
The Expression Problem
understand the expression problem

see Haskell and Scala code illustrating the problem
Learn how FP typeclasses can be used to solve the problem

see the Haskell solution to the problem and a translation into Scala
Part 2

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

Haskell

based on the work of

Ralf Lämmel
@reallynotabba

Scala

https://www.slideshare.net/pjschwarz/natural-transformations

We begin Part 2 with the last slide from Part 1,
which defines the expression problem.

@philip_schwarz

Cc: Philip Wadler <wadler@research.bell-labs.com>
Subject: The Expression Problem
Date: Thu, 12 Nov 1998 14:27:55 -0500
From: Philip Wadler <wadler@research.bell-labs.com>

The Expression Problem
Philip Wadler, 12 November 1998

The Expression Problem is a new name for an old problem. The goal is
to define a datatype by cases, where one can add new cases to the
datatype and new functions over the datatype, without recompiling
existing code, and while retaining static type safety (e.g., no
casts). For the concrete example, we take expressions as the data
type, begin with one case (constants) and one function (evaluators),
then add one more construct (plus) and one more function (conversion
to a string).

Whether a language can solve the Expression Problem is a salient
indicator of its capacity for expression. One can think of cases as
rows and functions as columns in a table. In a functional language,
the rows are fixed (cases in a datatype declaration) but it is easy to
add new columns (functions). In an object-oriented language, the
columns are fixed (methods in a class declaration) but it is easy to
add new rows (subclasses). We want to make it easy to add either rows
or columns.
…

https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

Computer Scientist Philip Wadler

Here is the definition of
the Expression Problem.

https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

This deck is going to be largely based on extracts from two talks given by Ralf Lämmel

1. The Expression Problem
2. Advanced Functional Programming – Type Classes

The talks can be found here:

https://web.archive.org/web/20100907194522/http://channel9.msdn.com/tags/C9+Lectures/

And slides can be found here:

• https://userpages.uni-koblenz.de/~laemmel/paradigms1011/resources/pdf/xproblem.pdf
• https://userpages.uni-koblenz.de/~laemmel/paradigms1011/resources/pdf/typeclasses.pdf

https://web.archive.org/web/20100907194522/http://channel9.msdn.com/tags/C9+Lectures/
https://userpages.uni-koblenz.de/~laemmel/paradigms1011/resources/pdf/xproblem.pdf
https://userpages.uni-koblenz.de/~laemmel/paradigms1011/resources/pdf/typeclasses.pdf

The Expression Problem is an interesting software extensibility challenge.

It is interesting for us in this context because it helps us study some subtle
differences between OOP and FP.

And in fact it will allow me, not today, but perhaps in the next presentation, to
bring up some new supernatural powers of Haskell, because it is a real
challenge, and it turns out that this challenge can be addressed with some
designated Haskell expressiveness.

The Expression Problem
Ralf Lämmel

Software Language Engineer
University of Koblenz-Landau

Germany
Ralf Lämmel

@reallynotabba

Ralf Lämmel
@reallynotabba

Let me explain the problem first. We are at the Haskell prompt and we are entering some expressions. In fact we are playing with an
expression language.

We have constant expressions.

> let x = Const 40
> let y = Const 2

We have addition expressions.

> let z = Add x y

So we can build arithmetic expressions. We use the constructors of an Algebraic Data Type (ADT). We construct terms and those terms
denote arithmetic expressions.

As you see, we can pretty print those expressions.

> prettyPrint z
"40 + 2"

And we can also evaluate those expressions.

> evaluate z
42

So no big deal. The question that leads to the expression problem is:

How can we program such an interpreter and such a pretty printer, how can we implement such an expression language, so that
later on we can easily add more expression forms, such as subtraction or negation, and we can also easily add more operations,
such as optimization and code generation? How can we set up our programming style so that such extensions are possible?

That is the expression problem.

Ralf Lämmel
@reallynotabba

Here is an expression problem summary.

• Program = data + operations

• There could be many data variants.

e.g. expression forms: constant, addition.

• There could be many operations.

e.g. pretty printing, evaluation.

• Data and operations should be extensible.

The expression problem is whether or not, and if so how, we can add data variants and operations.

This sounds like a simple problem, but as you will see, it is not so easy to address this problem in a satisfactory
manner in functional and OO programming.

At least not as long as we are limiting ourselves to basic functional programming and basic OO programming.

Ralf Lämmel
@reallynotabba

I should make sure that we have some shared understanding of what I mean by
extensibility, being extensible in the data dimension and the operation dimension.

What I mean by that is that we should take care of at least three requirements:

1. Code-level modularization

If you have a given program and you want to extend it, then this extension should
be in a new code unit, we shoud not allow ourselves to extend the program by
going back into existing code units and editing them. This is what we mean by
extensibility, that we do not touch existing code.

2. Separate compilation

We want our basic program and our extensions to be true modules in the sense of
compilation and deployment. So suppose we have a program, we compile it and
we ship it, it is running at the customer site. Now the customer requests an
extension to the program, then we should be able to develop this extension by
means of another module which we can compile in separation. We don’t have to
recompile anything that was there before, and so we can deliver the extension to
the customer just by shipping that new module for the extension.

