
Develop the correct intuitions of what fold left and fold right actually do, and how different these two functions are

Learn other important concepts about folding, thus reinforcing and expanding on the material seen in parts 1 and 2

Includes a brief introduction to (or refresher of) asymptotic analysis and 𝛩-notation

Part 3 - through the work of 

Folding Unfolded
Polyglot FP for Fun and Profit 

Haskell and Scala

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

Richard Bird
http://www.cs.ox.ac.uk/people/richard.bird/

Tony Morris
@dibblego

https://presentations.tmorris.net/

https://www.slideshare.net/pjschwarz/natural-transformations
http://www.cs.ox.ac.uk/people/richard.bird/


In this part of the series we are going to go through what I think is a very useful talk by Tony Morris. 

While it is a beginner level talk, IMHO Tony does a great job of explaining a number of important concepts about folding, including the 
correct intuitions to have about what fold left and fold right actually do, and how different these two functions are.

And as usual, we’ll be looking for opportunities to expand on some topics and making a number of other interesting observations, allowing 
us to reinforce and expand on what we have already learnt in Parts 1 and 2. 
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Hello, my name is Tony Morris. 

I am going to talk to you today about list folds. 

It’s a beginner level talk. I am hoping to transfer some knowledge to you to think abut list folds so that you can really 
understand how they work. …

OK so what are the goals for today?

Who has heard of left and right fold on lists? And for those of you who have your hand up, is that the end of your 
knowledge? That’s it, you just heard of them? You have heard of them but that’s it. A few people.

My goal today is to transfer you some knowledge so that you can understand internally what they do.

I get a lot of questions about them in my email. Can you tell me when to use the right one? What does this one do? What 
does that one do?  How do I think about them?

I want to answer these questions.

I have heard of these folds… left and right
• What do they do?
• How do I know when to use them?
• Which one do I use?
• Can I internalize how they work?Tony Morris
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First we have to talk about what exactly is a list.

What is a list? 

A list is either 𝑵𝒊𝒍, an empty list, it carries no information, it is just an empty list.

Or, it has one element, and then another list.

Think about lists this way. I can make any list this way.

Using either 𝑵𝒊𝒍 or 𝑪𝒐𝒏𝒔. 𝑵𝒊𝒍 being an empty list. 𝑪𝒐𝒏𝒔 having one element and then another list.

It is never anything else. It is always 𝑵𝒊𝒍 or 𝑪𝒐𝒏𝒔.

a list is either

• a 𝑵𝒊𝒍 construction, with no associated data
• A 𝑪𝒐𝒏𝒔 construction, associated with one arbitrary value, and another list

And never, ever anything else
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So this is the Haskell signature for them:

So we say that 𝑵𝒊𝒍 is just a 𝑳𝒊𝒔𝒕 of elements 𝑎, it’s the empty list.

And 𝑪𝒐𝒏𝒔 takes an 𝑎, the first element, and then a 𝑳𝒊𝒔𝒕	𝑎, the rest of the list, and it makes a new list.

The word 𝑪𝒐𝒏𝒔 by the way goes back to the 1950s. We tend not to make up new words when they are that well 
established. 

Here is the Haskell source code:

What this says is we are declaring a data type called 𝑳𝒊𝒔𝒕, carrying elements of type 𝑎. It is made with 𝑵𝒊𝒍, that has nothing, 
or with 𝑪𝒐𝒏𝒔, that has an 𝑎 and another 𝑳𝒊𝒔𝒕 of	𝑎. 

A list that holds elements of type a is constructed by either:

𝑵𝒊𝒍	 ∷ 	𝑳𝒊𝒔𝒕	𝑎	
𝑪𝒐𝒏𝒔 ∷ 𝑎 → 𝑳𝒊𝒔𝒕	𝑎 → 𝑳𝒊𝒔𝒕	𝑎

A list declaration using Haskell

𝐝𝐚𝐭𝐚	𝑳𝒊𝒔𝒕	𝑎	 = 𝑵𝒊𝒍	|	𝑪𝒐𝒏𝒔	𝑎 (𝑳𝒊𝒔𝒕 𝑎)
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How can we make lists using this?

For example, here is a list that has one element, the number 12. I have called 𝑪𝒐𝒏𝒔, I passed in one element, 12, and then 
the rest of the list, 𝑵𝒊𝒍, there is no rest of the list. 

What about the list abc? I call 𝑪𝒐𝒏𝒔, I pass in the letter ‘a’, then I have to pass in another list, so then I call 𝑪𝒐𝒏𝒔, and the 
letter ‘b’, need to pass in another list, 𝑪𝒐𝒏𝒔, ‘c’, 𝑵𝒊𝒍. 

I can make any list using 𝑪𝒐𝒏𝒔	and 𝑵𝒊𝒍. That’s the definition of a list, or a 𝑪𝒐𝒏𝒔 list as they are sometimes known.

Haskell

𝑪𝒐𝒏𝒔	12 𝑵𝒊𝒍

printed

[12]

Haskell

𝑪𝒐𝒏𝒔	‘a’ (𝑪𝒐𝒏𝒔 ‘b’ (𝑪𝒐𝒏𝒔 ‘c’ 𝑵𝒊𝒍))

printed

[‘a’,	’b’,	’c’]
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Sometimes you’ll see 𝑵𝒊𝒍 spelt square brackets. It’s the same thing.

Sometimes you’ll see 𝑪𝒐𝒏𝒔 as just a colon, or sometimes a double colon, depending on the language.

So here is the list 1-2-3: one, 𝑪𝒐𝒏𝒔, and then a whole new list,  2, 𝑪𝒐𝒏𝒔, and then a whole new list, 3, 𝑪𝒐𝒏𝒔 and then 𝑵𝒊𝒍.

This is the definition of a list. This is how we make them.

So when we talk about fold, we talk about these kinds of lists.

Footnote: there are languages for which this is not true. They talk about other kinds of lists. But if we consider C# for 
example, it has an aggregate function which is a kind of fold, but it works on other kinds of lists, so it is not really a fold.

So I am just going to talk about it in terms of 𝑪𝒐𝒏𝒔	lists.

Naming conventions

• sometimes you will see 𝑵𝒊𝒍 denoted []
• and 𝑪𝒐𝒏𝒔 denoted : which is used in infix position
• like this 1 :(2 :(3 :[]))
• but this is the same data structure
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@dibblego



Nearly two thirds of you have put your hand up, you have heard about left fold and right fold. Heard of them, that’s it. 
Walking down the street one day, someone said “left and right fold”, and then you just kept walking.

In Haskell they are called foldr and foldl. In Scala they are called foldRight, and foldLeft. And C# has this function 
called Aggregate, which is essentially a foldLeft (kind of).

Just to be clear on our goals, when do I know to use a fold? What problem do I have so that I am going to use a fold? Which 
one am I going to use? And finally, what do they do? What is a good way to think about what they do?

Left, Right, FileNotFound

• you may have heard of right folds and left folds
• Haskell: foldr, foldl
• Scala: foldRight, foldLeft
• C# (BCL): no right fold, Aggregate (kind of)

Developing intuition for folds
• When do I know to use a fold?
• When do I know which fold to use?
• What do the fold functions actually do?
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You might have seen these diagrams, they are on the internet. They are pretty good diagrams. They 
are quite accurate. They don’t really help I think, in my experience.

People come up to me and say: can you tell me exactly what a right fold is? And I show them this 
diagram. And they go: I still don’t know what a right fold does. It needs some explanation.

There is much effort toward answering these questions

Figure: right fold diagram
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This is a left fold diagram: it didn’t help.

And sometimes you probably heard of this

The right fold does folding from the right and left fold from the left. Not only it is not helpful, it is not even true.
I have also heard this: we are going to use the right fold when we need to work with an infinite list. This is not correct, OK?

Sometimes they are just not right.

There is much effort toward answering these questions

Figure: left fold diagram

and terse explanations
• the right fold does folding from the right and left fold, folding from the left
• choose the right fold when you need to work with an infinite list

Unfortunately
      some of these explanations are incomplete or incorrect
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We are looking for an intuition that doesn’t require you to already have expert knowledge.

That is satisfactory, that you feel like you have understood something.

And that’s not wrong.

Have you ever read a monad tutorial on the internet? You’ll find that they meet the first two goals. 

Consider burritos. 

You don’t need a deep understanding of burritos.

