
Tagless Final Encoding
 Algebras and Interpreters

and also Programs
an introduction, through the work of Gabriel Volpe

Algebras

Tagless Final
Encoding

@philip_schwarzslides by http://fpilluminated.com/

http://fpilluminated.com/

This slide deck is a quick, introductory look, at Tagless Final, as explained (in rather more depth
than is possible or appropriate here) by Gabriel in his great book: Practical FP in Scala, a Hands-
on Approach.

In the first six slides, we are going to see Gabriel introduce the key elements of the technique.

Tagless final is all about algebras and interpreters. Yet,
something is missing when it comes to writing applications…

Tagless final is a great technique used to
structure purely functional applications.

Yes, as you’ll see, to the two official pillars of Tagless Final, i.e. algebras and interpreters, Gabriel
adds a third one: programs.

Algebras

Tagless Final
Encoding

@philip_schwarz

Algebras

An algebra describes a new language (DSL) within a host language, in this case, Scala.

This is a tagless final encoded algebra; tagless algebra, or algebra for short: a simple interface that
abstracts over the effect type using a type constructor F[_].

Do not confuse algebras with typeclasses, which in Scala, happen to share the same encoding.

The difference is that typeclasses should have coherent instances, whereas tagless algebras could have
many implementations, or more commonly called interpreters.

…
Overall, tagless algebras seem a perfect fit for encoding business concepts. For example, an algebra
responsible for managing items could be encoded as follows.

Nothing new, right? This tagless final encoded algebra is merely an interface that abstracts over the effect
type. Notice that neither the algebra nor its functions have any typeclass constraint.

If you find yourself needing to add a typeclass constraint, such as Monad, to your algebra, what you probably
need is a program.

The reason being that typeclass constraints define capabilities, which belong in programs and interpreters.
Algebras should remain completely abstract.

trait Items[F[_]] {
 def getAll: F[List[Item]]
 def add(item: Item): F[Unit]
}

trait Counter[F[_]] {
def increment: F[Unit]
def get: F[Int]

}

Tagless algebras should not have typeclass constraints

Tips

Interpreters

We would normally have two interpreters per algebra: one for testing and one for doing real things. For
instance, we could have two different implementations of our Counter.

A default interpreter using Redis.

And a test interpreter using an in-memory data structure.

Interpreters help us encapsulate state and allow separation of concerns: the interface knows nothing about
the implementation details. Moreover, interpreters can be written either using a concrete datatype such as
IO or going polymorphic all the way, as we did in this case.

object Counter {

 @newtype case class RedisKey(value: String)

 def make[F[_]: Functor](
 key: RedisKey,
 cmd: RedisCommands[F, String, Int]
): Counter[F] =
 new Counter[F] {
 def increment: F[Unit] =
 cmd.increment(key.value).void
 def get: F[Int] =
 cmd.get(key.value).map(_.getOrElse(0))
 }
}

def testCounter[F[_]](
 ref: Ref[F, Int]
): Counter[F] = new Counter[F] {
 def increment: F[Unit] = ref.update(_ + 1)
 def get: F[Int] = ref.get
}

We are currently working our way through slides containing excerpts from Chapter 2: Tagless Final Encoding.

The next slide is an exception in that it contains an excerpt from Chapter1: Best Practices, which has already
introduced (in a less formal way), the concept of an interpreter for the Counter trait (without yet referring to
the latter as an algebra).

In-memory counter
Let’s say we need an in-memory counter that needs to be accessed and modified by other components. Here
is what our interface could look like.

It has a higher-kinded type F[_], representing an abstract effect, which most of the time ends up being IO,
but it could really be any other concrete type that fits the shape.

Next, we need to define an interpreter in the companion object of our interface, in this case using a Ref. We
will talk more about it in the next section.
…

Moving on, it’s worth highlighting that other programs will interact with this counter solely via its interface. E.g.

// prints out 0,1,6 when executed
def program(c: Counter[IO]): IO[Unit] =
for {
_ <- c.get.flatMap(IO.println)
_ <- c.increment
_ <- c.get.flatMap(IO.println)
_ <- c.increment.replicateA(5).void
_ <- c.get.flatMap(IO.println)

} yield ()

In the next chapter, we will discuss whether it is best to pass the dependency implicitly or explicitly.

object Counter {
def make[F[_]: Functor: Ref.Make]: F[Counter[F]] =

Ref.of[F, Int](0).map { ref =>
new Counter[F] {
def increment: F[Unit] = ref.update(_ + 1)
def get: F[Int] = ref.get

}
}

}

trait Counter[F[_]] {
def increment: F[Unit]
def get: F[Int]

}

import cats.Functor
import cats.effect.kernel.Ref
import cats.syntax.functor._

Programs

Tagless final is all about algebras and interpreters. Yet, something is missing when it comes to writing applications: we
need to use these algebras to describe business logic, and this logic belongs in what I like to call programs.

