3 = 13
a3 = 13

(increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

g

g’

f

The result of the run function of action
state State2 is (s3,a3) , i.e. (13,13).

(s3, a3) = (13, 13)

@philip_schwarz

(s1, a1) =
(11, 11)

S0 = 10

State[S,A]

run

(s3, a3) =
(13, 13)

State[S,A]

run

s0 = 10

(s3, a3) =
(13, 13)

s1 = 11

State[S,A]

run

State2State1 State4

s0 = 10
s1 = 11
a1 = 11
s2 = 12
a2 = 12
s3 = 13
a3 = 13

(increment flatMap g).run(s0)) == (s3,a3) (increment flatMap { a1 =>

}).run(s0)

increment flatMap { a2 =>

}

increment map {
a3 => a3

}

g

g’

f

This is also the result of the whole
computation that started on slide
29 with the evaluation of increment
flatMap g and continued on slide 34
with the execution, with an initial
count state of 10, of the run
function of the resulting composite
action state.

increment flatMap { a1 =>
increment flatMap { a2 =>

increment map { a3 =>
a3

}
}

}.run(10)

(s3, a3) = (13, 13)

10 (13,13)

def increment: State[Int, Int] =
State { (count: Int) =>

val nextCount = count + 1
(nextCount, nextCount)

}

val tripleIncrement: State[Int, Int] =
for {

_ <- increment
_ <- increment
result <- increment

} yield result

val initialState = 10

val (finalState, result) =
tripleIncrement.run(initialState)

assert(finalState == 13)
assert(result == 13)

Let’s not forget that in this simplest of examples, in which we use the State
monad simply to model a counter, none of the intermediate counter values
computed by the state actions are put to any use, they are just ignored.
The only thing we are interested in is the computation of the sequence of
states leading to the value produced by the final state transition.

In the next slide deck in this series we’ll look at examples
where the intermediate values do get used.

@philip_schwarz

I also want to stress again the point that when we use map and flatMap to compose state actions, no state
transitions occur, no results are computed.

A composite state action is produced, but until its run function is invoked with an initial state, nothing
happens.

It is up to us to decide if and when to invoke the run function. It is when we invoke the run function that
the state transitions occur (all of the state transitions) and results are computed (all of the results,
intermediate ones and final one), all in one go, triggered by our invocation of the run function. This is
unlike some other monads, e.g. Option.

To illustrate this further, see the example on the next slide.

scala> val maybeCompositeMessage =
| Some("Hello") flatMap { greeting =>
| println("in function passed to 1st flatMap")
| Some("Fred") flatMap { name =>
| println("in function passed to 2nd flatMap")
| Some("Smith") map { surname =>
| println("in function passed to map")
| s"$greeting $name $surname!"
| }
| }
| }

in function passed to 1st flatMap
in function passed to 2nd flatMap
in function passed to map
maybeCompositeMessage: Option[String] = Some(Hello Fred Smith!)

scala> val compositeStateAction =
| increment flatMap{ a1 =>
| println("in function passed to 1st flatMap")
| increment flatMap { a2 =>
| println("in function passed to 2nd flatMap")
| increment map { a3 =>
| println("in function passed to map")
| a1 + a2 + a3
| }
| }
| }

compositeStateAction: State[Int,Int] =
State(State$$Lambda$1399/2090142523@7d6ccad7)

scala> compositeStateAction.run(2)
in function passed to 1st flatMap
in function passed to 2nd flatMap
in function passed to map
res0: (Int, Int) = (5,12)

val maybeCompositeMessage =
Some("Hello") flatMap { greeting =>

println("in function passed to 1st flatMap")
Some("Fred") flatMap { name =>

println("in function passed to 2nd flatMap")
Some("Smith") map { surname =>

println("in function passed to map")
s"$greeting $name $surname!"

}
}

}

val compositeStateAction =
increment flatMap { a1 =>

println("in function passed to 1st flatMap")
increment flatMap { a2 =>

println("in function passed to 2nd flatMap")
increment map { a3 =>

println("in function passed to map")
a1 + a2 + a3

}
}

}

In the case of computing the composite Option, the functions passed to map and flatMap are all exercised during that
computation and the result we seek is contained in the resulting option.

In the case of computing the composite state action, none of the functions passed to map and flatMap are exercised during that
computation. The result we seek is obtained, at a later time of our choosing, from the resulting composite state action, by invoking
its run function with an initial state, and it is only at that point that the functions passed to map and flatMap are exercised.@philip_schwarz

In this last slide, let me have a go at describing in words, in an informal way that you may or may not find
useful, what the flatMap function of the State monad does.

Given a state action sa1:State[S,A] and a callback function g that represents the rest of the program and
which takes an A and returns a state action sa2:State[S,B], flatMap returns a new, composite state
action sa3:State[S,B] whose run function, when invoked with state s0, does the following:

1) first invokes the run function of sa1 with s0, producing next state s1 and result a.
2) then invokes callback function g, the rest of the program, with result a, producing new state action sa3.
3) finally invokes the run function of sa3 with intermediate state s1, producing next state s2 and result b.

case class State[S, A](run: S => (S, A)) {

def flatMap[B](g: A => State[S, B]): State[S, B] =
State { (s0: S) =>

val (s1, a) = run(s0)
g(a).run(s1)

}

def map[B](f: A => B): State[S, B] =
flatMap(a => State.point(f(a)))

}

object State {
def point[S, A](v: A): State[S, A] = State(run = s => (s, v))

}

I am not bothering with a separate
description of the map function since
it can be understood in terms of
flatMap and point.

To be continued in part II