Burritos are satisfactory.

But monads are not burritos. Sorry, they are not.

I am hoping to achieve all three of these.

We seek an intuition that
• Does not require a prior deep understanding of list folds
• Goes far enough to leave us satisfied
• Is not wrong

Tony Morris
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The way to think about these two different functions is very different.

The intuition for each of them is quite different.

So I am going to be trying to talk about each differently.  

First things first
     In practice, the foldl and foldr functions are very different
     So let us think about and discuss each separately.

Tony Morris
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Let’s talk about what foldleft does.

It takes a function type f,  b to the element type a, to b.

I takes another element b.

And then it takes a list that we are doing a fold on.

I also wrote the C# signature there, if you prefer to read that. I do not.

The foldl function accepts three values
1. f :: b -> a -> b
2. z :: b
3. list :: List a
to get back a value of type b

foldl :: (b -> a -> b) -> b -> List a -> b
B FoldLeft<A,B>(Func<B, A, B>, B, List<A>)

𝑓𝑜𝑙𝑑𝑙 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → 𝛽	

The 𝑓𝑜𝑙𝑑𝑙 signature we saw in part 1.

Tony Morris
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How does it take these three values to return a value? It does this loop:

Everyone’s heard of a loop, right? They taught that back at loop school. I remember. First 
year undergrad: loop school.

So if we look at this loop. Who has written a loop like this before? Everyone has. 

? 
     How does foldl take three values to that return value?

All left folds are loops 

\f z list ->
  var r = z 
  foreach(a in list)
    r = f(r, a)
  return r  

Tony Morris
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And importantly, these (in red) are the three components of the loop that we get to change.

We get to pass in a function, what to do on each iteration of the loop. That’s the b to a to b (b -> a -> b), the f there. 

The z there is the b, so that’s what value to start the loop at. 

And finally list, the thing that we are looping on, or foldlefting on.

So let’s look at some real code.

All left folds are loops 

\f z list ->
  var r = z 
  foreach(a in list)
    r = f(r, a)
  return r  

The foldl function accepts three values
1. f :: b -> a -> b
2. z :: b
3. list :: List a
to get back a value of type b

foldl :: (b -> a -> b) -> b -> List a -> b

Refactor some loops 

let’s look at a real code example

Tony Morris
@dibblego



In the next slide we are going to see a plus operator enclosed in parentheses. We have already seen + , − , (×), and (↑)	in part 
1, where we defined them to be curried binary functions and where their definitions made use of infix operators +, −, ×, and ↑. 

+ 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑚 + 𝒁𝒆𝒓𝒐	 = 	 𝑚
	 𝑚 + 𝑺𝒖𝒄𝒄	𝑛	 = 	𝑺𝒖𝒄𝒄 𝑚 + 𝑛

	 − 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕
	 𝑚 − 𝒁𝒆𝒓𝒐	 = 	 𝑚
	 𝑺𝒖𝒄𝒄	𝑚 − 𝑺𝒖𝒄𝒄	𝑛	 = 	𝑚 − 𝑛

	 (×) 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑚	×	𝒁𝒆𝒓𝒐	 = 	 𝒁𝒆𝒓𝒐
	 𝑚	×	𝑺𝒖𝒄𝒄	𝑛	 = 	 𝑚	×	𝑛 + 𝑚

	 (↑) 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑚 ↑ 𝒁𝒆𝒓𝒐	 = 	 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐
	 𝑚 ↑ 𝑺𝒖𝒄𝒄	𝑛	 = 	 𝑚 ↑ 𝑛 	×	𝑚

Back then I thought the explanation below would have been 
superfluous, but in our current context, I think it is useful.

Enclosing an operator in parentheses converts it to a curried prefix function that can be applied 
to its arguments like any other function. For example,

	 + 	3	4 = 3 + 4
≤ 	3	4 = 3 ≤ 4

In particular,  

    𝑝𝑙𝑢𝑠𝑐 = +

where 

	 𝑝𝑙𝑢𝑠𝑐	 ∷ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟	 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟	 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟
	 𝑝𝑙𝑢𝑠𝑐	𝑥	𝑦 = 𝑥 + 𝑦



Let’s add up the numbers in a list. Here is a list of numbers. Add them up.

What am I going to replace z with?

Well? Zero, yes. What about f? Plus? Yes, excellent. That will add up the numbers in the list.

Left fold, given the accumulator through the loop, r, and the element a, add them, start the loop at zero, do it on the list. 

This will add up the numbers in a list. And if you eta-reduce that expression there, you end up with just plus. Just do plus 
on each iteration of the loop.

All left folds are loops

Let’s sum the integers of a list 

All left folds are loops 

\f z list ->
  var r = z 
  foreach(a in list)
    r = f(r, a)
  return r  

sum the integers of a list

sum list = foldl (\r a -> (+) r a) 0 list
sum = foldl (+) 0 

Tony Morris
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On the previous slide, Tony just said the following: if you eta-reduce that expression there, you end up with plus.

η-reduction is one of the two forms of η-conversion.  

η-conversion is adding or dropping of abstraction over a function. It converts between λx.fx and f (whenever x does not 
appear free in f).

η-expansion converts f to λx.fx, whereas η-reduction converts λx.fx to f.  

Tony performed two consecutive reductions, one from λx.λy.f x y to  λx.f x , and another from λx.f x to f. 

In his case, x is called r, y is called a, f is (+), and he reduced  λr.λa.(+) r a to (+). 

sum list = foldl (\r a -> (+) r a) 0 list

sum = foldl (+) 0 

...you end up with plus “

“if you eta-reduce that expression there,… 

η-reduction x 2



$ :type (\r a -> (+) r a) 
(\r a -> (+) r a) :: Num a => a -> a -> a

$ :type (+) 
(+) :: Num a => a -> a -> a 

$ (\r a -> (+) r a) 3 4 
=> 7 

$ (+) 3 4
=> 7 

$ foldl (\r a -> (+) r a) 0 [2,3,4] 
=> 9 

$ foldl (+) 0 [2,3,4] 
=> 9 

scala> :type (r:Int) => (a:Int) => `(+)`(r)(a)
Int => (Int => Int)

scala> :type `(+)`
Int => (Int => Int)

scala> ((r:Int) => (a:Int) => `(+)`(r)(a))(3)(4)
res1: Int = 7

scala> `(+)`(3)(4)
res2: Int = 7

scala> foldl((r:Int) => (a:Int) => `(+)`(r)(a))(0)(List(2,3,4))
res3: Int = 9

scala> foldl(`(+)`)(0)(List(2,3,4))
res4: Int = 9

To help cement the notion of eta-reduction that we saw on the previous slide, and connect it to Scala, on this slide we do 
the following:
• compare the types of (\r a -> (+) r a) and (+)  and see that they are the same
• show that (\r a -> (+) r a) and (+) behave the same
To also do that in Scala, we define the equivalent of Haskell’s (+) and foldl ourselves (see bottom of slide).

scala>  def foldl[A,B](f: B => A => B)(e: B)(s: List[A]): B = s match {
  |   case Nil  => e
  |   case x::xs => foldl(f)(f(e)(x))(xs)
  |  }

def foldl: [A, B](f: B => (A => B))(e: B)(s: List[A]): B

scala>  val `(+)` = (x:Int) => (y:Int) => x + y
(+): Int => (Int => Int) = $$Lambda$5001/470155141@690b8d7f

@philip_schwarz



What about multiplication?

What do I replace the function f with? What are we going to do on each iteration of the loop? 

We are going to do multiplication. 

What are we going to start the loop at? 

One. Some people say zero. What’s going to happen if I put zero there? Zero. Yes.

One is the identity for multiplication. One is the thing that does nothing to multiplication. One times x gives me x. It did 
nothing to x.

multiply the integers of a list

\f z list ->
  var r = z 
  foreach(a in list)
    r = f(r, a)
  return r 

? 

Tony Morris
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There it is. It’s going to multiply the numbers in the list.

And there’s the code. Real Haskell code. How to multiply the numbers in a list.

Left fold: spin on each part of the loop with multiplication, start at 1. Fold left does a loop.

I mean if you open up the source code of fold left you won’t see a loop there. You’ll see al sorts of crazy recursion and you’ll 
see a seq or something like that to make it faster.

