
Computer Graphics
in Java and Scala

Part 1

Continuous (Logical) and Discrete (Device) Coordinates

with a simple yet pleasing example involving concentric triangles

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

https://www.slideshare.net/pjschwarz/natural-transformations

The idea of this series of decks is to have fun going through selected topics in books like
Computer Graphics for Java Programmers in order to
• learn (or reacquaint ourselves with) some well established computer graphics techniques
• see some of the Java code that the book uses to illustrate the techniques
• rewrite the code in Scala, hopefully encountering opportunities to use some functional

programming techniques

The subject of this first deck is
• the distinction between continuous (logical) and discrete (device) coordinates
• an example of using the technique to draw an interesting pattern involving triangles

https://www.linkedin.com/in/leen-ammeraal-b97b968/ https://profiles.utdallas.edu/kang.zhang

Leen Ammeraal Kang Zhang

@philip_schwarz

https://www.linkedin.com/in/leen-ammeraal-b97b968/
https://profiles.utdallas.edu/kang.zhang

0 1 2 3 4 5 6 7 𝑥

0 ˙ ˙ ˙ ˙ ˙ ˙ ˙ ˙
1 ˙ ˙ ˙ ˙ ˙ ˙ ˙ ˙
2 ˙ ˙ ˙ ˙ ˙ ˙ ˙ ˙
3 ˙ ˙ ˙ ˙ ˙ ˙ ˙ ˙
𝑦

Fig 1.2 Pixels as
coordinates in a 8×4
canvas (with 𝐦𝐚𝐱𝐗 = 7
and 𝐦𝐚𝐱𝐘 = 3).

The following program lines in the paint method show how to obtain the canvas dimensions and how to
interpret them:

Dimension d = getSize();
int maxX = d.width – 1;
int maxY = d.height – 1;

The getSize method of Component (a superclass of Canvas) supplies us with the numbers of pixels on horizontal
and vertical lines of the canvas. Since we start counting at zero, the highest pixel numbers, maxX and maxY, on
these lines are one less than these numbers of pixels.
…
Figure 1.2 illustrates this for a very small canvas, which is only 8 pixels wide and 4 pixels high, showing a much
enlarged screen grid structure. It also shows that the line connecting the points 0,0 and 7,3 is approximated
by a set of eight pixels.

d.width = 8

d.height = 4

1.2 Logical Coordinates

The Direction of the y-axis

As Fig 1.2 shows, the origin of the device-coordinate systems lies at the top-left corner of the canvas, so that
the positive y-axis points downward.

This is reasonable for text output, that starts at the top and increases y as we go to the next line of text.

However, this direction of the y-axis is different from typical mathematical practice and therefore often
inconvenient in graphics applications.

For example, in a discussion about a line with a positive slope, we expect to go upward when moving along this
line from left to right.

Fortunately we can arrange for the positive y direction to be reversed by performing this simple
transformation:

𝑦! = 𝒎𝒂𝒙𝒀 − 𝑦

Fig 1.2

Continuous Versus Discrete Coordinates
Instead of the discrete (integer) coordinates at the lower, device-oriented level, we often wish to use
continuous (floating-point) coordinates at the higher, problem-oriented level. Other useful terms are device
and logical coordinates, respectively.

Writing conversion routines to compute device coordinates from the corresponding logical ones and vice versa
is a little bit tricky. We must be aware that there are two solutions to this problem: rounding and truncating,
even in the simple case in which increasing a logical coordinate by one results in increasing the device
coordinate also by one. We wish to write the following methods:

𝑖𝑋 𝑥 , 𝑖𝑌 𝑦 : 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝒍𝒐𝒈𝒊𝒄𝒂𝒍 𝒄𝒐𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔 𝒙 𝑎𝑛𝑑 𝒚 𝑡𝑜 𝒅𝒆𝒗𝒊𝒄𝒆 𝒄𝒐𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔;
𝑓𝑥 𝑋 , 𝑓𝑦 𝑌 : 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝒅𝒆𝒗𝒊𝒄𝒆 𝒄𝒐𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔 𝑿 𝑎𝑛𝑑 𝒀 𝑡𝑜 𝒍𝒐𝒈𝒊𝒄𝒂𝒍 𝒄𝒐𝒐𝒓𝒅𝒊𝒏𝒂𝒕𝒆𝒔.

