Folding Unfolded Polyglot FP for Fun and Profit Haskell and Scala

Develop the correct intuitions of what fold left and fold right actually do, and how different these two functions are Learn other important concepts about folding, thus reinforcing and expanding on the material seen in parts 1 and 2

Includes a brief introduction to (or refresher of) asymptotic analysis and Θ-notation
Part 3 - through the work of

Tony Morris
© @dibblego

YouTuhe https://presentations.tmorris.net/

Richard Bird
http://www.cs.ox.ac.uk/people/richard.bird/

In this part of the series we are going to go through what I think is a very useful talk by Tony Morris.
While it is a beginner level talk, IMHO Tony does a great job of explaining a number of important concepts about folding, including the correct intuitions to have about what fold left and fold right actually do, and how different these two functions are.

And as usual, we'll be looking for opportunities to expand on some topics and making a number of other interesting observations, allowing us to reinforce and expand on what we have already learnt in Parts 1 and 2.

Tony Morris

- @dibblego

YouTuhe

https://presentations.tmorris.net/

Tony Morris@dibblego

Hello, my name is Tony Morris.
I am going to talk to you today about list folds.
It's a beginner level talk. I am hoping to transfer some knowledge to you to think abut list folds so that you can really understand how they work. ...

OK so what are the goals for today?

I have heard of these folds... left and right

- What do they do?
- How do l know when to use them?
- Which one do I use?
- Can I internalize how they work?

Who has heard of left and right fold on lists? And for those of you who have your hand up, is that the end of your knowledge? That's it, you just heard of them? You have heard of them but that's it. A few people.

My goal today is to transfer you some knowledge so that you can understand internally what they do.
I get a lot of questions about them in my email. Can you tell me when to use the right one? What does this one do? What does that one do? How do I think about them?

I want to answer these questions.

Tony Morris@dibblego

First we have to talk about what exactly is a list.
What is a list?
a list is either

- a Nil construction, with no associated data
- A Cons construction, associated with one arbitrary value, and another list

And never, ever anything else

A list is either Nil, an empty list, it carries no information, it is just an empty list.
Or, it has one element, and then another list.
Think about lists this way. I can make any list this way.
Using either Nil or Cons. Nil being an empty list. Cons having one element and then another list.
It is never anything else. It is always Nil or Cons.

Tony Morris - @dibblego

So this is the Haskell signature for them:

```
A list that holds elements of type a is constructed by either:
Nil :: List a
Cons :: a List a List a
```

So we say that Nil is just a List of elements a, it's the empty list.
And Cons takes an a, the first element, and then a List a, the rest of the list, and it makes a new list.
The word Cons by the way goes back to the 1950s. We tend not to make up new words when they are that well established.

Here is the Haskell source code:

$$
\begin{aligned}
& \text { A list declaration using Haskell } \\
& \text { data List a =Nil | Cons a (List a) }
\end{aligned}
$$

What this says is we are declaring a data type called List, carrying elements of type a. It is made with Nil, that has nothing, or with Cons, that has an a and another List of a.

Tony Morris - @dibblego

How can we make lists using this?

For example, here is a list that has one element, the number 12 . I have called Cons, I passed in one element, 12 , and then the rest of the list, Nill, there is no rest of the list.

Haskell
Cons 12 Nil
printed
$[12]$

What about the list abc? I call Cons, I pass in the letter ' a ', then I have to pass in another list, so then I call Cons, and the letter 'b', need to pass in another list, Cons, ' c ', Nil.

```
Haskell
Cons 'a' (Cons 'b' (Cons 'c' Nil))
printed
['a', 'b', 'c']
```

I can make any list using Cons and Nil. That's the definition of a list, or a Cons list as they are sometimes known.

Tony Morris - @dibblego

Sometimes you'll see Nil spelt square brackets. It's the same thing.

Naming conventions

- sometimes you will see Nil denoted []
- and Cons denoted : which is used in infix position
- like this $1:(2:(3:[]))$
- but this is the same data structure

Sometimes you'll see Cons as just a colon, or sometimes a double colon, depending on the language.
So here is the list 1-2-3: one, Cons, and then a whole new list, 2, Cons, and then a whole new list, 3, Cons and then Nil.
This is the definition of a list. This is how we make them.
So when we talk about fold, we talk about these kinds of lists.
Footnote: there are languages for which this is not true. They talk about other kinds of lists. But if we consider C\# for example, it has an aggregate function which is a kind of fold, but it works on other kinds of lists, so it is not really a fold.

So I am just going to talk about it in terms of Cons lists.

Tony Morris

@dibblegoNearly two thirds of you have put your hand up, you have heard about left fold and right fold. Heard of them, that's it. Walking down the street one day, someone said "left and right fold", and then you just kept walking.

Left, Right, FileNotFound

- you may have heard of right folds and left folds
- Haskell: foldr, foldl
- Scala: foldRight, foldLeft
- $\quad \mathrm{C} \#(\mathrm{BCL})$: no right fold, Aggregate (kind of)

In Haskell they are called foldr and foldl. In Scala they are called foldRight and foldLeft. And C\# has this function called Aggregate, which is essentially a foldLeft (kind of).

Developing intuition for folds

- When do I know to use a fold?
- When do I know which fold to use?
- What do the fold functions actually do?

Just to be clear on our goals, when do I know to use a fold? What problem do I have so that I am going to use a fold? Which one am I going to use? And finally, what do they do? What is a good way to think about what they do?

Tony Morris
Y @dibblego

You might have seen these diagrams, they are on the internet. They are pretty good diagrams. They are quite accurate. They don't really help I think, in my experience.

People come up to me and say: can you tell me exactly what a right fold is? And I show them this diagram. And they go: I still don't know what a right fold does. It needs some explanation.

