

We want to write function decimal, which given the digits of an integer number

$$
\left[d_{0}, d_{1}, \ldots, d_{n}\right]
$$

computes the integer value of the number

```
haskell> decimal [1,2,3,4]
1234
scala> decimal(List(1,2,3,4)) val res0: Int = 1234
\[
\sum_{k=0}^{n} d_{k} * 10^{n-k}
\]
\[
d_{0} * 10^{3}+d_{1} * 10^{2}+d_{2} * 10^{1}+d_{3} * 10^{0}=1 * 1000+2 * 100+3 * 10+4 * 1=1234
\]

Thanks to the universal property of fold, if we are able to define decimal so that its equations match those on the left hand side of the following equivalence, then we are also able to implement decimal using a right fold

\section*{The universal property of fold}
\[
\begin{array}{lll}
g[] \quad=v & \Leftrightarrow & g=\text { fold } f v
\end{array} \quad \begin{aligned}
& v::[\alpha] \rightarrow \beta \\
& g(x: x s)=\boldsymbol{f} x(g x s)
\end{aligned}
\]
i.e. given \(f\) oldr
foldr \(::(\alpha \rightarrow \beta \rightarrow \beta) \rightarrow \beta \rightarrow([\alpha] \rightarrow \beta)\)
foldr \(f v[] \quad=v\)
foldr \(f v(x: x s)=f x(\) foldr \(f v x s)\)
we can reimplement decimal like this:
decimal \(=\) foldr \(f v\)

Notice that \(f\) has two parameters: the head of the list, and the result of recursively calling \(g\) with the tail of the list
\[
g(x: x s)=f x(g x s)
\]

In order to define our decimal function however, the two parameters of \(\boldsymbol{f}\) are not sufficient. When decimal is passed \([d k, \ldots, d n], \boldsymbol{f}\) is passed digit \(d_{k}\), so \(\boldsymbol{f}\) needs \(n\) and \(k\) in order to compute \(10^{n-k}\), but \(n-k\) is the number of elements in \([d k, \ldots, d n]\) minus one, so by nesting the definition of \(f\) inside that of decimal, we can avoid explicitly adding a third parameter to \(f\) :
```

decimal :: [Int] -> Int
decimal [] = 0
decimal (d:ds) = f d (decimal ds) where
e = length ds
f :: Int -> Int -> Int
f d ds = d * (10^ e) + ds

```
```

def decimal(digits: List[Int]): Int =
val e = digits.length-1
def f(d: Int, ds: Int): Int =
d * Math.pow(10, e).toInt + ds
digits match
case Nil => 0
case d +: ds => f(d, decimal(ds))

```


The unnecessary complexity of the decimal functions on this slide is purely due to them being defined in terms of \(f\). See next slide for simpler refactored versions in which \(f\) is inlined.

We nested \(\boldsymbol{f}\) inside decimal, so that the equations of decimal match (almost) those of \(g\). They don't match perfectly, in that the \(\boldsymbol{f}\) nested inside decimal depends on decimal's list parameter, whereas the \(f\) nested inside \(g\) does not depend on \(g\) 's list parameter. Are we still able to redefine decimal using foldr? If the match had been perfect, we would be able to define decimal \(=\) foldr \(f 0\) (with \(v=0\) ), but because \(\boldsymbol{f}\) needs to know the value of \(n-k\), we can't just pass \(\boldsymbol{f}\) to \(f o l d r\), and use 0 as the initial accumulator. Instead, we need to use ( 0 , 0 ) as the accumulator (the second 0 being the initial value of \(n-k\), when \(k=n\) ), and pass to foldr a helper function \(h\) that manages \(n-k\) and that wraps \(\boldsymbol{f}\), so that the latter has access to \(n-k\).
```

h :: Int -> (Int,Int) -> (Int,Int)
h d (ds, e) = (f d ds, e + 1) where
f :: Int -> Int -> Int
f d ds = d * (10 ^ e) + ds
decimal :: [Int] -> Int
decimal ds = fst (foldr h (0,0) ds) MN

```
```

def h(d: Int, acc: (Int,Int)): (Int,Int) = acc match { case (ds, e) =>
def f(d: Int, ds: Int): Int =
d * Math.pow(10, e).toInt + ds
(f(d, ds), e + 1)
}
def decimal(ds: List[Int]): Int =
ds.foldRight((0,0))(h).head

```

\section*{Same decimal functions as on the previous slide, but refactored as follows:}
1. inlined \(f\) in all four functions
2. inlined e in the first two functions
3. renamed \(\boldsymbol{h}\) to \(\boldsymbol{f}\) in the last two functions

\section*{D \(\lambda=\)}
```

decimal :: [Int] -> Int
decimal [] = 0
decimal (d:ds) = d*(10^(length ds))+(decimal ds)

```
```

def decimal(digits: List[Int]): Int = digits match
case Nil => 0
case d +: ds => d * Math.pow(10, ds.length).toInt + decimal(ds)

```
```

f :: Int -> (Int,Int) -> (Int,Int)
f d (ds, e) = (d * (10 ^ e) + ds, e + 1)
decimal :: [Int] -> Int
decimal ds = fst (foldr f (0,0) ds)

```
```