One may notice that we have used lower-case letters to represent logical coordinates and capital letters to
represent device coordinates. This will be the convention used throughout this book. With regard to x-
coordinates, the rounding solution could be:

int iX(float x) { return Math.round(x); }
float fx(int x) { return (float)x; }

For example, with this solution we have:

𝑖𝑋 2.8 = 3
𝑓𝑥 3 = 3.0

The i in 𝑖𝑋 is due to the function
returning an int. Similarly for
𝑓𝑥, which returns a float.

The truncating solution could be:

int iX(float x) { return (int)x; } // Not used in
float fx(int x) { return (float)x + 0.5F; } // this book

With these conversion functions, we would have

𝑖𝑋 2.8 = 2
𝑓𝑥 2 = 2.5

We will use the rounding solution throughout this book, since it is the better choice if logical coordinates
frequently happen to be integer values. In these cases the practice of truncating floating-point numbers will
often lead to worse results than those with rounding.

Apart from the above methods 𝑖𝑋 and 𝑓𝑥 (based on rounding), for x-coordinates, we need similar methods for
y-coordinates, taking into account the opposite direction of the two y-axes. At the bottom of the canvas, the
device y-coordinate is maxY, while the logical y-coordinate is 0, which may explain the two expressions of the
form maxY - … in the following methods:

int iX(float x) { return Math.round(x); }
int iY(float y) { return maxY - Math.round(y); }
float fx(int x) { return (float)x; }
float fy(int y) { return (float)(maxY - y); }

Figure 1.4 shows a fragment of a canvas, based on maxY=16.
The pixels are drawn as black dots, each placed at the center of a square of dashed lines, and the device coordinates
(X,Y) are placed between parentheses near each dot. For example, the pixel with device coordinates (8,2) at the
upper-right corner of this canvas fragment, has logical coordinates (8.0, 14.0). We have

iX(8.0) = Math.round(8.0) = 8
iY(14.0) = 16 - Math.round(14.0) = 2
fx(8) = (float)8 = 8.0
fy(2) = (float)(16 - 2) = 14.0

The dashed square around this dot denotes all points (x,y) satisfying:

7.5 ≤ 𝑥 < 8.5
13.5 ≤ 𝑦 < 14.5

All these points are converted to the pixel (8,2)
by our methods 𝑖𝑋 and 𝑖𝑌. Let us demonstrate
this way of converting floating-point logical
coordinates to integer device coordinates in a
program that begins by drawing an equilateral
triangle ABC, with the side AB at the bottom
and the point C at the top. Then using

q = 0.05
p = 1 − q = 0.95

We compute the new points A’, B’ and C’ near A, B and C

(5, 2) (6, 2) (7, 2) (8, 2)

(5, 3) (6, 3) (7, 3) (8, 3)

(5, 4) (6, 4) (7, 4) (8, 4)

5.0 6.0 7.0 8.0

14.0

13.0

12.0

Figure 1.4 Logical and device coordinates, based on maxY = 16

𝑦

𝑥

logical device

and lying on the sides AB, BC and CA respectively, writing:

xA1 = p * xA + q * xB;
yA1 = p * yA + q * yB;
xB1 = p * xB + q * xC;
yB1 = p * yB + q * yC;
xC1 = p * xC + q * xA;
yC1 = p * yC + q * yA;

We then draw the triangle A’B’C’, which is slightly smaller than ABC and turned a little counter-clockwise.
Applying the same principle to triangle A’B’C’ to obtain a third triangle A’’B’’C’’, and so on, until 50 triangles have
been drawn, the result will be as shown in Fig 1.5. If we change the dimensions of the window, new equilateral
triangles appear, again in the center of the canvas and with dimensions proportional to the size of this canvas.

Figure 1.5 Triangles, drawn inside each other

The next slide shows the Java
code for the whole program.