Tony Morris

- @dibblego

We seek an intuition that

- Does not require a prior deep understanding of list folds
- Goes far enough to leave us satisfied
- Is not wrong

We are looking for an intuition that doesn't require you to already have expert knowledge.
That is satisfactory, that you feel like you have understood something.
And that's not wrong.
Have you ever read a monad tutorial on the internet? You'll find that they meet the first two goals.
Consider burritos.
You don't need a deep understanding of burritos.
Burritos are satisfactory.
But monads are not burritos. Sorry, they are not.
I am hoping to achieve all three of these.

Tony Morris
Y @dibblego

First things first
In practice, the foldl and foldr functions are very different So let us think about and discuss each separately.

The way to think about these two different functions is very different.
The intuition for each of them is quite different.
So I am going to be trying to talk about each differently.

Tony Morris@dibblego
?
How does foldl take three values to that return value?

How does it take these three values to return a value? It does this loop:

```
All left folds are loops
    \f z list ->
    var r = z
    foreach(a in list)
        r=f(r,a)
    return r
```

Everyone's heard of a loop, right? They taught that back at loop school. I remember. First year undergrad: loop school.

So if we look at this loop. Who has written a loop like this before? Everyone has.


```
All left folds are loops
\f z list ->
    var r = z
    foreach(a in list)
        r=f(r, a)
    return r
```

```
The foldl function accepts three values
1. f :: b -> a -> b
2. z :: b
3. list :: List a
to get back a value of type b
foldl :: (b -> a -> b) -> b -> List a -> b
```

And importantly, these (in red) are the three components of the loop that we get to change.
We get to pass in a function, what to do on each iteration of the loop. That's the b to a to $b(b->a->b)$, the f there.
The z there is the b, so that's what value to start the loop at.
And finally list, the thing that we are looping on, or foldlefting on.
So let's look at some real code.
Refactor some loops
let's look at a real code example

In the next slide we are going to see a plus operator enclosed in parentheses. We have already seen $(+),(-),(\times)$, and (\uparrow) in part
1 , where we defined them to be curried binary functions and where their definitions made use of infix operators,,$+- \times$, and \uparrow.

$$
\begin{array}{lr}
(+) & :: \text { Nat } \rightarrow \text { Nat } \rightarrow \text { Nat } \\
m+\text { Zero } & = \\
m+\text { Succ } n= & \text { Succ }(m+n) \\
& :: \quad \text { Nat } \rightarrow \text { Nat } \rightarrow \text { Nat } \\
(-) & =m \\
m-\text { Zero } & =m-n \\
\text { Succ } m-\text { Succ } n & =m-n
\end{array}
$$

$$
\begin{array}{ll}
(\times) & :: \quad \text { Nat } \rightarrow \text { Nat } \rightarrow \text { Nat } \\
m \times \text { Zero } & =\text { Zero } \\
m \times \text { Succ } n & =(m \times n)+m
\end{array}
$$

$$
(\uparrow) \quad:: \quad \text { Nat } \rightarrow \text { Nat } \rightarrow \text { Nat }
$$

$$
m \uparrow \text { Zero }=\text { Succ Zero }
$$

$$
m \uparrow \text { Succ } n=(m \uparrow n) \times m
$$

Enclosing an operator in parentheses converts it to a curried prefix function that can be applied to its arguments like any other function. For example,
(+) $34=3+4$
(\leq) $34=3 \leq 4$
In particular,

$$
\text { plusc }=(+)
$$

where

$$
\begin{aligned}
& \text { plusc } \quad:: \text { Integer } \rightarrow \text { Integer } \rightarrow \text { Integer } \\
& \text { plusc } x y=x+y
\end{aligned}
$$

Tony Morris

- @dibblego

All left folds are loops
 Let's sum the integers of a list

Let's add up the numbers in a list. Here is a list of numbers. Add them up.

What am I going to replace z with?

```
All left folds are loops
\f z list ->
    var r = z
    foreach(a in list)
        r=f(r,a)
    return r
```

Well? Zero, yes. What about f? Plus? Yes, excellent. That will add up the numbers in the list.

```
sum the integers of a list
sum list = foldl (\r a -> (+) r a) 0 list
sum = foldl (+) 0
```

Left fold, given the accumulator through the loop, r, and the element a, add them, start the loop at zero, do it on the list.
This will add up the numbers in a list. And if you eta-reduce that expression there, you end up with just plus. Just do plus on each iteration of the loop.

On the previous slide, Tony just said the following: if you eta-reduce that expression there, you end up with plus.
η-reduction is one of the two forms of η-conversion.
η-conversion is adding or dropping of abstraction over a function. It converts between $\lambda x . f x$ and f (whenever x does not appear free in f).
η-expansion converts f to $\lambda x . f x$, whereas η-reduction converts $\lambda x . f x$ to f.
Tony performed two consecutive reductions, one from $\lambda x \cdot \lambda y . f x y$ to $\lambda x . f x$, and another from $\lambda x . f x$ to f. In his case, x is called r, y is called a, f is (+), and he reduced $\lambda r . \lambda a .(+) r$ a to (+).

To help cement the notion of eta-reduction that we saw on the previous slide, and connect it to Scala, on this slide we do the following:

- compare the types of ($\backslash r$ a -> (+) r a) and (+) and see that they are the same
- show that (\r a -> (+) r a) and (+) behave the same