But all you need to think about is it does a loop, that loop.

multiply the integers of a list

\f z list ->
  var r = z 
  foreach(a in list)
    r = f(r, a)
  return r 

Replace the values in the loop 

multiply the integers of a list

product list = foldl (\r a -> (*) r a) 1 list
product = foldl (*) 1 

all left folds are loops

prod = foldl (*) 1 

with 
multiplication

start 
at 1

spin on 
each part 

of the loop
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How do you reverse a list? This was a trick question yesterday because I had taught everyone about fold right, and then I 
said ok, now reverse a list, and they tried to do it using fold right, and it ended up very slow. 

Let’s do it with a left fold.

What am I going to replace z with, if I am going to reverse that list? 

𝑵𝒊𝒍, the empty list. And on each iteration of that loop I am going to take that element and put it on the front of that list. 

That will reverse the list. Left fold through the list, pull the elements off the front and put them on the front of a new list, 
𝑵𝒊𝒍, it will come back reversed, in linear time. 

all left folds are loops

Let’s reverse a list

reverse a list

\f z list ->
  var r = z 
  foreach(a in list)
    r = f(r, a)
  return r 

Tony Morris
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There it is. I have a function. There is the list being accumulated r, there is the element of the list a, 𝑪𝒐𝒏𝒔 it, do that in each 
iteration of the loop, start at 𝑵𝒊𝒍. This will reverse a list.

That’s the real code. 

I once went for a job interview, about twenty years ago, and the interviewer said to me, reverse a list. And I said, OK, what 
language. It was actually a C# job, and the guy said, any language you prefer. I said OK, fold left with 𝑪𝒐𝒏𝒔 𝑵𝒊𝒍. And I didn’t 
get the job. So I don’t recommend you answer that in that way. But it is correct. That will reverse a list. 

reverse a list

\list ->
  var r = 𝑵𝒊𝒍 
  foreach(a in list)
    r = flipCons(r, a)
  return r 

flipCons = \r a -> 𝑪𝒐𝒏𝒔 a r

reverse a list

reverse list = foldl (\r a -> 𝑪𝒐𝒏𝒔 a r) 𝑵𝒊𝒍 list
reverse = foldl (flip 𝑪𝒐𝒏𝒔) 𝑵𝒊𝒍 
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reverse	 ∷ 	 α → [α]
reverse	 = 	 𝑓𝑜𝑙𝑑𝑟	𝑠𝑛𝑜𝑐 	
																											𝒘𝒉𝒆𝒓𝒆	𝑠𝑛𝑜𝑐	𝑥	𝑥𝑠 = 𝑥𝑠	⧺	[𝑥]	

reverse′	 ∷ 	 α → [α]
reverse′	 = 	 𝑓𝑜𝑙𝑑𝑙	𝑐𝑜𝑛𝑠 	
																											𝒘𝒉𝒆𝒓𝒆	𝑐𝑜𝑛𝑠	𝑥𝑠	𝑥 = 𝑥	 :	 𝑥𝑠	

reverse′	 takes time proportional to 𝑛 on a list of 
length 𝑛, while reverse	 takes time proportional to 𝑛2

reverse = foldl (flip 𝑪𝒐𝒏𝒔) 𝑵𝒊𝒍 

Note the order of the arguments to 𝑐𝑜𝑛𝑠; we have 𝑐𝑜𝑛𝑠 = 𝑓𝑙𝑖𝑝	(∶), 
where the standard function	𝑓𝑙𝑖𝑝 is defined by	𝑓𝑙𝑖𝑝𝑓	𝑥	𝑦 = 𝑓	𝑦	𝑥. 
The function reverse′	, reverses a finite list.

Here is the definition of  reverse that Tony showed us 

We have already seen it in part 1

Tony said that defining reverse using foldr ends up 
very slow, which we have also already seen in part 1



What about the length of a list? What are we going to do? We are going to start the loop at zero, and for each of the 
accumulators, the accumulator r, we are going to ignore the element a, and just add one to r. That will compute the length 
of a list. 

So, the function plus1, given r, ignore a, do r + 1, do that on each spin of that loop, it will compute the length of the list.

There’s the code. I essentially read this word here (foldl) as do a loop. That’s how I like to think about it. On each iteration 
of the loop, do that, start there. That will compute the length of a list. This is just a point-free way of writing that same 
function. const means ignore the element, and then do plus1. On each iteration. 

all left folds are loops

Let’s compute the length of a list

length of a list

\list ->
  var r = 0 
  foreach(a in list)
    r = plus1(r, a)
  return r 

plus1 = \r a -> r + 1

length of a list

length list = foldl (\r a -> r + 1) 0 list
length = foldl (const . (+ 1)) 0 

Tony Morris
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If I said to you, take all of the loops that you have written and refactor out all of their differences, you’ll end up with fold 
left. They are exactly this loop. That is to say, I don’t need a little footnote here to say, “just kidding, it is not quite precise”. 
It is exactly that loop. Which means that any question we might ask about a left fold we can also ask about that loop, and 
we’ll get the same answer. 

For example, will that loop ever work on an infinite list? Nope. An infinite list, by the way, is one that doesn’t have 𝑵𝒊𝒍. It is 
just 𝑪𝒐𝒏𝒔 all the way to infinity. If I put that into a left fold or into that loop, it just will never give me an answer. It will sit 
there and heat up the world a bit more. 

It is easy to transfer this information because you probably have already heard of loops. I have used your existing 
knowledge to transfer this information. Left fold is a loop.

refactoring, intuition

• a left fold is what you would write if I insisted you remove 
all duplication from your loops

• all left folds are exactly this loop
• any question we might ask about a left fold, can be asked 

about this loop.

some observations

• a left fold will never work on an infinite list
• a correct intuition for left folds is easy to build on existing 

programming knowledge (loop).

Folding to the left does a loop

Tony Morris
@dibblego



𝑓𝑜𝑙𝑑𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → 𝛽	
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 	 = 𝑒
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 𝑥: 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙	𝑓 𝑓	𝑒	𝑥 	𝑥𝑠	

sum the integers of a list

sum list = foldl (\r a -> (+) r a) 0 list
sum = foldl (+) 0 

multiply the integers of a list

product list = foldl (\r a -> (*) r a) 1 list
product = foldl (*) 1 

reverse a list

reverse list = foldl (\r a -> 𝑪𝒐𝒏𝒔 a r) 𝑵𝒊𝒍 list
reverse = foldl (flip 𝑪𝒐𝒏𝒔) 𝑵𝒊𝒍 

length of a list

length list = foldl (\r a -> r + 1) 0 list
length = foldl (const . (+ 1)) 0 

reverse	 ∷ α → [α]
reverse	 = 𝑓𝑜𝑙𝑑𝑙	𝑐𝑜𝑛𝑠 	
																					𝒘𝒉𝒆𝒓𝒆	𝑐𝑜𝑛𝑠	𝑥𝑠	𝑥 = 𝑥	 :	 𝑥𝑠	

𝑠𝑢𝑚 ∷ [𝑰𝒏𝒕] → 𝑰𝒏𝒕
𝑠𝑢𝑚 = 𝑓𝑜𝑙𝑑𝑙 + 	0

𝑙𝑒𝑛𝑔𝑡ℎ	 ∷ [α] → 𝑰𝒏𝒕
𝑙𝑒𝑛𝑔𝑡ℎ	 = 𝑓𝑜𝑙𝑑𝑙	𝑝𝑙𝑢𝑠𝑜𝑛𝑒	0,	
                    𝒘𝒉𝒆𝒓𝒆	𝑝𝑙𝑢𝑠𝑜𝑛𝑒	𝑛	𝑥 = 𝑛 + 1

𝑝𝑟𝑜𝑑 ∷ [𝑰𝒏𝒕] → 𝑰𝒏𝒕
𝑝𝑟𝑜𝑑 = 𝑓𝑜𝑙𝑑𝑙	(×)	1

foldl :: (b -> a -> b) -> b -> List a -> b
foldl = \f z list ->
          var r = z 
          foreach(a in list)
          r = f(r, a)
          return r all left folds are loops 

𝑓𝑜𝑙𝑑𝑙	can be seen as a loop because it is a 
tail-recursive function.

On the left are Tony’s function 
definitions, and on the right are the 
definitions we saw in parts 1 and 2.
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Folding to the left does a loop. The end.

