

The universal property of fold

For finite lists, the universal property of fold can be stated as the following equivalence between two definitions for a function g that processes lists:

$$
\begin{array}{ll}
g[] & =v \\
g(x: x s) & =f x(g x s)
\end{array}
$$

In the right-to-left direction, substituting $g=$ fold $f v$ into the two equations for g gives the recursive definition for $f o l d$.
Conversely, in the left-to-right direction the two equations for g are precisely the assumptions required to show that $g=f o l d f v$ using a simple proof by induction on finite lists...

Taken as a whole, the universal property states that for finite lists the function fold $f v$ is not just a solution to its defining equations, but in fact the unique solution....

The universal property of fold can be generalised to handle partial and infinite lists...

```
A tutorial on the universality and expressiveness of fold
```

GRAHAM HUTTON

$$
\begin{aligned}
& \text { fold }::(\alpha \rightarrow \beta \rightarrow \beta) \rightarrow \beta \rightarrow([\alpha] \rightarrow \beta) \\
& \text { fold } f v[]=v \\
& \text { fold } f v(x: x s)=f x(\text { fold } f v x s)
\end{aligned}
$$

Graham Hutton Y X @haskelhutt

$$
\begin{array}{|ll|}
\hline g[] & =v \\
g(x: x s) & =f x(g x s)
\end{array} \Leftrightarrow \quad g=\text { fold } f v
$$

```
sum :: [Int] \(\rightarrow\) Int
sum [] \(\quad=0\)
\(\operatorname{sum}(x: x s)=x+\operatorname{sum} x s\)
```

```
product :: [Int] -> Int
product [] =1
product (x : xs) = x }\times\mathrm{ product }x\mathrm{ s
```

```
length :: [\alpha] -> Int
length[] = 0
length (x:xs) = 1+ length xs
```

```
(#):: [\alpha]->[\alpha]->[\alpha]
```

[]$+y s=y s$
$(x: x s)+y s=x:(x s+y s)$
concat :: $[[\alpha]] \rightarrow[\alpha]$
concat []
$\Leftrightarrow \quad$ concat $=$ fold $(\#)[]$
$\begin{array}{ll}\text { concat }[] & =[] \\ \operatorname{concat}(x s: x s s) & =x s+\text { concat } x s s\end{array}$

The Triad of map, filter and fold

The bread, butter, and jam of Functional Programming

$g[]$	$=v$
$g(x: x s)$	$=f x(g x s)$

$$
\Leftrightarrow \quad g=\text { foldr } f v
$$

$$
\begin{aligned}
& \operatorname{map}::(\alpha \rightarrow \beta) \rightarrow([\alpha] \rightarrow[\beta]) \\
& \operatorname{map} f[] \quad=[]
\end{aligned}
$$

$$
\Leftrightarrow \quad \operatorname{map} f=\operatorname{foldr}(\lambda x . \lambda x s .(f x): x s)[]
$$

$$
\text { filter }::(\alpha \rightarrow \text { Bool }) \rightarrow([\alpha] \rightarrow[a])
$$

$$
\text { filter } p[] \quad=[]
$$

$$
\text { filter } p(x: x s)=\text { if } p x
$$

then x : filter $p x s$ else filter p xs

$$
\Leftrightarrow \quad \text { filter } p=\text { foldr }(\lambda x . \lambda x s \text {. if } p x \text { then } x: x s \text { else } x s)[]
$$

Folding Unfolded
 Polyglot FP for Fun and Profit Haskell and Scala

See how recursive functions and structural induction relate to recursive datatypes

Follow along as the fold abstraction is introduced and explained
Watch as folding is used to simplify the definition of recursive functions over recursive datatypes
Part 1 - through the work of

Richard Bird
http://www.cs.ox.ac.uk/people/richard.bird/
slides by

- @philip_schwarz

Graham Hutton
@ @askellhutt
.oig slideshare https://www.slideshare.net/pischwarz

FP IARuminated