To also do that in Scala, we define the equivalent of Haskell's (+) and foldl ourselves (see bottom of slide).

```
$ :type (\r a -> (+) r a)
(\r a -> (+) r a) :: Num a => a -> a -> a
$ :type (+)
(+) :: Num a => a -> a -> a
$ (\r a -> (+) r a) 3 4
=> 7
$ (+) 3 4
=> 7
$ foldl (\r a -> (+) r a) 0 [2,3,4]
=> 9
$ foldl (+) 0 [2,3,4]
=> 9
```

```
scala> :type (r:Int) => (a:Int) => `(+)`(r)(a)
```

scala> :type (r:Int) => (a:Int) => `(+)`(r)(a)
Int => (Int => Int)
Int => (Int => Int)
scala> :type `(+) scala> :type `(+)
Int => (Int => Int)
Int => (Int => Int)
scala> ((r:Int) => (a:Int) => `(+)`(r)(a))(3)(4)
scala> ((r:Int) => (a:Int) => `(+)`(r)(a))(3)(4)
res1: Int = 7
res1: Int = 7
scala> `(+)`(3)(4)
scala> `(+)`(3)(4)
res2: Int = 7
res2: Int = 7
scala> foldl((r:Int) => (a:Int) => `(+)`(r)(a))(0)(List(2,3,4))
scala> foldl((r:Int) => (a:Int) => `(+)`(r)(a))(0)(List(2,3,4))
res3: Int = 9
res3: Int = 9
scala> foldl(`(+)`)(0)(List(2,3,4))
scala> foldl(`(+)`)(0)(List(2,3,4))
res4: Int = 9

```
res4: Int = 9
```

```
scala> def foldl[A,B](f: B => A => B)(e: B)(s: List[A]): B = s match {
                        case x::xs => foldl(f)(f(e)(x))(xs)
    }
def foldl: [A, B](f: B => (A => B))(e: B)(s: List[A]): B
scala> val `(+)` = (x:Int) => (y:Int) => x + y
(+): Int => (Int => Int) = $$Lambda$5001/470155141@690b8d7f
```


Tony Morris

- @ dibblego
multiply the integers of a list

```
\f z list ->
    var r = z
    foreach(a in list)
            r=f(r,a)
    return r
```


?

What about multiplication?
What do I replace the function f with? What are we going to do on each iteration of the loop?
We are going to do multiplication.
What are we going to start the loop at?
One. Some people say zero. What's going to happen if I put zero there? Zero. Yes.
One is the identity for multiplication. One is the thing that does nothing to multiplication. One times x gives me x . It did nothing to x.

Tony Morris

Y @dibblego

```
multiply the integers of a list
\f z list ->
    var r = z
    foreach(a in list)
            r=f(r,a)
    return r
```


Replace the values in the loop

There it is. It's going to multiply the numbers in the list.

```
multiply the integers of a list
product list = foldl (\r a -> (*) r a) 1 list
product = foldl (*) 1
```

And there's the code. Real Haskell code. How to multiply the numbers in a list.
Left fold: spin on each part of the loop with multiplication, start at 1. Fold left does a loop.
spin on
each part

all left folds are loops
start

I mean if you open up the source code of fold left you won't see a loop there. You'll see al sorts of crazy recursion and you'll see a seq or something like that to make it faster.

But all you need to think about is it does a loop, that loop.

Tony Morris
© @dibblego
all left folds are loops
Let's reverse a list

How do you reverse a list? This was a trick question yesterday because I had taught everyone about fold right, and then I said ok, now reverse a list, and they tried to do it using fold right, and it ended up very slow.

Let's do it with a left fold.

```
reverse a list
\f z list ->
    var r = z
    foreach(a in list)
        r=f(r,a)
    return r
```

What am I going to replace z with, if I am going to reverse that list?
Nil, the empty list. And on each iteration of that loop I am going to take that element and put it on the front of that list.
That will reverse the list. Left fold through the list, pull the elements off the front and put them on the front of a new list, Nil, it will come back reversed, in linear time.

There it is. I have a function. There is the list being accumulated r, there is the element of the list a, Cons it, do that in each iteration of the loop, start at Nil. This will reverse a list.

```
reverse a list
reverse list = foldl (\r a -> Cons a r) Nil list
reverse = foldl (flip Cons) Nil
```

That's the real code.

I once went for a job interview, about twenty years ago, and the interviewer said to me, reverse a list. And I said, OK, what language. It was actually a C\# job, and the guy said, any language you prefer. I said OK, fold left with Cons Nil. And I didn't get the job. So I don't recommend you answer that in that way. But it is correct. That will reverse a list.

```
reverse = foldl (flip Cons) Nil
```


We have already seen it in part 1

$$
\begin{aligned}
\begin{aligned}
& \text { reverse }^{\prime}: {[\alpha] \rightarrow[\alpha] } \\
& \text { reverse }
\end{aligned} & = \\
& \text { foldl cons }[] \\
& \text { where cons } x s x=x: x s
\end{aligned}
$$

Note the order of the arguments to cons; we have cons = flip (:), where the standard function flip is defined by flipf $x y=f y x$. The function reverse ${ }^{\prime}$, reverses a finite list.

all left folds are loops
 Let's compute the length of a list

What about the length of a list? What are we going to do? We are going to start the loop at zero, and for each of the accumulators, the accumulator r, we are going to ignore the element a, and just add one to r. That will compute the length of a list.

```
length of a list
\list ->
    var r = 0
    foreach(a in list)
        r = plus1(r, a)
    return r
plus1 = \r a -> r + 1
```

So, the function plus1, given r, ignore a, do $r+1$, do that on each spin of that loop, it will compute the length of the list.

```
length of a list
length list = foldl (\r a -> r + 1) 0 list
length = foldl (const . (+ 1)) 0
```

There's the code. I essentially read this word here (foldl) as do a loop. That's how I like to think about it. On each iteration of the loop, do that, start there. That will compute the length of a list. This is just a point-free way of writing that same function. const means ignore the element, and then do plus1. On each iteration.

Tony Morris

Y @ dibblego
refactoring, intuition

- a left fold is what you would write if I insisted you remove all duplication from your loops
- all left folds are exactly this loop
- any question we might ask about a left fold, can be asked about this loop.

If I said to you, take all of the loops that you have written and refactor out all of their differences, you'll end up with fold left. They are exactly this loop. That is to say, I don't need a little footnote here to say, "just kidding, it is not quite precise". It is exactly that loop. Which means that any question we might ask about a left fold we can also ask about that loop, and we'll get the same answer.

```
some observations
```

- a left fold will never work on an infinite list
- a correct intuition for left folds is easy to build on existing programming knowledge (loop).