For right folds there is no existing thing that I can use to transfer the information, you just simply need to commit to the 
definition of a list, which is, 𝑵𝒊𝒍 or 𝑪𝒐𝒏𝒔. So let’s commit to that right now. That’s what a list is. 
 
The fold right function. 

Well, it takes a function, a to b to b (a is the element type in the list), and then it takes a b, and it takes a list, and it returns 
a b. There it is, written in Haskell. There is it written in, Java, I think, I don’t know. One of those languages. 

What does it do? How does it take that function, that b, and that list and give me a b? 

Folding to the left does a loop

The foldr function accepts three values
1. f :: a -> b -> b
2. z :: b
3. list :: List a
to get back a value of type b

foldr :: (a -> b -> b) -> b -> List a -> b
B FoldRight<A,B>(Func<A, B, B>, B, List<A>)

The foldl function accepts three values
1. f :: b -> a -> b
2. z :: b
3. list :: List a
to get back a value of type b

foldl :: (b -> a -> b) -> b -> List a -> b
B FoldLeft<A,B>(Func<B, A, B>, B, List<A>)

? 
     How does foldr take three values to that return value?

Tony Morris
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It performs constructor replacement. So, constructors, remember, are 𝑵𝒊𝒍 and 𝑪𝒐𝒏𝒔, they are the two things that 
construct lists. The expression fold right with the function f, z on a list, will go through that list, in no particular order, 
and replace every 𝑪𝒐𝒏𝒔 with f, and 𝑵𝒊𝒍 with z. If it sees a 𝑵𝒊𝒍, which it might not, because it might be infinite. 

So if we take this list A, B, C, D, and I fold right with f and z on that list, I’ll get back whatever value is replacing 𝑪𝒐𝒏𝒔 
with f and 𝑵𝒊𝒍 with z, whatever that is.

So if A, B, C and D are all numbers and we want to add them up, I can replace f with plus, and z with zero, and it will add 
them all up. 

constructor replacement

The foldr function performs constructor replacement.

The expression foldr f z list replaces in list: 
• Every occurrence of 𝑪𝒐𝒏𝒔 (:) with f.
• Any occurrence of 𝑵𝒊𝒍 [] with z1.

1 The 𝑵𝒊𝒍 constructor may be absent – i.e. the list is an infinite list of 𝑪𝒐𝒏𝒔.

constructor replacement?

• Suppose list = 𝑪𝒐𝒏𝒔	A (𝑪𝒐𝒏𝒔 B (𝑪𝒐𝒏𝒔 C (𝑪𝒐𝒏𝒔 D 𝑵𝒊𝒍)))
• The expression foldr f z list
• produces f A (f B (f C (f D z)))

Tony Morris
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constructor replacement

The foldr function performs constructor replacement.

The expression foldr f z list replaces in list: 
• Every occurrence of 𝑪𝒐𝒏𝒔 (:) with f.
• Any occurrence of 𝑵𝒊𝒍 [] with z1.

1 The 𝑵𝒊𝒍 constructor may be absent – i.e. the list is an infinite list of 𝑪𝒐𝒏𝒔.

2 The fold operator 

The fold operator has its origins in recursion theory (Kleene, 1952), while the use of fold as 
a central concept in a programming language dates back to the reduction operator of APL 
(Iverson, 1962), and later to the insertion operator of FP (Backus, 1978). In Haskell, the fold 
operator for lists can be defined as follows: 

𝑓𝑜𝑙𝑑                        :: 𝛼	 → 𝛽 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑	𝑓	𝑣 	 = 𝑣
𝑓𝑜𝑙𝑑	𝑓	𝑣 𝑥 ∶ 𝑥𝑠 	= 𝑓	𝑥 𝑓𝑜𝑙𝑑	𝑓	𝑣	𝑥𝑠

That is, given a function f of type 𝛼	 → 𝛽 → 𝛽 and a value 𝑣 of type 𝛽, the function 
𝑓𝑜𝑙𝑑	𝑓	𝑣 processes a list of type 𝛼 to give a value of type 𝛽 by replacing the nil 
constructor 	 at the end of the list by the value 𝑣, and each cons constructor ∶  within 
the list by the function 𝑓. In this manner, the 𝑓𝑜𝑙𝑑 operator encapsulates a simple pattern 
of recursion for processing lists, in which the two constructors for lists are simply 
replaced by other values and functions.

Consider	the	following	definition	of	a	function	ℎ	:

								ℎ	[	] 	 = 	 𝑒
        ℎ 𝑥: 𝑥𝑠 	 = 	 𝑥 ⊕ ℎ	𝑥𝑠

The function ℎ works by taking a list, replacing [	]	 by 𝑒 and ∶  by	⊕, and evaluating 
the result. For example, ℎ converts the list

	 𝑥1 ∶ (𝑥2 ∶ 𝑥3 ∶ 𝑥4 ∶ 	 )

to the value

	 𝑥1⊕ (𝑥2⊕ (𝑥3⊕ 𝑥4⊕ 𝑒 ))

Since ∶ 	associates to the right, there is no need to put in parentheses in the first 
expression. However,  we do need to put in parentheses in the second expression 
because we do not assume that	⊕ associates to the right.

The pattern of definition given by ℎ is captured in a function 𝑓𝑜𝑙𝑑𝑟 (pronounced ‘fold 
right’) defined as follows:

 𝑓𝑜𝑙𝑑𝑟	 ∷ 𝛼	 → 𝛽	 → 𝛽 → 𝛽 → 𝛼 → 𝛽	
 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 	 = 𝑒
 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 𝑥: 𝑥𝑠 	= 𝑓	𝑥 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒	𝑥𝑠

Here on the right is Tony’s explanation that foldr does 
constructor replacement, and below are the explanations 
we came across in Part 1.



Let’s multiply them. So here is a list of numbers, 4, 5, 6, 7. I am going to replace 𝑪𝒐𝒏𝒔 with multiplication and 𝑵𝒊𝒍 with one.
 

And now, that will multiply the numbers in a list. 

Fold right did constructor replacement. 

multiply the integers of a list

Supposing 
list = 𝑪𝒐𝒏𝒔 4 (𝑪𝒐𝒏𝒔 5 (𝑪𝒐𝒏𝒔 6 (𝑪𝒐𝒏𝒔 7 𝑵𝒊𝒍)))

?

multiply the integers of a list

• let  𝑪𝒐𝒏𝒔   = (*) 
• let 𝑵𝒊𝒍	 =  1

multiply the integers of a list

Supposing 
list = (*) 4 ((*) 5 ((*) 6 ((*) 7 1)))

product list = foldr (*) 1 list
product = foldr (*) 1

Tony Morris
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The important thing about fold right to recognize, is that it doesn’t do it in any particular order. There is an associativity 
order, but there is not an execution order. So that is to say, some people might say to me, fold right starts at the right side 
of the list. This can’t be true, because I am going to be passing in an infinite list, which doesn’t have a right side, and I am 
going to get an answer. If it started at the right, it went a really long way, and it is still going.  So that is what I should see if 
that statement is true, but I don’t see that. It associates to the right, it didn’t start executing from the right. It’s a subtle 
difference. 

What if I have a list of booleans and I want to and them all up? What am I going to replace 𝑵𝒊𝒍 with? Not 99. True. Yes. 

So if I have the above list, and I replace 𝑵𝒊𝒍 with True and 𝑪𝒐𝒏𝒔 with (&&), like this

It will and (&&) them all up

right folds replace constructors

Let’s and (&&) the booleans of a list.

and (&&) the booleans of a list
Supposing 
list = 𝑪𝒐𝒏𝒔 True (𝑪𝒐𝒏𝒔 True (𝑪𝒐𝒏𝒔 False (𝑪𝒐𝒏𝒔 True 𝑵𝒊𝒍)))

and (&&) the booleans of a list

• let  𝑪𝒐𝒏𝒔   = (&&) 
• let 𝑵𝒊𝒍	 =  True

Tony Morris
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So there is the code. Right fold replacing 𝑪𝒐𝒏𝒔 with (&&) and 𝑵𝒊𝒍 with True. It doesn’t do it in any order. I could have an 
infinite list of booleans. Suppose I had an infinite list of booleans and it started at False. 𝑪𝒐𝒏𝒔 False something. And I 
said foldr (&&) True. I should get back False. And I do. So clearly it didn’t start from the right. It never went there. It 
just saw the False and stopped. 

How about appending two lists?