def f(d: Int, acc: (Int,Int)): (Int,Int) = acc match
case (ds, e) => (d * Math.pow(10, e).toInt + ds, e + 1)
def decimal(ds: List[Int]): Int =
ds.foldRight((0,0))(f).head

```

The definition of decimal using a right fold is inefficient because it computes \(\sum_{k=0}^{n} d_{k} * 10^{n-k}\) by computing \(10^{n-k}\) for each \(k\).

Not every function on lists can be defined as an instance of foldr. ... Even for those that can, an alternative definition may be more efficient. To illustrate, suppose we want a function decimal that takes a list of digits and returns the corresponding decimal number; thus
\[
\operatorname{decimal}\left[x_{0}, x_{1}, \ldots, x_{\mathrm{n}}\right]=\sum_{k=0}^{n} x_{k} 10^{(n-k)}
\]

It is assumed that the most significant digit comes first in the list. One way to compute decimal efficiently is by a process of multiplying each digit by ten and adding in the following digit. For example
\[
\text { decimal }\left[x_{0}, x_{1}, x_{2}\right]=10 \times\left(10 \times\left(10 \times 0+x_{0}\right)+x_{1}\right)+x_{2}
\]

This decomposition of a sum of powers is known as Horner's rule.
Suppose we define \(\oplus\) by \(n \oplus x=10 \times n+x\). Then we can rephrase the above equation as
\[
\text { decimal }\left[x_{0}, x_{1}, x_{2}\right]=\left(\left(0 \oplus x_{0}\right) \oplus x_{1}\right) \oplus x_{2}
\]

This is almost like an instance of foldr, except that the grouping is the other way round, and the starting value appears on the left, not on the right. In fact the computation is dual: instead of processing from right to left, the computation processes from left to right.

This example motivates the introduction of a second fold operator called foldl (pronounced 'fold left'). Informally:
\[
\text { foldl }(\oplus) e\left[x_{0}, x_{1}, \ldots, x n_{-1}\right]=\left(\ldots\left(\left(e \oplus x_{0}\right) \oplus x_{1}\right) \ldots\right) \oplus x_{n_{-1}}
\]

The parentheses group from the left, which is the reason for the name. The full definition of \(f\) oldl is
\[
\begin{aligned}
& \text { foldl } \quad::(\beta \rightarrow \alpha \rightarrow \beta) \rightarrow \beta \rightarrow[\alpha] \rightarrow \beta \\
& \text { foldl } e[] \quad=e \\
& \text { foldl } e(x: x s)=\text { foldl } f(f \text { e } x) x s
\end{aligned}
\]


Richard Bird

If we look back at our initial recursive definition of decimal, we see that it splits its list parameter into a head and a tail.
```

lecimal :: [Int] -> Int
def decimal(digits: List[Int]): Int = digits match
case Nil => 0
case d +: ds => d * Math.pow(10, ds.length).toInt + decimal(ds)

```

If we get decimal to split the list into init and last, we can make it more efficient by using Horner's rule:
```

(\oplus) :: Int -> Int -> Int
n}\oplus\textrm{d}=10*\textrm{n}+\textrm{d

```
\begin{tabular}{|l|}
\hline extension ( \(\mathrm{n}: ~ I n t)\) \\
def \(\oplus(\mathrm{d}\) Int) : Int \(=10 * \mathrm{n}+\mathrm{d}\) \\
\hline
\end{tabular}
```

decimal :: [Int] -> Int
decimal [] = 0
decimal ds = (decimal (init ds)) \oplus (last ds)

```
```

def decimal(digits: List[Int]): Int = digits match
case Nil => 0
case ds :+ d => decimal(ds) \oplus d

```

We can then improve on that by going back to splitting the list into a head and a tail, and making decimal tail recursive:
```

decimal :: [Int] -> Int -> Int
decimal [] acc = acc

```
def decimal(ds: List[Int], acc: Int=0): Int = digits match
    case Nil => acc
    case \(d+: d s=\) decimal(ds, acc \(\oplus d)\)

And finally, we can improve on that by defining decimal using a left fold:
```

decimal :: [Int] -> Int
decimal = foldl (అ) 0

```
```

def decimal(ds: List[Int]): Int =
ds.foldLeft(0)(_@_)

```

\section*{Recap}

In the case of the decimal function, defining it using a left fold is simple and mathematically more efficient
\[
\text { decimal }[1,2,3,4]=10 *\left(10 *\left(10 *\left(10 * 0+d_{0}\right)+d_{1}\right)+d_{2}\right)+d_{3}=10 *(10 *(10 *(10 * 0+1)+2)+3)+4=1234
\]
```

decimal :: [Int] -> Int \\=
decimal = foldl (}\oplus\mathrm{) 0
(\oplus) :: Int -> Int -> Int
n}\oplus\textrm{d}=10*\textrm{n}+\textrm{d

```
```

def decimal(ds: List[Int]): Int =
ds.foldLeft(0)(_@_)
extension (n: Int)
def }\oplus(\textrm{d}\mathrm{ Int): Int = 10* n + d

```
whereas defining it using a right fold is more complex and mathematically less efficient
\[
\operatorname{decimal}[1,2,3,4]=d_{0} * 10^{3}+\left(d_{1} * 10^{2}+\left(d_{2} * 10^{1}+\left(d_{3} * 10^{0}+0\right)\right)\right)=1 * 1000+(2 * 100+(3 * 10+(4 * 1+0)))=1234
\]
```

decimal :: [Int] -> Int \N=
decimal ds = fst (foldr f (0,0) ds)
f :: Int -> (Int,Int) -> (Int,Int)
f d (ds, e) = (d * (10 ^ e) + ds, e + 1)

```
```

def decimal(ds: List[Int]): Int =
ds.foldRight((0,0))(f).head
def f(d: Int, acc: (Int,Int)): (Int,Int) = acc match
case (ds, e) => (d * Math.pow(10, e).toInt + ds, e + 1)

```
```