For example, will that loop ever work on an infinite list? Nope. An infinite list, by the way, is one that doesn't have Nil. It is just Cons all the way to infinity. If I put that into a left fold or into that loop, it just will never give me an answer. It will sit there and heat up the world a bit more.

It is easy to transfer this information because you probably have already heard of loops. I have used your existing knowledge to transfer this information. Left fold is a loop.

$$
\begin{array}{|l|}
\hline \text { Folding to the left does a loop } \\
\hline
\end{array}
$$

sum the integers of a list

```
sum list = foldl (\r a -> (+) r a) 0 list
sum = foldl (+) 0
```

```
multiply the integers of a list
```

product list $=$ foldl ($\backslash \mathrm{r}$ a -> (*) r a) 1 list
product $=$ foldl (*) 1

```
reverse a list
reverse list = foldl (\r a -> Cons a r) Nil list
reverse = foldl (flip Cons) Nil
```

```
length of a list
length list = foldl (\r a -> r + 1) 0 list
length = foldl (const . (+ 1)) 0
```

```
foldl :: (b -> a -> b) -> b -> List a -> b
foldl = \f z list ->
    var r = z
    foreach(a in list)
        r = f(r, a)
        return r
        all left folds are loops
```

sum :: [Int] \rightarrow Int
sum $=$ foldl (+) 0
prod $::[$ Int $] \rightarrow$ Int
prod $=$ foldl $(\times) 1$

```
reverse :: \([\alpha] \rightarrow[\alpha]\)
reverse \(=\) foldl cons []
    where cons \(x s x=x: x s\)
```

$$
\begin{aligned}
\text { length }: & :[\alpha] \rightarrow \text { Int } \\
\text { length }= & \text { foldl plusone } 0, \\
& \text { where plusone } n x=n+1
\end{aligned}
$$

foldl can be seen as a loop because it is a tail-recursive function.

$$
\begin{array}{ll}
\text { foldl } & ::(\beta \rightarrow \alpha \rightarrow \beta) \rightarrow \beta \rightarrow[\alpha] \rightarrow \beta \\
\text { foldl } f e[] & =e \\
\text { foldl } f e(x: x s) & =\text { foldl } f(f e x) x s
\end{array}
$$

Folding to the left does a loop

Folding to the left does a loop. The end.
For right folds there is no existing thing that I can use to transfer the information, you just simply need to commit to the definition of a list, which is, Nil or Cons. So let's commit to that right now. That's what a list is.

The fold right function.
The foldr function accepts three values

1. $\mathrm{f}:: \mathrm{a}->\mathrm{b}->\mathrm{b}$
2. $\mathrm{z}:: \mathrm{b}$
3. list $:$: List a
to get back a value of type b
foldr : : ($\mathrm{a}->\mathrm{b}->\mathrm{b})->\mathrm{b}->$ List $\mathrm{a}->\mathrm{b}$
B FoldRight<A, B$\rangle($ Func<A, $\mathrm{B}, \mathrm{B}\rangle, \mathrm{B}$, List<A>)
```
The foldl function accepts three values
1. f :: b -> a -> b
2. z :: b
3. list :: List a
to get back a value of type b
foldl :: (b -> a -> b) -> b -> List a -> b
B FoldLeft<A,B>(Func<B, A, B>, B, List<A>)
```

Well, it takes a function, a to b to b (a is the element type in the list), and then it takes $\mathrm{a} b$, and it takes a list, and it returns a b. There it is, written in Haskell. There is it written in, Java, I think, I don't know. One of those languages.

What does it do? How does it take that function, that b, and that list and give meab?
?
How does foldr take three values to that return value?
constructor replacement
The foldr function performs constructor replacement.
The expression foldr f z list replaces in list:

- Every occurrence of Cons (:) with f.
- Any occurrence of Nil [] with z^{1}.
${ }^{1}$ The Nil constructor may be absent - i.e. the list is an infinite list of Cons.

It performs constructor replacement. So, constructors, remember, are Nil and Cons, they are the two things that construct lists. The expression fold right with the function f, z on a list, will go through that list, in no particular order, and replace every Cons with f, and Nil with z. If it sees a Nil, which it might not, because it might be infinite.
constructor replacement?

- Suppose list $=$ Cons A (Cons B (Cons C (Cons D Nil)))
- The expression foldr f z list
- produces f A (f B (f C (f D \quad)))

So if we take this list A, B, C, D, and I fold right with f and z on that list, l^{\prime} ll get back whatever value is replacing Cons with f and Nil with z, whatever that is.

So if A, B, C and D are all numbers and we want to add them up, I can replace f with plus, and z with zero, and it will add them all up.

Here on the right is Tony's explanation that foldr does constructor replacement, and below are the explanations we came across in Part 1.
constructor replacement

The foldr function performs constructor replacement.
The expression foldr $f \quad z$ list replaces in list:

- Every occurrence of Cons (:) with f.
- Any occurrence of Nil [] with z^{1}.
${ }^{1}$ The Nil constructor may be absent - i.e. the list is an infinite list of Cons.

Consider the following definition of a function h :

$$
\begin{array}{ll}
h[] & =e \\
h(x: x s) & =x \bigoplus h x s
\end{array}
$$

The function h works by taking a list, replacing [] by e and (:) by \oplus, and evaluating the result. For example, h converts the list

$$
x_{1}:\left(x_{2}:\left(x_{3}:\left(x_{4}:[]\right)\right)\right)
$$

to the value

$$
x_{1} \oplus\left(x_{2} \oplus\left(x_{3} \oplus\left(x_{4} \oplus e\right)\right)\right)
$$

Since (:) associates to the right, there is no need to put in parentheses in the first expression. However, we do need to put in parentheses in the second expression because we do not assume that \oplus associates to the right.