Here is a list. Here is a second list. How do I append them? 

Do you agree with me that I am going to go through this first list and replace 𝑪𝒐𝒏𝒔 with 𝑪𝒐𝒏𝒔 and 𝑵𝒊𝒍 with the second 
list? Who agrees with me on that? That’s how you append two lists. Just an intuition for appending two lists. I take the first 
list, replace 𝑪𝒐𝒏𝒔 with 𝑪𝒐𝒏𝒔 and 𝑵𝒊𝒍 with the other list, they are now appended.

and (&&) the booleans of a list
Supposing 
list = (&&) True ((&&) True ((&&) False ((&&) True True)))

conjunct list = foldr (&&) True list
conjunct = foldr (&&) True

right folds replace constructors

Let’s append two lists.

append two lists
Supposing 
list1 = 𝑪𝒐𝒏𝒔	A (𝑪𝒐𝒏𝒔 B (𝑪𝒐𝒏𝒔 C (𝑪𝒐𝒏𝒔 D 𝑵𝒊𝒍)))
list2 = 𝑪𝒐𝒏𝒔	E (𝑪𝒐𝒏𝒔 F (𝑪𝒐𝒏𝒔 G (𝑪𝒐𝒏𝒔 H 𝑵𝒊𝒍)))

Tony Morris
@dibblego



So now that you know that you should not be afraid when you see the code. I am going to go through this first list and 
replace 𝑪𝒐𝒏𝒔 with 𝑪𝒐𝒏𝒔, that is leave it alone, and I am going to pick up this entire list2 and smash it straight over the 
𝑵𝒊𝒍. And that will be appended. 

So here is the code. 

Go in list1, replace 𝑪𝒐𝒏𝒔 with 𝑪𝒐𝒏𝒔 and 𝑵𝒊𝒍 with list2. This will append list1 and list2. 

Sometimes I show people this code and they get scared. Wow, hang on, what is going on here? I am used to loops and things. 
That’s how you append lists. Or go to the pointer at the end and update it to the other list, something crazy like that. 

But if you get an intuition for fold right, which is doing constructor replacement, it is pretty straightforward, right? 𝑪𝒐𝒏𝒔 
with 𝑪𝒐𝒏𝒔 and 𝑵𝒊𝒍 with list2. Of course it is going to append the two lists (The second definition is just a point-free form). 

You might choose to say that at your next job interview. Hey man, append two lists, ok, flip (foldr 𝑪𝒐𝒏𝒔). Tell me how it 
goes. 

append two lists
• let  𝑪𝒐𝒏𝒔   = 𝑪𝒐𝒏𝒔 
• let 𝑵𝒊𝒍	 = list2

append two lists
Supposing 
list1 = 𝑪𝒐𝒏𝒔	A (𝑪𝒐𝒏𝒔 B (𝑪𝒐𝒏𝒔 C (𝑪𝒐𝒏𝒔 D 𝑵𝒊𝒍)))
list2 = 𝑪𝒐𝒏𝒔	E (𝑪𝒐𝒏𝒔 F (𝑪𝒐𝒏𝒔 G (𝑪𝒐𝒏𝒔 H 𝑵𝒊𝒍)))
append list1 list2 = foldr 𝑪𝒐𝒏𝒔 list2 list1
append = flip (foldr 𝑪𝒐𝒏𝒔)
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append list1 list2 = foldr 𝑪𝒐𝒏𝒔 list2 list1
append = flip (foldr 𝑪𝒐𝒏𝒔)

We have already come across the function in part 1, where Richard Bird called it concatenation, and defined it recursively

(⧺) 	 ∷ 	 [α] → [α] → [α] 
	 ⧺	𝑦𝑠	 = 	 𝑦𝑠
𝑥: 𝑥𝑠 	⧺	𝑦𝑠	 = 	 𝑥 ∶ (𝑥𝑠	⧺	𝑦𝑠)

Concatenation takes two lists, both of 
the same type, and produces a third 
list, again of the same type. assert( concatenate(List(1,2,3))(List(4,5)) == List(1,2,3,4,5) )

def concatenate[A]: List[A] => List[A] => List[A] = 
  xs => ys => xs match {
    case Nil => ys
    case x :: xs => x :: concatenate(xs)(ys) 
  }

Then in TUEF we saw the function defined in terms of 𝑓𝑜𝑙𝑑𝑟

(⧺) 	 ∷ 	 [α] → [α] → [α] 
⧺	𝑦𝑠 	= 	 𝑓𝑜𝑙𝑑𝑟 ∶ 	𝑦𝑠

def concatenate[A]: List[A] => List[A] => List[A] = {
  def cons: A => List[A] => List[A] =
    x => xs => x :: xs
  xs => ys => foldr(cons)(ys)(xs)
}

Here is Tony’s definition of the append function.

@philip_schwarz



def concatenate[A]: List[A] => List[A] => List[A] = {
  def cons: A => List[A] => List[A] =
    x => xs => x :: xs
  xs => ys => foldr(cons)(ys)(xs)
}

def foldr[A,B](f: A => B => B)(e: B)(s: List[A]): B = s match {
  case   Nil => v
  case x::xs => f(x)(foldr(f)(e)(xs))
}

(⧺) 	 ∷ 	 [α] → [α] → [α] 
⧺	𝑦𝑠 	= 	 𝑓𝑜𝑙𝑑𝑟 ∶ 	𝑦𝑠

𝑓𝑜𝑙𝑑𝑟	 ∷ 𝛼	 → 𝛽	 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 	 = 𝑒
𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 𝑥: 𝑥𝑠 	= 𝑓	𝑥 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒	𝑥𝑠

def foldr[A,B](f: A => B => B)(v: B)(s: List[A]): B = s match {
  case 𝑵𝒊𝒍 => v
  case 𝑪𝒐𝒏𝒔(x,xs) => f(x)(foldr(f)(v)(xs))
}

def flip[A,B,C]: (A => B => C) => (B => A => C) =
  f => b => a => f(a)(b)

def append[A]: 𝑳𝒊𝒔𝒕[A] => 𝑳𝒊𝒔𝒕[A] => 𝑳𝒊𝒔𝒕[A] =
  flip(foldr((𝑪𝒐𝒏𝒔[A] _).curried))

Let’s take Tony’s two definitions of append, and translate them into Scala. Unlike 
the Scala concatenate function on the previous slide, which is repeated below, 
and which relies on the foldr definition to its right, Tony’s definitions use 𝑪𝒐𝒏𝒔.  

append list1 list2 = foldr 𝑪𝒐𝒏𝒔 list2 list1
append = flip (foldr 𝑪𝒐𝒏𝒔)

So let’s first modify the Scala version 
of 𝑓𝑜𝑙𝑑𝑟 to use 𝑵𝒊𝒍 and 𝑪𝒐𝒏𝒔

sealed trait 𝑳𝒊𝒔𝒕[+A]
case class 𝑪𝒐𝒏𝒔[+A](head: A, tail: 𝑳𝒊𝒔𝒕[A]) extends 𝑳𝒊𝒔𝒕[A]
case object 𝑵𝒊𝒍 extends 𝑳𝒊𝒔𝒕[Nothing]

def append[A]: 𝑳𝒊𝒔𝒕[A] => 𝑳𝒊𝒔𝒕[A] => 𝑳𝒊𝒔𝒕[A] =
  xs => ys => foldr[A, 𝑳𝒊𝒔𝒕[A]]((𝑪𝒐𝒏𝒔[A] _).curried)(ys)(xs)

append = flip (foldr 𝑪𝒐𝒏𝒔)

We can now write the Scala equivalent of Tony’s first 
definition of append

And if we write a Scala version of flip, we can then also 
translate into Scala Tony’s second definition of append.

append list1 list2 = foldr 𝑪𝒐𝒏𝒔 list2 list1 NOTE: (𝑪𝒐𝒏𝒔[A] _) has type (A, List[A]) => List[A], whereas 
(𝑪𝒐𝒏𝒔[A] _).curried) has type A => List[A] => List[A]



append list1 list2 = foldr 𝑪𝒐𝒏𝒔 list2 list1

I don’t know about you, but when I see append implemented so simply and elegantly in terms of fold right, I can’t help 
wanting to see how append looks like when defined using fold left. The quickest way I can think of, for coming up with 
such a definition is to apply the third duality theorem of fold.