@philip_schwarz

import java.awt.*;

public class CvTriangles extends Canvas {
int maxX, maxY, minMaxXY, xCenter, yCenter;

void initgr() {
Dimension d = getSize();
maxX = d.width - 1; maxY = d.height - 1;
minMaxXY = Math.min(maxX, maxY);
xCenter = maxX / 2; yCenter = maxY / 2;

}

int iX(float x) { return Math.round(x); }
int iY(float y) { return maxY - Math.round(y); }

public void paint(Graphics g) {
initgr();
float side = 0.95F * minMaxXY, sideHalf = 0.5F * side,

h = sideHalf * (float) Math.sqrt(3),
xA, yA, xB, yB, xC, yC, xA1, yA1, xB1, yB1, xC1, yC1, p, q;

q = 0.05F; p = 1 - q;
xA = xCenter - sideHalf; yA = yCenter - 0.5F * h;
xB = xCenter + sideHalf; yB = yA;
xC = xCenter; yC = yCenter + 0.5F * h;
for (int i = 0; i < 50; i++) {

g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));
g.drawLine(iX(xB), iY(yB), iX(xC), iY(yC));
g.drawLine(iX(xC), iY(yC), iX(xA), iY(yA));
xA1 = p * xA + q * xB; yA1 = p * yA + q * yB;
xB1 = p * xB + q * xC; yB1 = p * yB + q * yC;
xC1 = p * xC + q * xA; yC1 = p * yC + q * yA;
xA = xA1; xB = xB1; xC = xC1;
yA = yA1; yB = yB1; yC = yC1;

}
}

}

// Triangles.java: This program draws 50
// triangles inside each other.
public class Triangles extends Frame {

public static void main(String[] args) {
new Triangles();

}

Triangles() {
super("Triangles: 50 triangles inside each other");
addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit(0);

}
});
setSize(600, 400);
add("Center", new CvTriangles());
setVisible(true);

}
}

Without floating-point logical coordinates and
with a y-axis pointing downward, this program
would have been less easy to write.

Let’s rewrite that Java code in Scala, beginning with the code section which given a starting
triangle, draws the triangle and then proceeds to repeatedly, first shrink and twist the
triangle, and then draw it, thus generating and drawing 49 more concentric triangles.

While the Java code uses a java.awt.Canvas, the Scala code uses a javax.swing.JPanel.

class TrianglesPanel extends JPanel:
…
override def paintComponent(g: Graphics): Unit =
…
LazyList.iterate(triangle)(shrinkAndTwist).take(50).foreach(draw)

public class CvTriangles extends Canvas {
…
public void paint(Graphics g) {
…
for (int i = 0; i < 50; i++) {
g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));
g.drawLine(iX(xB), iY(yB), iX(xC), iY(yC));
g.drawLine(iX(xC), iY(yC), iX(xA), iY(yA));
xA1 = p * xA + q * xB; yA1 = p * yA + q * yB;
xB1 = p * xB + q * xC; yB1 = p * yB + q * yC;
xC1 = p * xC + q * xA; yC1 = p * yC + q * yA;
xA = xA1; xB = xB1; xC = xC1;
yA = yA1; yB = yB1; yC = yC1;

}
}

}

Given an initial triangle, we are going to generate a lazy,
potentially infinite, sequence of triangles, in which each
triangle, with the exception of the first one, is the result of
shrinking and twisting the previous triangle.

We then take (materialise) the first 50 triangles of the
sequence and iterate through them, drawing each one in turn.

draw: Triangle => UnitshrinkAndTwist: Triangle => Triangle

A triangle consists of three logical points (points with logical coordinates) A, B and C.

case class Point(x: Float, y: Float)
case class Triangle(a: Point, b: Point, c: Point)

Drawing a triangle amounts to drawing lines AB, BC and CA.

val draw: Triangle => Unit =
case Triangle(a, b, c) =>

drawLine(a, b)
drawLine(b, c)
drawLine(c, a)

To draw a line from logical point A to logical point B, we first compute the coordinates of the corresponding
device points, and then pass those coordinates to the drawLine method provided by the Graphics object.

def drawLine(a: Point, b: Point): Unit =
val (ax,ay) = a.deviceCoords(panelHeight)
val (bx,by) = b.deviceCoords(panelHeight)
g.drawLine(ax, ay, bx, by)

Here is how we enrich a logical point with a deviceCoords function that takes the logical coordinates of the
point and computes the corresponding device coordinates:

extension (p: Point)
def deviceCoords(panelHeight: Int): (Int, Int) =

(Math.round(p.x), panelHeight - Math.round(p.y))