The pattern of definition given by h is captured in a function foldr (pronounced 'fold right') defined as follows:

$$
\begin{array}{ll}
\text { foldr } & ::(\alpha \rightarrow \beta \rightarrow \beta) \rightarrow \beta \rightarrow[\alpha] \rightarrow \beta \\
\text { foldr } f e[] & =e \\
\text { foldr } f e(x: x s) & =f x(\text { foldr } f e x s)
\end{array}
$$

A tutorial on the universality and expressiveness of fold

GRAHAM HUTTON

2 The fold operator

The fold operator has its origins in recursion theory (Kleene, 1952), while the use of fold as a central concept in a programming language dates back to the reduction operator of APL (Iverson, 1962), and later to the insertion operator of FP (Backus, 1978). In Haskell, the fold operator for lists can be defined as follows:

$$
\begin{array}{ll}
\text { fold } & ::(\alpha \rightarrow \beta \rightarrow \beta) \rightarrow \beta \rightarrow([\alpha] \rightarrow \beta) \\
\text { fold } f v[] & =v \\
\text { fold } f v(x: x s) & =f x(\text { fold } f v x s)
\end{array}
$$

That is, given a function f of type $\alpha \rightarrow \beta \rightarrow \beta$ and a value v of type β, the function fold $f v$ processes a list of type $[\alpha]$ to give a value of type β by replacing the nil constructor [] at the end of the list by the value v, and each cons constructor (:) within the list by the function f. In this manner, the fold operator encapsulates a simple pattern of recursion for processing lists, in which the two constructors for lists are simply replaced by other values and functions.

Let's multiply them. So here is a list of numbers, 4, 5, 6, 7. I am going to replace Cons with multiplication and Nil with one.

```
multiply the integers of a list
- let Cons = (*)
- let Nil = 1
```

Tony Morris
Y @dibblego
And now, that will multiply the numbers in a list.

```
multiply the integers of a list
Supposing
list = (*) 4 ((*) 5 ((*) 6 ((*) 7 1)))
product list = foldr (*) 1 list
product = foldr (*) 1
```

Fold right did constructor replacement.

Tony Morris
y @dibblego
right folds replace constructors
Let's and (\&\&) the booleans of a list.
The important thing about fold right to recognize, is that it doesn't do it in any particular order. There is an associativity order, but there is not an execution order. So that is to say, some people might say to me, fold right starts at the right side of the list. This can't be true, because I am going to be passing in an infinite list, which doesn't have a right side, and I am going to get an answer. If it started at the right, it went a really long way, and it is still going. So that is what I should see if that statement is true, but I don't see that. It associates to the right, it didn't start executing from the right. It's a subtle difference.

What if I have a list of booleans and I want to and them all up? What am I going to replace Nil with? Not 99. True. Yes.

```
and (&&) the booleans of a list
Supposing
list = Cons True (Cons True (Cons False (Cons True Nil)))
```

So if I have the above list, and I replace Nil with True and Cons with (\&\&), like this
and (\&\&) the booleans of a list

- let Cons $=(\& \&)$
- let Nil $=$ True

It will and (\&\&) them all up

Tony Morris
Y @ dibblego

```
and (&&) the booleans of a list
Supposing
list = (&&) True ((&&) True ((&&) False ((&&) True True)))
conjunct list = foldr (&&) True list
conjunct = foldr (&&) True
```

So there is the code. Right fold replacing Cons with (\&\&) and Nil with True. It doesn't do it in any order. I could have an infinite list of booleans. Suppose I had an infinite list of booleans and it started at False. Cons False something. And I said foldr (\&\&) True. I should get back False. And I do. So clearly it didn't start from the right. It never went there. It just saw the False and stopped.

How about appending two lists?
right folds replace constructors
Let's append two lists.
Here is a list. Here is a second list. How do I append them?

```
append two lists
Supposing
list1 = Cons A (Cons B (Cons C (Cons D Nil)))
list2 = Cons E (Cons F (Cons G (Cons H Nil)))
```

Do you agree with me that I am going to go through this first list and replace Cons with Cons and Nil with the second list? Who agrees with me on that? That's how you append two lists. Just an intuition for appending two lists. I take the first list, replace Cons with Cons and Nil with the other list, they are now appended.

Tony Morris

- @dibblego

So now that you know that you should not be afraid when you see the code. I am going to go through this first list and replace Cons with Cons, that is leave it alone, and I am going to pick up this entire list2 and smash it straight over the Nil. And that will be appended.
append two lists

- let Cons = Cons
- let Nil = list2

So here is the code.

```
append two lists
Supposing
list1 = Cons A (Cons B (Cons C (Cons D Nil)))
list2 = ConsE (Cons F (Cons G (Cons H Nil)))
append list1 list2 = foldr Cons list2 list1
append = flip (foldr Cons)
```

Go in list1, replace Cons with Cons and Nil with list2. This will append list1 and list2.
Sometimes I show people this code and they get scared. Wow, hang on, what is going on here? I am used to loops and things. That's how you append lists. Or go to the pointer at the end and update it to the other list, something crazy like that.

But if you get an intuition for fold right, which is doing constructor replacement, it is pretty straightforward, right? Cons with Cons and Nil with list2. Of course it is going to append the two lists (The second definition is just a point-free form).

You might choose to say that at your next job interview. Hey man, append two lists, ok, flip (foldr Cons). Tell me how it goes.