Here again  is Tony’s definition of the append function.

Third duality theorem. For all finite lists 𝑥𝑠, 

	 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒	𝑥𝑠	 = 𝑓𝑜𝑙𝑑𝑙 𝑓𝑙𝑖𝑝	𝑓 	𝑒	(𝑟𝑒𝑣𝑒𝑟𝑠𝑒	𝑥𝑠)
	 𝒘𝒉𝒆𝒓𝒆	𝑓𝑙𝑖𝑝	𝑓	𝑥	𝑦 = 𝑓	𝑦	𝑥

And here again  is the 
third duality theorem.

Let’s use the theorem the other way round. Let’s take the above definition of append in terms 
of fold right, and do the following:
• flip the first parameter of fold right
• reverse the third parameter of fold right
• replace fold right with fold left

append list1 list2 = foldl scon list2 (reverse list1)
                     where scon xs x = 𝑪𝒐𝒏𝒔 x xs



What about mapping a function on a list? So who’s heard of the map function? Or who’s never heard of it? Everyone has. 
We have a list, and for each of the elements, I want to  run a function on that element, to make a new list. Like I might have 
a list of numbers and I want to add ten to all of the numbers, I want to map + 10 on that list.

So here is my list 

What do I want to replace 𝑪𝒐𝒏𝒔 with? Given the function f, do you agree that I want to say, 𝑪𝒐𝒏𝒔, f of A, 𝑪𝒐𝒏𝒔, f of B, 
𝑪𝒐𝒏𝒔, f of C, and D and then 𝑵𝒊𝒍? That’s what map does. I want to replace 𝑪𝒐𝒏𝒔 with f and then 𝑪𝒐𝒏𝒔. And 𝑵𝒊𝒍 with 𝑵𝒊𝒍.

So, given x I want to call f, then 𝑪𝒐𝒏𝒔. And 𝑵𝒊𝒍 with 𝑵𝒊𝒍. This will map the function f on a list. 

right folds replace constructors

Let’s map a function on a list

map a function (f) on a list
Supposing 
list = 𝑪𝒐𝒏𝒔	A (𝑪𝒐𝒏𝒔 B (𝑪𝒐𝒏𝒔 C (𝑪𝒐𝒏𝒔 D 𝑵𝒊𝒍)))

?

map a function (f) on a list
• let  𝑪𝒐𝒏𝒔   = \x -> 𝑪𝒐𝒏𝒔(fx)  
• let 𝑵𝒊𝒍	 = 𝑵𝒊𝒍

Tony Morris
@dibblego



So there is the code. It’s not that scary now, is it? That’s how you map a function on a list. We replace 𝑪𝒐𝒏𝒔 with (\x -> 
𝑪𝒐𝒏𝒔(f x)), and 𝑵𝒊𝒍 with 𝑵𝒊𝒍. We have mapped a function on a list.

Once I had to write mapping a function on a list in Java. This was 15 years ago. I didn’t use fold right. This is just like, 
footnote: caution. If you use fold right in Java, what’s going to happen? Stack overflow. Yes, because fold right is 
recursive. For every element in the list, it’s building up a stack frame. So you can imagine my disappointment when I 
called fold right on the JVM, with a list of 10,000 numbers, or whatever it was, and it just said: Stack overflow – have a 
nice day. Because the JVM I used to use, this is a long time ago, was the IBM JVM. 

It did tail-call optimisation, but it didn’t optimise this one because it wasn’t in tail position. And it didn’t work on infinite 
lists either. I had to make it a heap list. So I am just letting you know, that all of this sounds great, but if you run out the 
door right now and say, ‘I am going to do it in Java,’ caution. The same is true for Python, C#, I have tried it: Stack overflow. 

This little operator here, the dot, is function composition. It takes two functions and glues them together to make a new 
function. So I’ll give you a bit of an intuition for function composition. I read it from right to left. Call f and then call 𝑪𝒐𝒏𝒔. 
So wherever we are in the list, somewhere in a 𝑪𝒐𝒏𝒔 cell, which means it has an element right next to it, call f on that 
element, and then do 𝑪𝒐𝒏𝒔. And replace 𝑵𝒊𝒍 with 𝑵𝒊𝒍. 

I wonder what would happen if you said that in a job interview. I should try that. Someone will say map a function on a list 
and they are waiting for me to say for loop, and I go, no no, fold right. 

map a function (f) on a list
Supposing 
consf x = 𝑪𝒐𝒏𝒔 (f x)
list = consf A (consf B (consf C (consf D 𝑵𝒊𝒍)))

map f list = foldr (\x -> 𝑪𝒐𝒏𝒔(f x)) 𝑵𝒊𝒍	 list
map f = foldr (𝑪𝒐𝒏𝒔 . f) 𝑵𝒊𝒍

Tony Morris
@dibblego



The reason why Tony experienced that stack overflow when calling foldRight with a 
large list is that by definition, foldRight is recursive, but not tail-recursive (unlike 
foldleft), whereas as we saw in Part 2, in Scala, in more recent years, the foldRight 
function of List has been redefined to take advantage of the third duality theorem 
of fold, i.e. it is now defined in terms of foldLeft, in that it first reverses the list that 
it is passed, and then does that same loop that foldLeft would do, except that there 
is no need to do any function flipping: the loop can just apply the given function as it 
stands.

So no more stack overflows.

Third duality theorem. For all finite lists 𝑥𝑠, 

	 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒	𝑥𝑠	 = 𝑓𝑜𝑙𝑑𝑙 𝑓𝑙𝑖𝑝	𝑓 	𝑒	(𝑟𝑒𝑣𝑒𝑟𝑠𝑒	𝑥𝑠)
	 𝒘𝒉𝒆𝒓𝒆	𝑓𝑙𝑖𝑝	𝑓	𝑥	𝑦 = 𝑓	𝑦	𝑥



What about flattening a list of lists? So we have a list, and each element is itself a list, and we 
want to flatten it down. What am I going to replace 𝑪𝒐𝒏𝒔 with? Any ideas? append, the 
function we just wrote. Go through each 𝑪𝒐𝒏𝒔 and replace it with the function that appends 
two lists, and 𝑵𝒊𝒍 with 𝑵𝒊𝒍. That will flatten the list of lists. 

There is the code. fold right append 𝑵𝒊𝒍. 

fold right does constructor replacement. 

right folds replace constructors

Let’s flatten a list of lists

flatten a list of lists

• let  𝑪𝒐𝒏𝒔   = append  
• let 𝑵𝒊𝒍	 = 𝑵𝒊𝒍

flatten list = foldr append 𝑵𝒊𝒍	 list
flatten = foldr append 𝑵𝒊𝒍

Tony Morris
@dibblego



concat	 ∷ 	 [ α ] → [α]
concat	 = 	 𝒇𝒐𝒍𝒅𝒓	(⧺)	[	]

concat	 ∷ 	 [ α ] → [α]
concat 	 = 	 	
concat 𝑥𝑠: 𝑥𝑠𝑠 	 = 	 𝑥𝑠	⧺	𝑐𝑜𝑛𝑐𝑎𝑡	𝑥𝑠𝑠

𝑔	 	 = 	𝑣	 								⟺	 𝑔	 = 	𝑓𝑜𝑙𝑑𝑟	𝑓	𝑣	
𝑔 𝑥 ∶ 𝑥𝑠 	= 𝑓	𝑥 𝑔	𝑥𝑠

universal property of	𝒇𝒐𝒍𝒅𝒓

𝑠𝑢𝑚 = 𝑓𝑜𝑙𝑑 + 	0

𝑠𝑢𝑚	 ∷ 𝐼𝑛𝑡 → 𝐼𝑛𝑡
𝑠𝑢𝑚	 	 = 0	
𝑠𝑢𝑚 𝑥 ∶ 𝑥𝑠 	= 𝑥 + 𝑠𝑢𝑚	𝑥𝑠

Tony’s definition of flatten is the same as that of the concat function we saw in Part 1.

flatten :: [[a]]->[a]
flatten = foldr append 𝑵𝒊𝒍

For comparison, here is the other definition of concat that we saw in Part 1, the one that does not use 𝒇𝒐𝒍𝒅𝒓.

Richard Bird says in his book that the above definition of concat is exactly what we would get from the definition 
concat	 = 𝒇𝒐𝒍𝒅𝒓	(⧺)	[	]		by eliminating the 𝒇𝒐𝒍𝒅𝒓. 