The deviceCoords function is our Scala equivalent of Java functions iX and iY	:

int iX(float x) { return Math.round(x); }
int iY(float y) { return maxY - Math.round(y); }

LazyList.iterate(triangle)(shrinkAndTwist).take(50).foreach(draw)

xA1 = p * xA + q * xB; yA1 = p * yA + q * yB;
xB1 = p * xB + q * xC; yB1 = p * yB + q * yC;
xC1 = p * xC + q * xA; yC1 = p * yC + q * yA;
xA = xA1; xB = xB1; xC = xC1;
yA = yA1; yB = yB1; yC = yC1;

val shrinkAndTwist: Triangle => Triangle =
val q = 0.05F
val p = 1 - q
def combine(a: Point, b: Point) = Point(p * a.x + q * b.x, p * a.y + q * b.y)
{ case Triangle(a,b,c) => Triangle(combine(a,b), combine(b,c), combine(c,a)) }

As for the Java code that shrinks and twists a triangle, in our
Scala code, we encapsulate it in function shrinkAndTwist.

q = 0.05F; p = 1 - q;

float …
xA, yA, xB, yB, xC, yC, xA1,
yA1, xB1, yB1, xC1, yC1,
p, q;

@philip_schwarz

float side = 0.95F * minMaxXY, sideHalf = 0.5F * side,
h = sideHalf * (float) Math.sqrt(3),
…;

int maxX, maxY, minMaxXY, xCenter, yCenter;

void initgr() {
Dimension d = getSize();
maxX = d.width - 1; maxY = d.height - 1;
minMaxXY = Math.min(maxX, maxY);
xCenter = maxX / 2; yCenter = maxY / 2;

}

val panelSize: Dimension = getSize()
val panelWidth = panelSize.width - 1
val panelHeight = panelSize.height - 1
val panelCentre = Point(panelWidth / 2, panelHeight / 2)
val triangleSide = 0.95F * Math.min(panelWidth, panelHeight)
val triangleHeight = (0.5F * triangleSide) * Math.sqrt(3).toFloat

val triangle = makeTriangle(panelCentre,
triangleSide,
triangleHeight)

xA = xCenter - sideHalf; yA = yCenter - 0.5F * h;
xB = xCenter + sideHalf; yB = yA;
xC = xCenter; yC = yCenter + 0.5F * h;

As for the Java code that computes the first triangle from the dimensions
of the Canvas on which it is going to be drawn, here it is, together with the
corresponding Scala code, which draws on a JPanel.

object Triangle:
def apply(centre: Point, side: Float, height: Float): Triangle =

val Point(x,y) = centre
val halfSide = 0.5F * side
val bottomLeft = Point(x - halfSide, y - 0.5F * height)
val bottomRight = Point(x + halfSide, y - 0.5F * height)
val top = Point(x, y + 0.5F * height)
Triangle(bottomLeft,bottomRight,top)

class Triangles:
JFrame.setDefaultLookAndFeelDecorated(true)
val frame = new JFrame("Triangles: 50 triangles inside each other")
frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE)
frame.setSize(600, 400)
frame.add(TrianglesPanel())
frame.setVisible(true)

@main def main: Unit =
// Create a panel on the event dispatching thread
SwingUtilities.invokeLater(
new Runnable():
def run: Unit = Triangles()

)

public class Triangles extends Frame {

public static void main(String[] args) {
new Triangles();

}

Triangles() {
super("Triangles: 50 triangles inside each other");
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit(0);

}
});
setSize(600, 400);
add("Center", new CvTriangles());
setVisible(true);

}
}

And finally, let’s translate the rest of the
code, which creates the application’s frame.

Now let’s run the Scala program,
to verify that it works OK.

@philip_schwarz

Now let’s run the program again
after temporarily tweaking it so
that each side of a triangle is
drawn in a different colour.

And now let’s repeat that,
but with different colours
and a black background.