We have already come across the function in part 1, where Richard Bird called it concatenation, and defined it recursively

$$
\begin{array}{lll}
\hline(\#) & :: & {[\alpha] \rightarrow[\alpha] \rightarrow[\alpha]} \\
{[]+y s} & = & y s \\
(x: x s)+y s & = & x:(x s+y s)
\end{array}
$$

```
def concatenate[A]: List[A] => List[A] => List[A] =
    xs => ys => xs match {
```

Concatenation takes two lists, both of
the same type, and produces a third
list, again of the same type.

```
assert( concatenate(List(1,2,3))(List(4,5)) == List(1,2,3,4,5))
```


Then in TUEF we saw the function defined in terms of f old r

$$
\begin{array}{lll}
(\#) & : & {[\alpha] \rightarrow[\alpha] \rightarrow[\alpha]} \\
(+y s) & = & \text { foldr }(:) y s
\end{array}
$$

```
def concatenate[A]: List[A] => List[A] => List[A] = {
    def cons: A => List[A] => List[A] =
        x => xs => x :: xs
    xs => ys => foldr(cons)(ys)(xs)
}
```

def concatenate[A]: List[A] => List[A] => List[A] = {
def concatenate[A]: List[A] => List[A] => List[A] = {
def cons: A => List[A] => List[A] =
def cons: A => List[A] => List[A] =
x => xs => x :: xs
x => xs => x :: xs
xs => ys => foldr(cons)(ys)(xs)
xs => ys => foldr(cons)(ys)(xs)
}
}

So let's first modify the Scala version of foldr to use Nil and Cons

```
def foldr[A,B](f: A => B => B)(v: B)(s: List[A]): B = s match {
    case Nil => v
    case Cons(x,xs) => f(x)(foldr(f)(v)(xs))
}
```


We can now write the Scala equivalent of Tony's first definition of append
append list1 list2 = foldr Cons list2 list1

And if we write a Scala version of flip, we can then also translate into Scala Tony's second definition of append.

sealed trait List[+A]

case class Cons[+A](head: A, tail: List[A]) extends List[A] case object Nil extends List[Nothing]

```
def append[A]: List[A] => List[A] => List[A] =
    xs => ys => foldr[A, List[A]]((Cons[A] _).curried)(ys)(xs)
NOTE:(Cons[A] _) has type (A, List[A]) => List[A], whereas 
```

def flip $A, B, C]:(A \Rightarrow B \Rightarrow C)=>(B \Rightarrow A \Rightarrow C)=$
$f=>b=>a f(a)(b)$
def append[A]: List[A] => List[A] => List[A] =
flip(foldr((Cons[A] _).curried))

I don't know about you, but when I see append implemented so simply and elegantly in terms of fold right, I can't help wanting to see how append looks like when defined using fold left. The quickest way I can think of, for coming up with such a definition is to apply the third duality theorem of fold.

Here again is Tony's definition of the append function.

Third duality theorem. For all finite lists $x s$,

$$
\begin{aligned}
\text { foldr } f \text { e } x s= & \text { foldl }(\operatorname{flip} f) e(\text { reverse } x s) \\
& \text { where flip } f x y=f y x
\end{aligned}
$$

Let's use the theorem the other way round. Let's take the above definition of append in terms of fold right, and do the following:

- flip the first parameter of fold right
- reverse the third parameter of fold right
- replace fold right with fold left

```
append list1 list2 = foldl scon list2 (reverse list1)
    where scon xs x = Cons x xs
```


Tony Morris

Y @ dibblego
right folds replace constructors
Let's map a function on a list

What about mapping a function on a list? So who's heard of the map function? Or who's never heard of it? Everyone has. We have a list, and for each of the elements, I want to run a function on that element, to make a new list. Like I might have a list of numbers and I want to add ten to all of the numbers, I want to map +10 on that list.

So here is my list

```
map a function (f) on a list
Supposing
list = Cons A (Cons B (Cons C (Cons D Nil)))
?
```

What do I want to replace Cons with? Given the function f , do you agree that I want to say, Cons, f of A, Cons, f of B , Cons, f of C , and D and then Nil? That's what map does. I want to replace Cons with f and then Cons. And Nil with Nil.
map a function (f) on a list

- let Cons $=\backslash \mathrm{x}->\operatorname{Cons}(\mathrm{fx})$
- let Nil = Nil

So, given x I want to call f , then Cons. And Nil with Nil. This will map the function f on a list.

Tony Morris@dibblego
map a function (f) on a list Supposing

```
consf x = Cons (f x)
```

list $=$ consf $A($ consf B (consf C (consf D Nil)))
$\operatorname{map} \mathrm{f}$ list $=$ foldr ($\backslash \mathrm{x}->\operatorname{Cons}(\mathrm{f} \mathrm{x})$) Nil list
$\operatorname{map} \mathrm{f}=$ foldr (Cons . f) Nil

So there is the code. It's not that scary now, is it? That's how you map a function on a list. We replace Cons with ($\backslash \mathrm{x}->$ Cons (f x)), and Nil with Nil. We have mapped a function on a list.

Once I had to write mapping a function on a list in Java. This was 15 years ago. I didn't use fold right. This is just like, footnote: caution. If you use fold right in Java, what's going to happen? Stack overflow. Yes, because fold right is recursive. For every element in the list, it's building up a stack frame. So you can imagine my disappointment when I called fold right on the JVM, with a list of 10,000 numbers, or whatever it was, and it just said: Stack overflow - have a nice day. Because the JVM I used to use, this is a long time ago, was the IBM JVM.

It did tail-call optimisation, but it didn't optimise this one because it wasn't in tail position. And it didn't work on infinite lists either. I had to make it a heap list. So I am just letting you know, that all of this sounds great, but if you run out the door right now and say, 'I am going to do it in Java,' caution. The same is true for Python, C\#, I have tried it: Stack overflow.

This little operator here, the dot, is function composition. It takes two functions and glues them together to make a new function. So l'll give you a bit of an intuition for function composition. I read it from right to left. Call f and then call Cons. So wherever we are in the list, somewhere in a Cons cell, which means it has an element right next to it, call f on that element, and then do Cons. And replace Nil with Nil.

I wonder what would happen if you said that in a job interview. I should try that. Someone will say map a function on a list and they are waiting for me to say for loop, and I go, no no, fold right.

The reason why Tony experienced that stack overflow when calling foldRight with a large list is that by definition, foldRight is recursive, but not tail-recursive (unlike foldleft), whereas as we saw in Part 2, in Scala, in more recent years, the foldRight function of List has been redefined to take advantage of the third duality theorem of fold, i.e. it is now defined in terms of foldLeft, in that it first reverses the list that it is passed, and then does that same loop that foldLeft would do, except that there is no need to do any function flipping: the loop can just apply the given function as it stands.