𝑚𝑎𝑝	 ∷ 𝛼	 → 𝛽 → 𝛼 → 𝛽
𝑚𝑎𝑝	𝑓	 	 = 	
𝑚𝑎𝑝	𝑓 𝑥 ∶ 𝑥𝑠 	= 	𝑓	𝑥 ∶ 𝑚𝑎𝑝	𝑓	𝑥𝑠

𝑚𝑎𝑝	𝑓 = 𝑓𝑜𝑙𝑑 𝜆𝑥	𝑦𝑠	 → 𝑓	𝑥 ∶ 𝑦𝑠 	[	]

And in Part 1 we saw Graham Hutton explain how the universal 
property of 𝒇𝒐𝒍𝒅𝒓 can be used to go from a function definition that 
doesn’t use 𝒇𝒐𝒍𝒅𝒓 to a definition that does (and also to go the 
other way round).



foldr            :: (a -> b -> b) -> b -> [a] -> b
foldr f e []     = e
foldr f e (x:xs) = f x (foldr f e xs)

foldr (:) ys []     = ys
foldr (:) ys (x:xs) = x : (foldr (:) ys xs)

append           :: [a] -> [a] -> [a]
append [] ys     = ys
append (x:xs) ys = x : (append xs ys)

replace f with (:) 
replace e with ys

append       :: [a] -> [a] -> [a]
append xs ys = foldr (:) ys xsFor what it is worth, on this slide I just want to show that it looks like in simple cases, like in the case of the append 

function, it seems possible, and easy enough, to eliminate foldr using some informal code transformations.

replace foldr (:) with append
swap append parameters 

append xs ys = foldr (:) ys xs

@philip_schwarz



As Richard Bird points out in his book, since ⧺	(i.e. 
append) is associative with unit [ ], thanks to the 
first duality theorem of fold, concat  can also be 
defined using 𝒇𝒐𝒍𝒅𝒍. 

concat	 ∷ 	 [ α ] → [α]
concat	 = 	 𝒇𝒐𝒍𝒅𝒓	(⧺)	[	]

Now back to Tony’s definition of flatten, 
or as it was called in Part 1, concat.

flatten :: [[a]]->[a]
flatten = foldr append 𝑵𝒊𝒍

First duality theorem. Suppose ⊕ 	is associative with unit 𝑒. Then

	 𝑓𝑜𝑙𝑑𝑟 ⊕ 	𝑒	𝑥𝑠	 = 𝑓𝑜𝑙𝑑𝑙 ⊕ 	𝑒	𝑥𝑠

For all finite lists 𝑥𝑠.

Richard Bird also observes that eliminating 𝒇𝒐𝒍𝒅𝒍 from the definition of concat  
leads to the following program.

concat	 ∷ 	 [ α ] → [α]
concat	 = 	 𝒇𝒐𝒍𝒅𝒍	(⧺)	[	]

concat′	 ∷ 	 α → [α]
concat′	 𝑥𝑠𝑠	 = 𝑎𝑐𝑐𝑢𝑚 	 𝑥𝑠𝑠

𝑎𝑐𝑐𝑢𝑚	𝑤𝑠 	 = 𝑤𝑠
𝑎𝑐𝑐𝑢𝑚	𝑤𝑠 𝑥𝑠 ∶ 𝑥𝑠𝑠 = 𝑎𝑐𝑐𝑢𝑚 𝑤𝑠	⧺	𝑥𝑠 	𝑥𝑠𝑠

reverse′	 ∷ 	 α → [α]
reverse′	 = 	 𝑓𝑜𝑙𝑑𝑙	𝑐𝑜𝑛𝑠 	
																											𝒘𝒉𝒆𝒓𝒆	𝑐𝑜𝑛𝑠	𝑥𝑠	𝑥 = 𝑥	 :	 𝑥𝑠	

reverse′	 ∷ 	 α → [α]
reverse′	 𝑥𝑠	 = 𝑎𝑐𝑐𝑢𝑚 	 𝑥𝑠

𝑎𝑐𝑐𝑢𝑚	𝑤𝑠 	 = 𝑤𝑠
𝑎𝑐𝑐𝑢𝑚	𝑤𝑠 𝑥 ∶ 𝑥𝑠 = 𝑎𝑐𝑐𝑢𝑚 𝑥 ∶ 𝑤𝑠 	𝑥𝑠

Similarly, if we eliminate 𝒇𝒐𝒍𝒅𝒍 
from the definition of reverse′

We get this program

So eliminating 𝒇𝒐𝒍𝒅𝒍 leads to a 
tail-recursive function definition 
that uses an accumulator.



Sergei Winitzki
sergei-winitzki-11a6431

How did we rewrite the code of lengthS to obtain the tail-recursive code of lengthT? 

An important difference between lengthS and lengthT is the additional argument, res, called the 
accumulator argument. This argument is equal to an intermediate result of the computation. 

The next intermediate result (1 + res) is computed and passed on to the next recursive call via the 
accumulator argument. In the base case of the recursion, the function now returns the accumulated result, 
res, rather than 0, because at that time the computation is finished. 

Rewriting code by adding an accumulator argument to achieve tail recursion is called the accumulator 
technique or the “accumulator trick”.

@tailrec def lengthT(s: Seq[Int], res: Int): Int =
  if (s.isEmpty) res
  else lengthT(s.tail, 1 + res)

def lengthS(s: Seq[Int]): Int =
    if (s.isEmpty) 0
    else 1 + lengthS(s.tail)

As Sergei Winitzki explained in Part 2,  introducing an accumulator in 
order to achieve tail recursion is known as the accumulator trick.

lengthT(Seq(1,2,3), 0)
  = lengthT(Seq(2,3), 1 + 0) // = lengthT(Seq(2,3), 1)
  = lengthT(Seq(3), 1 + 1)   // = lengthT(Seq(3), 2)
  = lengthT(Seq(), 1 + 2)    // = lengthT(Seq(), 3)
  = 3



Again, for what it is worth, on this slide I 
just want to show that it looks like in 
simple cases, like in the case of the 
append function, it seems possible, and 
easy enough, to eliminate foldl using 
some informal code transformations.

replace f with scon 
replace e with ys

append       :: [a] -> [a] -> [a]
append xs ys = foldl scon ys (reverse xs)
               where scon xs x = x : xs

foldl            :: (b -> a -> b) -> b -> [a] -> b
foldl f e []     = e
foldl f e (x:xs) = foldl f (f e x) xs

foldl scon ys []     = ys
foldl scon ys (x:xs) = foldl scon (scon ys x) xs

replace foldl scon with accum
inline remaining invocation of scon

accum ys []     = ys
accum ys (x:xs) = accum (x:ys) xs

define append in terms of  accum

append xs ys = accum ys (reverse xs)



In both part 1 and in this part, we have come across the notion that sometimes it is 
more efficient to implement a function using a right fold, and at other times, it is 
more efficient to implement it using a left fold. 

An effective way of comparing the performance of different definitions of a function 
is to carry out asymptotic analysis and then express the performance of each 
definition using  the associated notation, i.e. 𝑂 -notation, 𝛺–notation and 𝛩 -
notation. 

The next four slides consist of a quick introduction to (refresher of) asymptotic 
analysis, and consists of extracts from Richard Bird’s book.

@philip_schwarz



7.2 Asymptotic Analysis
In general, one is less interested in estimating the cost of evaluating a particular expression than in comparing the 
performance of one definition of a function with another. For example, consider the following two programs for 
reversing a list:

    reverse 	 = 	 	
	 reverse 𝑥 ∶ 𝑥𝑠 	 = 	 𝑟𝑒𝑣𝑒𝑟𝑠𝑒	𝑥𝑠	⧺	[𝑥]

    reverse′	 = 	 𝑓𝑜𝑙𝑑𝑙	 𝑝𝑟𝑒𝑓𝑖𝑥 	 𝒘𝒉𝒆𝒓𝒆	𝑝𝑟𝑒𝑓𝑖𝑥	𝑥𝑠	𝑥 = 𝑥	 :	 𝑥𝑠	

It was claimed in section 4.5 that the second program is more efficient than the former, taking at most a number of 
steps proportional to 𝑛 on a list of length 𝑛, while the first program takes 𝑛2 steps. The aim of this section is to show 
how to make such claims more precise and to justify them.