The next slide shows our Scala code in its
entirety, and the subsequent slide shows the
whole of the Java code again, for comparison.

class TrianglesPanel extends JPanel:

setBackground(Color.white)

override def paintComponent(g: Graphics): Unit =

super.paintComponent(g)

val panelSize: Dimension = getSize()
val panelWidth = panelSize.width - 1
val panelHeight = panelSize.height - 1
val panelCentre = Point(panelWidth / 2, panelHeight / 2)
val triangleSide: Float = 0.95F * Math.min(panelWidth, panelHeight)
val triangleHeight: Float = (0.5F * triangleSide) * Math.sqrt(3).toFloat

val shrinkAndTwist: Triangle => Triangle =
val q = 0.05F
val p = 1 - q
def combine(a: Point, b: Point) = Point(p * a.x + q * b.x, p * a.y + q * b.y)
{ case Triangle(a,b,c) => Triangle(combine(a,b), combine(b,c), combine(c,a)) }

def drawLine(a: Point, b: Point): Unit =
val (ax,ay) = a.deviceCoords(panelHeight)
val (bx,by) = b.deviceCoords(panelHeight)
g.drawLine(ax, ay, bx, by)

val draw: Triangle => Unit =
case Triangle(a, b, c) =>
drawLine(a, b)
drawLine(b, c)
drawLine(c, a)

val triangle = Triangle(panelCentre, triangleSide, triangleHeight)

LazyList.iterate(triangle)(shrinkAndTwist).take(50).foreach(draw)

class Triangles:
JFrame.setDefaultLookAndFeelDecorated(true)
val frame =
new JFrame("Triangles: 50 triangles inside each other")

frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE)
frame.setSize(600, 400)
frame.add(TrianglesPanel())
frame.setVisible(true)

@main def main: Unit =
// Create a panel on the event dispatching thread
SwingUtilities.invokeLater(
new Runnable():
def run: Unit = Triangles()

)

case class Point(x: Float, y: Float)

extension (p: Point)
def deviceCoords(panelHeight: Int): (Int, Int) =
(Math.round(p.x), panelHeight - Math.round(p.y))

object Triangle:
def apply(centre: Point, side: Float, height: Float): Triangle =
val Point(x,y) = centre
val halfSide = 0.5F * side
val bottomLeft = Point(x - halfSide, y - 0.5F * height)
val bottomRight = Point(x + halfSide, y - 0.5F * height)
val top = Point(x, y + 0.5F * height)
Triangle(bottomLeft,bottomRight,top)

case class Triangle(a: Point, b: Point, c: Point)

public class CvTriangles extends Canvas {
int maxX, maxY, minMaxXY, xCenter, yCenter;

void initgr() {
Dimension d = getSize();
maxX = d.width - 1; maxY = d.height - 1;
minMaxXY = Math.min(maxX, maxY);
xCenter = maxX / 2; yCenter = maxY / 2;

}

int iX(float x) { return Math.round(x); }
int iY(float y) { return maxY - Math.round(y); }

public void paint(Graphics g) {
initgr();
float side = 0.95F * minMaxXY, sideHalf = 0.5F * side,

h = sideHalf * (float) Math.sqrt(3),
xA, yA, xB, yB, xC, yC, xA1, yA1, xB1, yB1, xC1, yC1, p, q;

q = 0.05F; p = 1 - q;
xA = xCenter - sideHalf; yA = yCenter - 0.5F * h;
xB = xCenter + sideHalf; yB = yA;
xC = xCenter; yC = yCenter + 0.5F * h;
for (int i = 0; i < 50; i++) {

g.drawLine(iX(xA), iY(yA), iX(xB), iY(yB));
g.drawLine(iX(xB), iY(yB), iX(xC), iY(yC));
g.drawLine(iX(xC), iY(yC), iX(xA), iY(yA));
xA1 = p * xA + q * xB; yA1 = p * yA + q * yB;
xB1 = p * xB + q * xC; yB1 = p * yB + q * yC;
xC1 = p * xC + q * xA; yC1 = p * yC + q * yA;
xA = xA1; xB = xB1; xC = xC1;
yA = yA1; yB = yB1; yC = yC1;

}
}

}

// Triangles.java: This program draws 50
// triangles inside each other.
public class Triangles extends Frame {

public static void main(String[] args) {
new Triangles();

}

Triangles() {
super("Triangles: 50 triangles inside each other");
addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {
System.exit(0);

}
});
setSize(600, 400);
add("Center", new CvTriangles());
setVisible(true);

}
}

That’s all for now.
See you in Part 2.

@philip_schwarz