Third duality theorem. For all finite lists $x s$,

$$
\begin{aligned}
\text { foldr } f \text { e } x s= & \text { foldl }(\text { flip } f) e(\text { reverse } x s) \\
& \text { where flip } f x y=f \text { y } x
\end{aligned}
$$

So no more stack overflows.

```
C
github.com/scala/scala/blob/v2.13.3/src/library/scala/collection/immutable/List.scala
348
    final override def foldRight[B](z: B)(op: (A, B) => B): B = \{
    var acc = z
    var these: List[A] = reverse
    while (!these.isEmpty) \{
        acc \(=\) op(these.head, acc)
        these \(=\) these.tail
    \}
    acc
\}
357
```


Tony Morris

- @dibblego
right folds replace constructors

Let's flatten a list of lists
What about flattening a list of lists? So we have a list, and each element is itself a list, and we want to flatten it down. What am I going to replace Cons with? Any ideas? append, the function we just wrote. Go through each Cons and replace it with the function that appends two lists, and Nil with Nil. That will flatten the list of lists.

```
flatten a list of lists
- let Cons = append
- let Nil = Nil
flatten list = foldr append Nil list
flatten = foldr append Nil
```

There is the code. fold right append Nil.
fold right does constructor replacement.

flatten : : [[a]]->[a]
flatten $=$ foldr append Nil

concat	$::$	$[[\alpha]] \rightarrow[\alpha]$
concat	$=$	foldr $(\#)[]$

For comparison, here is the other definition of concat that we saw in Part 1, the one that does not use foldr.

concat	$::$	$[[\alpha]] \rightarrow[\alpha]$
$\operatorname{concat}[]$	$=$	[]
$\operatorname{concat}(x s: x s s)$	$=$	$x s+$ concat $x s s$

Richard Bird says in his book that the above definition of concat is exactly what we would get from the definition concat $=$ foldr $(\#)[]$ by eliminating the foldr.

And in Part 1 we saw Graham Hutton explain how the universal property of foldr can be used to go from a function definition that doesn't use foldr to a definition that does (and also to go the other way round).

```
\(g[] \quad=v \quad \Leftrightarrow \quad g=\) foldr \(f v\)
\(g(x: x s)=f x(g x s)\)
```

universal property of foldr
sum [] $=0$
$\operatorname{sum}(x: x s)=x+\operatorname{sum} x s$

```
map :: (\alpha -> \beta)->([\alpha]->[\beta])
map [] = []
map}f(x:xs)=fx:map fx
```

sum $=$ fold $(+) 0$
$\operatorname{map} f=$ fold $(\lambda x y s \rightarrow f x: y s)[]$

For what it is worth, on this slide I just want to show that it looks like in simple cases, like in the case of the append function, it seems possible, and easy enough, to eliminate foldr using some informal code transformations.
@ @hilip_schwarz

flatten : : [[a]]->[a]
flatten $=$ foldr append Nil

```
concat :: [[\alpha]] ->[\alpha]
```

concat :: [[\alpha]] ->[\alpha]
concat = foldr (\#)[]

```
concat = foldr (#)[]
```

Now back to Tony's definition of flatten, or as it was called in Part 1, concat.

As Richard Bird points out in his book, since \# (i.e. append) is associative with unit [], thanks to the first duality theorem of fold, concat can also be defined using foldl.

First duality theorem. Suppose (\oplus) is associative with unit e. Then

$$
\text { foldr }(\oplus) \text { e xs }=\text { foldl }(\oplus) e x s
$$

For all finite lists $x s$.

```
concat :: [[\alpha]] ->[\alpha]
concat = foldl(#)[]
```


Richard Bird also observes that eliminating foldl from the definition of concat leads to the following program.

```
\begin{tabular}{lll|} 
concat & \(::\) & {\([[\alpha]] \rightarrow[\alpha]\)} \\
concat & \(=\) & foldl \((\#)[]\)
\end{tabular}
```

| concat $^{\prime}:$$: \quad[\alpha] \rightarrow[\alpha]$ |
| :--- | :--- |
| concat $x s s \quad=\operatorname{accum}[] x s s$ |
| accum $w s[]=w s$ |
| accum $w s(x s: x s s)=\operatorname{accum}(w s+x s) x s s$ |

Similarly, if we eliminate foldl from the definition of reverse'

$$
\begin{aligned}
\text { reverse }^{\prime}: & {[\alpha] \rightarrow[\alpha] } \\
\text { reverse }^{\prime}: & \text { foldl cons }[] \\
& \text { where cons } x s x=x: x s
\end{aligned}
$$

We get this program
reverse' $:: \quad[\alpha] \rightarrow[\alpha]$
reverse' x s $=$ accum [] $x s$
accum ws [] = ws
$\operatorname{accum} w s(x: x s)=\operatorname{accum}(x: w s) x s$

So eliminating foldl leads to a tail-recursive function definition that uses an accumulator.

As Sergei Winitzki explained in Part 2, introducing an accumulator in order to achieve tail recursion is known as the accumulator trick.

The Science of Functional Programming

```
@tailrec def lengthT(s: Seq[Int], res: Int): Int =
    if (s.isEmpty) res
    else lengthT(s.tail, 1 + res)
```

```
lengthT(Seq(1,2,3), 0)
    = lengthT(Seq(2,3), 1 + 0) // = lengthT(Seq(2,3), 1)
    = lengthT(Seq(3), 1 + 1) // = lengthT(Seq(3), 2)
    = lengthT(Seq(), 1 + 2) // = lengthT(Seq(), 3)
    = 3
```

How did we rewrite the code of lengthS to obtain the tail-recursive code of lengthT?
An important difference between lengthS and lengthT is the additional argument, res, called the accumulator argument. This argument is equal to an intermediate result of the computation.