7.2.1 Order notation
Given two functions 𝑓 and 𝑔 on the natural numbers, we say that 𝑓 is of order at most 𝑔, and write	𝑓 = 𝑂 𝑔  if 
there is a positive constant C  and natural number n0 such that 𝑓 𝑛 ≤ C𝑔(𝑛) for all 𝑛 ≥ n0. 

In other words, 𝑓 is bounded above by some constant times 𝑔 for all sufficiently large arguments. 

The notation is abused to the extent that one conventionally writes, for example, 𝑓(𝑛) = 𝑂 𝑛2 	rather than the more 
correct 𝑓 = 𝑂 𝑠𝑞𝑢𝑎𝑟𝑒 . Similarly, one writes 𝑓(𝑛) = 𝑂 𝑛 	rather than 𝑓 = 𝑂 𝑖𝑑 .
…
What 𝑂-notation brings out is an upper bound on the asymptotic growth of functions. For this reason, estimating 
the performance of a program using 𝑂-notation is called asymptotic upper-bound analysis.

Richard Bird



For example, the time complexity of reverse′ is 𝑂(𝑛). However, saying that reverse  takes 𝑂(𝑛2)	steps on a list of 
length 𝑛	does not mean that it does not take, say, 𝑂(𝑛)	steps. For more precision we need additional notation.

We say that 𝑓 is order at least 𝑔, and write 𝑓 = 𝛺 𝑔 	if there exists a positive constant C  and natural number n0 such 
that 𝑓(𝑛) ≥ C𝑔(𝑛) for all 𝑛 ≥ n0.

Putting the two kinds of bound together, we say 𝑓 is order exactly 𝑔, and write 𝑓 = 𝛩(𝑔) if 𝑓 = 𝑂(𝑔)	and 𝑓 = 𝛺 𝑔 . 
In other words, 𝑓 = 𝛩(𝑔)	 if there are two positive constants C	1 and C2	 such that

	 C1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝐶2𝑔(𝑛)

for all sufficiently large 𝑛. Then we can assert that the time of reverse	 is 𝛩(𝑛2) and the time of reverse′	 is 𝛩(𝑛).

7.2.2 Timing analysis
Given a function 𝑓 we will write T 𝑓 𝑛  to denote an asymptotic estimate of the number of reduction steps 
required to evaluate 𝑓 on an argument of ‘size’ 𝑛 in the worst case. Moreover, for reasons explained in a moment, we 
will assume eager, not lazy, evaluation as a reduction strategy. In particular, we can write

	 T 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑛 = Θ 𝑛2
    T reverse′ 𝑛 = Θ 𝑛

The definition of T  requires some amplification. Firstly, T 𝑓 	does not refer to the time complexity of a function 𝑓 
but to the complexity of a given definition of 𝑓. Time complexity is a property of an expression, not of the value of the 
expression.

Richard Bird



Secondly, we do not formalize the notion of size, since different measures are appropriate in different situations. For 
example, the cost of evaluating 𝑥𝑠	⧺	𝑦𝑠	 is best measured in terms of 𝑚 and 𝑛, where 𝑚 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑠)	and 𝑛 =
𝑙𝑒𝑛𝑔𝑡ℎ(𝑦𝑠). In fact, we have

	 𝑇 ⧺ (𝑚, 𝑛) = Θ(𝑚)

The proof is left as an exercise. Next, consider 𝑐𝑜𝑛𝑐𝑎𝑡	𝑥𝑠𝑠. Here the measure of 𝑥𝑠𝑠	is more difficult. In the simple 
case that 𝑥𝑠𝑠	is a list of length 𝑚, consisting of lists of length 𝑛, we have 

    𝑇 𝑐𝑜𝑛𝑐𝑎𝑡 𝑚, 𝑛 = Θ(𝑚𝑛)

We will prove this result below. The estimate for 𝑇 𝑐𝑜𝑛𝑐𝑎𝑡  therefore refers only to lists of lists with a common 
length; though limited, such restrictions make timing analyses more tractable.

The third remark is to emphasise that T 𝑓 𝑛  is an estimate of worst-case running time only. This will be sufficient 
for our purposes, although best-case and average-case analyses are also important in practice.

The fourth and crucial remark is that T 𝑓 𝑛 	 is determined under an eager evaluation model of reduction. The 
reason is simply that estimating the number of reduction steps under lazy evaluation is difficult, and is still the subject 
of ongoing research.
…
Timing analysis under eager reduction is simpler because it is compositional. Since lazy evaluation never requires 
more reduction steps than eager evaluation, any upper bound for T 𝑓 𝑛  will also be an upper bound under lazy 
evaluation. Furthermore, in many cases of interest, a lower bound for T 𝑓 𝑛  will also  be a lower bound under lazy 
evaluation.

Richard Bird



Images Source: Introduction to Algorithms (3rd edition) 
by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein | Page 45 | Figure 3.1

𝑓 𝑛 = 𝛩 𝑔 𝑛

C1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝐶2𝑔(𝑛)

for all sufficiently large 𝑛

𝑓 𝑛 = 𝑂 𝑔 𝑛

𝑓 𝑛 ≤ C𝑔(𝑛) 

for all 𝑛 ≥ n0

𝑓(𝑛) = 𝛺(𝑔(𝑛))

𝑓(𝑛) ≥ C𝑔(𝑛) 

for all 𝑛 ≥ n0



reverse	 ∷ 	 α → [α]
reverse	 = 	 𝑓𝑜𝑙𝑑𝑟	𝑠𝑛𝑜𝑐 	
                          𝒘𝒉𝒆𝒓𝒆	𝑠𝑛𝑜𝑐	𝑥	𝑥𝑠 = append	 𝑥𝑠	[𝑥]	

reverse′	 ∷ 	 α → [α]
reverse′	 = 	 𝑓𝑜𝑙𝑑𝑙	𝑠𝑐𝑜𝑛 	
                           𝒘𝒉𝒆𝒓𝒆	𝑠𝑐𝑜𝑛	𝑥𝑠	𝑥 = 𝑥	 :	 𝑥𝑠	

T 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑛 = Θ 𝑛2

T reverse′ 𝑛 = Θ 𝑛

concat′	 ∷ 	 [ α ] → [α]
concat′	 = 	 𝑓𝑜𝑙𝑑𝑙	append	 [	]

𝑇 concat 𝑚, 𝑛 = Θ(𝑚𝑛)

𝑇 concat′ 𝑚, 𝑛 = Θ(𝑚2𝑛)

append	 ∷ 	 [α] → [α] → [α] 
append	𝑥𝑠	𝑦𝑠	 = 	 𝑓𝑜𝑙𝑑𝑟 ∶ 	𝑦𝑠	xs

append′	 ∷ 	 [α] → [α] → [α] 
append′	𝑥𝑠	𝑦𝑠	 = 	 𝑓𝑜𝑙𝑑𝑙	𝑠𝑐𝑜𝑛	𝑦𝑠	(reverse′	xs)	
	 𝒘𝒉𝒆𝒓𝒆	𝑠𝑐𝑜𝑛	𝑥𝑠	𝑥 = 𝑥	 :	 𝑥𝑠	

𝑇 append 𝑚, 𝑛 = Θ(𝑚)

𝑇 append′ 𝑚, 𝑛 = Θ(𝑚)

Following that introduction to (refresher of) asymptotic analysis, this slide is a 
quick reminder, using 𝛩 –notation, that whether it is more efficient to 
implement a function using 𝑓𝑜𝑙𝑑𝑟, or using 𝑓𝑜𝑙𝑑𝑙, depends on the function.

concat	 ∷ 	 [ α ] → [α]
concat	 = 	 𝑓𝑜𝑙𝑑𝑟	append	 [	]

I have renamed cons to scon, because I 
regard ∶  as cons, and because the order of 
its arguments is the opposite of that of ∶ , 
and I find that the name scon conveys the 
fact that there is this inversion happening.

To be consistent with Tony Morris, we are 
defining append functions rather than an 
infix append operator  ⧺.

I have added xs  to the definition of append.

append′ is Θ(𝑚) because in this case 𝑓𝑜𝑙𝑑𝑙 is 
Θ(𝑚), and reverse′  is Θ 𝑚 .



That’s all for Part 3. I hope you found it useful. 

We’ll continue looking at Tony’s presentation in Part 4. 

See you there.


