
CHEAT-SHEET

Folding

#3

∶
			/		\
	𝒂𝟎	 ∶
							/		\	
	 𝒂𝟏	 ∶
										/		\	
	 𝒂𝟐	 ∶
														/		\
	 𝒂𝟑 	

𝒇
			/		\
	𝒂𝟎	 𝒇
							/		\	
	 𝒂𝟏	 𝒇
										/		\	
	 𝒂𝟐	 𝒇
														/		\
	 𝒂𝟑				𝒆

@philip_schwarzslides by https://fpilluminated.com/

http://fpilluminated.com/

The	universal	property	of	𝒇𝒐𝒍𝒅	

...

For finite lists, the universal property of	𝒇𝒐𝒍𝒅 can be stated as the following equivalence between two definitions for a function 𝒈 that
processes lists:

𝒈 	 = 	𝒗	 	 ⟺	 	 𝒈	 = 	𝒇𝒐𝒍𝒅	𝒇	𝒗	
𝒈 𝑥 ∶ 𝑥𝑠 	= 𝒇	𝑥 𝒈	𝑥𝑠

In the right-to-left direction, substituting 𝒈	 = 	𝒇𝒐𝒍𝒅	𝒇	𝒗 into the two equations for 𝒈		gives the recursive definition for 𝒇𝒐𝒍𝒅.

Conversely, in the left-to-right direction the two equations for g are precisely the assumptions required to show that	𝒈	 = 	𝒇𝒐𝒍𝒅	𝒇	𝒗 using a
simple proof by induction on finite lists…

Taken as a whole, the universal property states that for finite lists the function 𝒇𝒐𝒍𝒅	𝒇	𝒗	is not just a solution to its defining equations, but
in fact the unique solution….

The universal property of 𝒇𝒐𝒍𝒅 can be generalised to handle partial and infinite lists…

Graham Hutton
@haskelhutt

𝑓𝑜𝑙𝑑 :: 𝛼	 → 𝛽 → 𝛽 → 𝛽 → 𝛼 → 𝛽 	
𝑓𝑜𝑙𝑑	𝑓	𝑣 	 = 𝑣
𝑓𝑜𝑙𝑑	𝑓	𝑣 𝑥 ∶ 𝑥𝑠 	= 𝑓	𝑥 𝑓𝑜𝑙𝑑	𝑓	𝑣	𝑥𝑠

𝑔 	 = 	𝑣	
𝑔 𝑥 ∶ 𝑥𝑠 	= 𝑓	𝑥 𝑔	𝑥𝑠

𝑠𝑢𝑚 ∷ 𝐼𝑛𝑡 → 𝐼𝑛𝑡
𝑠𝑢𝑚 	 = 0
𝑠𝑢𝑚 𝑥 ∶ 𝑥𝑠 	= 𝑥 + 𝑠𝑢𝑚	𝑥𝑠	

𝑠𝑢𝑚 = 𝑓𝑜𝑙𝑑 + 	0⟺

𝑔	 = 	𝑓𝑜𝑙𝑑	𝑓	𝑣⟺

𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ∷ 𝐼𝑛𝑡 → 𝐼𝑛𝑡
𝑝𝑟𝑜𝑑𝑢𝑐𝑡 	 = 1
𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑥 ∶ 𝑥𝑠 	= 𝑥	×	𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑥𝑠	

𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝑓𝑜𝑙𝑑	(×)	1⟺

𝑙𝑒𝑛𝑔𝑡ℎ ∷ [α] → 𝐼𝑛𝑡
𝑙𝑒𝑛𝑔𝑡ℎ	[] 	 = 	0
𝑙𝑒𝑛𝑔𝑡ℎ 𝑥 ∶ 𝑥𝑠 	= 	1 + 𝑙𝑒𝑛𝑔𝑡ℎ	𝑥𝑠

𝑙𝑒𝑛𝑔𝑡ℎ = 𝑓𝑜𝑙𝑑	(𝜆𝑥. 𝜆𝑛. 1 + 𝑛)	0⟺

(⧺) ∷ 	 [α] → [α] → [α]
	 ⧺	𝑦𝑠	 = 	𝑦𝑠
𝑥 ∶ 𝑥𝑠 	⧺	𝑦𝑠	 = 	𝑥 ∶ (𝑥𝑠	⧺	𝑦𝑠)

(⧺	𝑦𝑠) 	= 	𝑓𝑜𝑙𝑑 ∶ 	𝑦𝑠⟺

concat	 ∷ [α] → [α]
concat	 	 = 	
concat	 𝑥𝑠 ∶ 𝑥𝑠𝑠 	= 	𝑥𝑠	⧺	𝑐𝑜𝑛𝑐𝑎𝑡	𝑥𝑠𝑠

⟺ concat	 = 𝑓𝑜𝑙𝑑	(⧺)	[]

The Triad of
𝑚𝑎𝑝, 𝑓𝑖𝑙𝑡𝑒𝑟 and 𝑓𝑜𝑙𝑑

𝑚𝑎𝑝

λ

The 𝑏𝑟𝑒𝑎𝑑, 𝑏𝑢𝑡𝑡𝑒𝑟, and 𝑗𝑎𝑚 of
Functional Programming

=

𝑔 	 = 	𝑣	
𝑔 𝑥 ∶ 𝑥𝑠 	= 𝑓	𝑥 𝑔	𝑥𝑠

𝑚𝑎𝑝	 ∷ 𝛼	 → 𝛽 → 𝛼 → 𝛽
𝑚𝑎𝑝	𝑓 	 = 	
𝑚𝑎𝑝	𝑓 𝑥 ∶ 𝑥𝑠 	= 	𝑓	𝑥 ∶ 𝑚𝑎𝑝	𝑓	𝑥𝑠

𝑚𝑎𝑝	𝑓 = 𝑓𝑜𝑙𝑑𝑟 𝜆𝑥. 𝜆𝑥𝑠. 𝑓	𝑥 ∶ 𝑥𝑠 	[]⟺

𝑓𝑖𝑙𝑡𝑒𝑟 ∷ (𝛼 → 𝐵𝑜𝑜𝑙) → 𝛼 → 𝑎
𝑓𝑖𝑙𝑡𝑒𝑟	p 	 = 	 	
𝑓𝑖𝑙𝑡𝑒𝑟	p 𝑥 ∶ 𝑥𝑠 	 = 	 𝐢𝐟	𝑝	𝑥	
 𝐭𝐡𝐞𝐧	𝑥 ∶ 𝑓𝑖𝑙𝑡𝑒𝑟	p	 𝑥𝑠	
 𝐞𝐥𝐬𝐞	𝑓𝑖𝑙𝑡𝑒𝑟	p	 𝑥𝑠

𝑓𝑖𝑙𝑡𝑒𝑟	p = 𝑓𝑜𝑙𝑑𝑟	(𝜆𝑥. 𝜆𝑥𝑠. 𝐢𝐟	𝑝	𝑥	𝐭𝐡𝐞𝐧	𝑥 ∶ 𝑥𝑠	𝐞𝐥𝐬𝐞	𝑥𝑠)	 []⟺

𝑔	 = 	𝑓𝑜𝑙𝑑𝑟	𝑓	𝑣⟺

𝑚𝑎𝑝

λ

𝑓𝑜𝑙𝑑

=

https://fpilluminated.com/

inspired
by

http://fpilluminated.com/