Although it is not an official name – and it is not mentioned in the original tagless final paper – it is how we will be
referring to such interfaces in this book.

Say we need to increase a counter every time there is a new item added. We could encode it as follows.

Observe the characteristics of this program. It is pure business logic, and it holds no state at all, which in any case,
must be encapsulated in the interpreters. Notice the typeclass constraints as well; it is a good practice to have them
in programs instead of tagless algebras.

…
Moreover, we can discuss typeclass constraints. In this case, we only need Apply to use *> (alias for productR).
However, it would also work with Applicative or Monad. The rule of thumb is to limit ourselves to adopt the least
powerful typeclass that gets the job done.

It is worth mentioning that Apply itself doesn’t specify the semantics of composition solely with this constraint, *>
might combine its arguments sequentially or parallelly, depending on the underlying typeclass instance. To ensure
our composition is sequential, we could use FlatMap instead of Apply.

class ItemsCounter[F[_]: Apply](
 counter: Counter[F],
 items: Items[F]
){
 def addItem(item: Item): F[Unit] =
 items.add(item) *>
 counter.increment
}

Programs can make use of algebras and other programs

Notes

 When adding a typeclass constraint, remember about the principle of least power

Tips

Other kinds of programs might be directly encoded as functions.

Furthermore, we could have programs composed of other programs.

Whether we encode programs in one way or another, they should describe pure business logic and nothing else.
The question is: what is pure business logic? We could try and define a set of rules to abide by. It is allowed to:

• Combine pure computations in terms of tagless algebras and programs.

– Only doing what our effect constraints allows us to do.

• Perform logging (or console stuff) only via a tagless algebra.

– In Chapter 8, we will see how to ignore logging or console stuff in tests, which are most of the time irrelevant in
such context.

You can use this as a reference. However, the answer should come up as a collective agreement within your team.

def program[F[_]: Console: Monad]: F[Unit] =
 for {
 _ <- Console[F].println("Enter your name: ")
 n <- Console[F].readLine
 _ <- Console[F].println(s"Hello $n!")
} yield ()

class MasterMind[F[_]: Console: Monad](
 itemsCounter: ItemsCounter[F],
 counter: Counter[F]
){
 def logic(item: Item): F[Unit] =
 for {
 _ <- itemsCounter.addItem(item)
 c <- counter.get
 _ <- Console[F].println(s"Number of items: $c")
 } yield ()
}

def program(counter: Counter[IO]): IO[Unit] =
for {
_ <- display(counter)
_ <- counter.increment
_ <- display(counter)
_ <- repeat(5){ counter.increment }
_ <- display(counter)

} yield ()

def display(counter: Counter[IO]): IO[Unit] =
counter.get.flatMap(IO.println)

def repeat(n: Int)(action: IO[Unit]): IO[Unit] =
action.replicateA(n).void

def program(c: Counter[IO]): IO[Unit] =
for {
_ <- c.get.flatMap(IO.println)
_ <- c.increment
_ <- c.get.flatMap(IO.println)
_ <- c.increment.replicateA(5).void
_ <- c.get.flatMap(IO.println)

} yield ()

REFACTOR

Let’s refactor a little bit the first program that we came across.

On the next slide, we are going to take that program and wrap it in a tiny application that can be executed.

We are also going to use a little bit of UML, to show how the program uses an algebra (i.e. an interface) implemented by an interpreter.

To do this, we are going to slightly abuse UML, along the lines described by Martin Fowler in https://martinfowler.com/bliki/BallAndSocket.html.

Program

Algebra

Interface Algebra is used (required) by Program.

Interface Algebra is realized (implemented) by Interpreter.Interpreter

Algebra

Program Interpreter

Algebra

Interface Algebra, which is realized (implemented)
by Interpreter, is used (required) by Program.

Algebra

ball

Algebra interface.

In a further twist, I’ll also be putting Algebra inside the ball.

socket

mated socket and ball

valid UML notation

invalid
UML
notation

@philip_schwarz

https://martinfowler.com/bliki/BallAndSocket.html

import cats.effect.IO
import cats.effect.IOApp.Simple

object Application extends Simple {

// prints out 0, 1, 6 when executed
override def run: IO[Unit] =
Counter.make[IO].flatMap(program(_))

private def program(counter: Counter[IO]): IO[Unit] =
for {
_ <- display(counter)
_ <- counter.increment
_ <- display(counter)
_ <- repeat(5){ counter.increment }
_ <- display(counter)

} yield ()

private def display(counter: Counter[IO]): IO[Unit] =
counter.get.flatMap(IO.println)

private def repeat(n: Int)(action: IO[Unit]): IO[Unit] =
action.replicateA(n).void

}

trait Counter[F[_]] {
def increment: F[Unit]
def get: F[Int]

}

AlgebraProgram

object Counter {
def make[F[_]: Functor: Ref.Make]: F[Counter[F]] =
Ref.of[F, Int](0).map { ref =>

new Counter[F] {
def increment: F[Unit] =
ref.update(_ + 1)

def get: F[Int] =
ref.get

}
}

}

Interpreter

Next, we take the mastermind program that we saw earlier, and
use it in a tiny application that tests it a bit.