The next intermediate result ($1+$ res) is computed and passed on to the next recursive call via the accumulator argument. In the base case of the recursion, the function now returns the accumulated result, res, rather than 0 , because at that time the computation is finished.

Rewriting code by adding an accumulator argument to achieve tail recursion is called the accumulator technique or the "accumulator trick".

In both part 1 and in this part, we have come across the notion that sometimes it is more efficient to implement a function using a right fold, and at other times, it is more efficient to implement it using a left fold.

An effective way of comparing the performance of different definitions of a function is to carry out asymptotic analysis and then express the performance of each definition using the associated notation, i.e. O-notation, Ω-notation and Θ notation.

The next four slides consist of a quick introduction to (refresher of) asymptotic analysis, and consists of extracts from Richard Bird's book.

7.2 Asymptotic Analysis

In general, one is less interested in estimating the cost of evaluating a particular expression than in comparing the performance of one definition of a function with another. For example, consider the following two programs for reversing a list:

```
reverse [] \(=\) []
reverse \((x: x s)=\) reverse \(x s+[x]\)
reverse' \(=\) foldl prefix[] where prefix xs \(x=x: x s\)
```

It was claimed in section 4.5 that the second program is more efficient than the former, taking at most a number of steps proportional to n on a list of length n, while the first program takes n^{2} steps. The aim of this section is to show

Richard Bird

For example, the time complexity of reverse' is $O(n)$. However, saying that reverse takes $O\left(n^{2}\right)$ steps on a list of

for all sufficiently large n. Then we can assert that the time of reverse is $\Theta\left(n^{2}\right)$ and the time of reverse ${ }^{\prime}$ is $\Theta(n)$.

7.2.2 Timing analysis

Given a function f we will write $T(f)(n)$ to denote an asymptotic estimate of the number of reduction steps required to evaluate f on an argument of 'size' n in the worst case. Moreover, for reasons explained in a moment, we will assume eager, not lazy, evaluation as a reduction strategy. In particular, we can write

$$
\begin{aligned}
& T(\text { reverse })(n)=\Theta\left(n^{2}\right) \\
& T\left(\text { reverse }^{\prime}\right)(n)=\Theta(n)
\end{aligned}
$$

The definition of \boldsymbol{T} requires some amplification. Firstly, $T(f)$ does not refer to the time complexity of a function f but to the complexity of a given definition of f. Time complexity is a property of an expression, not of the value of the expression.

Secondly, we do not formalize the notion of size, since different measures are appropriate in different situations. For example, the cost of evaluating $x s+y s$ is best measured in terms of m and n, where $m=\operatorname{length}(x s)$ and $n=$ length (ys). In fact, we have

$$
T(\#)(m, n)=\Theta(m)
$$

The proof is left as an exercise. Next, consider concat xss. Here the measure of xss is more difficult. In the simple case that $x s s$ is a list of length m, consisting of lists of length n, we have

$$
T(\text { concat })(m, n)=\Theta(m n)
$$

We will prove this result below. The estimate for T (concat) therefore refers only to lists of lists with a common length; though limited, such restrictions make timing analyses more tractable.

The third remark is to emphasise that $T(f)(n)$ is an estimate of worst-case running time only. This will be sufficient for our purposes, although best-case and average-case analyses are also important in practice.

The fourth and crucial remark is that $T(f)(n)$ is determined under an eager evaluation model of reduction. The reason is simply that estimating the number of reduction steps under lazy evaluation is difficult, and is still the subject of ongoing research.

Timing analysis under eager reduction is simpler because it is compositional. Since lazy evaluation never requires more reduction steps than eager evaluation, any upper bound for $T(f)(n)$ will also be an upper bound under lazy evaluation. Furthermore, in many cases of interest, a lower bound for $T(f)(n)$ will also be a lower bound under lazy evaluation.

Richard Bird

$$
f(n)=\Theta(g(n))
$$

$$
C_{1} g(n) \leq f(n) \leq C_{2} g(n)
$$

for all sufficiently large n

$$
f(n)=O(g(n))
$$

$$
f(n) \leq C g(n)
$$

for all $n \geq n_{0}$

$f(n)=\Omega(g(n))$
$f(n) \geq C g(n)$

Images Source: Introduction to Algorithms (3rd edition)
by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein | Page 45 | Figure 3.1

Following that introduction to (refresher of) asymptotic analysis, this slide is a quick reminder, using Θ-notation, that whether it is more efficient to implement a function using foldr, or using foldl, depends on the function.

```
reverse :: [\alpha]->[\alpha]
reverse = foldr snoc[]
    where snoc x xs = append xs [x]
```

```
reverse' :: [\alpha] }\quad[\alpha
reverse' = foldl scon []
    where scon xs x=x:xs
```

append	$::$	$[\alpha] \rightarrow[\alpha] \rightarrow[\alpha]$
appendxs ys	$=$	foldr $(:)$ ys xs

```
append}\mp@subsup{}{}{\prime}\quad:: [\alpha]->[\alpha]->[\alpha
append'xs ys = foldl scon ys (reverse'xs)
    where scon xs x = x : xs
```

 \(T\left(\right.\) append \(\left.^{\prime}\right)(m, n)=\Theta(m)\)
 | concat | $::$ | $[[\alpha]] \rightarrow[\alpha]$ |
| :--- | :--- | :--- |
| concat | $=$ | foldr append [] |

$T($ concat $)(m, n)=\Theta(m n)$
I have renamed cons to scon, because I regard (:) as cons, and because the order of its arguments is the opposite of that of (:), and I find that the name scon conveys the fact that there is this inversion happening.

To be consistent with Tony Morris, we are defining append functions rather than an infix append operator H.

I have added $x s$ to the definition of append. append ${ }^{\prime}$ is $\Theta(m)$ because in this case foldl is $\Theta(m)$, and reverse ${ }^{\prime}$ is $\Theta(m)$.
$T\left(\right.$ concat $\left.^{\prime}\right)(m, n)=\Theta\left(m^{2} n\right)$