Because we are going to need it in the next slide, here is a much
pared down version of the Item referenced by the program.

import io.estatico.newtype.macros.newtype

import java.util.UUID

object item {

@newtype case class ItemId(value: UUID)

@newtype case class ItemName(value: String)

@newtype case class ItemDescription(value: String)

case class Item(uuid: ItemId, name: ItemName, description: ItemDescription)
}

class ItemsCounter[F[_]: Apply](
 counter: Counter[F],
 items: Items[F]
){
 def addItem(item: Item): F[Unit] =
 items.add(item) *>
 counter.increment
}

class MasterMind[F[_]: Console: Monad](
 itemsCounter: ItemsCounter[F],
 counter: Counter[F]
){
 def logic(item: Item): F[Unit] =
 for {
 _ <- itemsCounter.addItem(item)
 c <- counter.get
 _ <- Console[F].println(s"Number of items: $c")
 } yield ()
}

trait Counter[F[_]] {
def increment: F[Unit]
def get: F[Int]

}

trait Items[F[_]] {
 def getAll: F[List[Item]]
 def add(item: Item): F[Unit]
}

object TestCounter {
def make[F[_]: Functor: Ref.Make]: F[Counter[F]] =
Ref.of[F, Int[(0).map { ref =>
new Counter[F] {
def increment: F[Unit] =
ref.update(_ + 1)

def get: F[Int] =
ref.get

}
}

object TestItems {
def make[F[_]: Functor : Ref.Make]: F[Items[F]] =
Ref.of[F, Map[ItemId, Item]](Map.empty).map { ref =>
new Items[F] {
def getAll: F[List[Item]] =
ref.get.map(_.values.toList)

def add(item: Item): F[Unit] =
ref.update(_ + (item.uuid -> item))

}
}

}

import cats.effect.IO
import cats.effect.IOApp.Simple
import item.{Item, ItemDescription, ItemId, ItemName}

import java.util.UUID

object TestMasterMindProgram extends Simple {

val item = Item(
ItemId(UUID.fromString("0c69d914-6ff6-11ee-b962-0242ac120002")),
ItemName("Practical FP in Scala"),
ItemDescription("A great book")

)

override def run: IO[Unit] = {
for {

counter <- TestCounter.make[IO]
items <- TestItems.make[IO]
itemsCounter = new ItemsCounter[IO](counter, items)
masterMind = new MasterMind(itemsCounter, counter)

itemsBefore <- items.getAll
countBefore <- counter.get
_ = assert(itemsBefore.isEmpty)
_ = assert(countBefore == 0)

_ <- masterMind.logic(item)

itemsAfter <- items.getAll
countAfter <- counter.get
_ = assert(itemsAfter.sameElements(List(item)))
_ = assert(countAfter == 1)

} yield ()
}

}

Algebra

Interpreter

Program

Algebra

Interpreter

Program

Program

Of course this was just a quick introduction to the Tagless Final technique.

See the book for much more depth, and many other important aspects of using the technique.

The next slide contains just a taster.

Some might question the decision to invest in this technique for a business application, claiming it entails great complexity.

This is a fair concern but let’s ask ourselves, what’s the alternative? Using IO directly in the entire application? By all means,
this could work, but at what cost? At the very least, we would be giving up on parametricity† and the principle of least power.

There is a huge mix of concerns. How can we possibly
reason about this function? How can we even test it? We
got ourselves into a very uncomfortable situation.

Now let’s compare it against the abstract equivalent of
it. Instead of performing side-effects, we have now
typeclass constraints and capabilities.

Teams making use of this technique will immediately understand that all we can do in the body of the constrained function is to compose
Counter, Log, and Time actions sequentially as well as to use any property made available by the Monad constraint. It is true, however, that
the Scala compiler does not enforce it so this is up to the discipline of the team.

Since Scala is a hybrid language, the only thing stopping us from running wild side-effects in this function is self-discipline and peer reviews.
However, good practices are required in any team for multiple purposes, so I would argue it is not necessarily a bad thing, as we can do the same
thing in programs encoded directly in IO.

† https://en.wikipedia.org/wiki/Parametricity

https://en.wikipedia.org/wiki/Parametricity

That’s all. I hope you found it useful.