3. Static type safety

Suppose we are using a language like C# or Java, with some sophisticated means
of type checking to help us with avoiding certain types of programming errors,
then we want to preserve that type checking power even in the view of
extensibility. Just because our program is becoming extensible, we don’t want to
compromise on type safety.

Extensibility

Three Requirements:
1. Code-level modularization
2. Separate compilation
3. Static type safety

Evaluator module

PrettyPrinter module

Data module

module Data where

data Expr = Const Int | Add Expr Expr

module Evaluator where

import Data

evaluate :: Expr -> Int
evaluate (Const i) = i
evaluate (Add l r) = evaluate l + evaluate r

module PrettyPrinter where

import Data

prettyPrint :: Expr -> String
prettyPrint (Const i) = show i
prettyPrint (Add l r) = prettyPrint l ++ " + " ++ prettyPrint r

Pretty printing and evaluating expressions with Haskell

1st module

one operation

3rd module

Ralf Lämmel
@reallynotabba

So we have this chain of extensions, if you like.

We start with the Data module.

On top of that first module, we define a
second module for the prettyPrint operation.

And on top of that second module we define a
third module for the evaluation operation.

data variants

2nd module

another operation

On the next slide we translate
that Haskell program into Scala.

@philip_schwarz

object Data:

enum Expr:
case Const(i: Int)
case Add(l: Expr, r: Expr)

module Data where

data Expr =
Const Int |
Add Expr Expr

module Evaluator where

import Data

evaluate :: Expr -> Int
evaluate (Const i) = i
evaluate (Add l r) = evaluate l + evaluate r

import Data.Expr, Expr._

object Evaluator:

def evaluate(expr: Expr): Int = expr match
case Const(i) => i
case Add(l,r) => evaluate(l) + evaluate(r)

module PrettyPrinter where

import Data

prettyPrint :: Expr -> String
prettyPrint (Const i) = show i
prettyPrint (Add l r) = "(" ++ prettyPrint l ++ " + " ++

prettyPrint r ++ ")"

import Data.Expr, Expr._

object PrettyPrinter:

def prettyPrint(expr: Expr): String = expr match
case Const(i) => i.toString
case Add(l,r) => "(" ++ prettyPrint(l) ++ " + " ++

prettyPrint(r) ++ ")"

main :: IO ()
main = let expression = (Add (Const 2) (Add (Const 3) (Const 4)))

in do print (prettyPrint expression)
print (evaluate expression)

@main def main: Unit =
val expression: Expr = Add(Const(2),Add(Const(3),Const(4)))
println(prettyPrint(expression))
println(evaluate(expression))

scala> main
(2 + (3 + 4))
9

haskell> main
"(2 + (3 + 4))"
9

Ralf Lämmel
@reallynotabba

The situation that we have with basic functional programming is that it is easy to carry out
operation extensions, as we have just demonstrated, it is easy to perform new functions on
existing data. It is however not easy to perform data extensions.

So why is that, and what do I mean by data extension?

Well, by data extension I mean of course that we could add another data variant, another
expression form, without touching existing code, and we can also make sure that all the
existing operations, like in our example, let’s say, pretty printing, works for this new expression
form.

Why is this not easy, or even possible in basic functional programming?

It is because algebraic data types are closed, and in fact, also recursive function definitions,
defined by pattern matching are closed too, in basic functional programming, and because
they are closed, there is no way, in a module that is laid on top of the basic data variants, to add
data variants, there is just no way to do this.

Again, we could of course go back to the data module and patch it, but this is not extensibility
because we would touch existing code units.

So this is interesting: with functional programming we only get operation extensions easily, but
we don’t get data extensions easily.

It is easy to add operations in basic
functional programming.

It is not so easy to add data variants
(without touching existing code).

Some expression forms
with pretty printing

More expression forms
with pretty printing

Some expression forms
with pretty printing and
expression evaluation

Data
extension

Operation
extension ✅

❌

In the next part of his talk on the Expression Problem, Ralf Lämmel
uses C# as an OOP language.

Instead of showing his C# code examples, we’ll show the equivalent
Scala code (the language supports both OOP and FP).

Ralf Lämmel
@reallynotabba

Now let’s try the same experiment with Scala.

In Scala you might think we could start from these classes here, so these classes would
more or less resemble the algebraic data type of our Haskell development…

You might think that this is a good initial program: we compile it, we ship it, the customer
uses it, and now the customer says: hey, this is a great program, but I would like to have
an evaluator for this program, and then we say OK, no problem, we just have to add an
evaluate method to those classes.

Well, that’s where we are in trouble, because how do we do this? We have to violate
separate compilation, right? In order to supply an extension for evaluation we would
need to touch this code and add another method to it, we would have to recompile and
ship those classes again to the customer, and he would need to throw away those existing
classes and install a new version.

This is bad extensibility. But remember, this was easy with Haskell: we could easily add
prettyPrinting and subsequently evaluation, so with OOP we fail to do operation
extensions, even though they were easy with Haskell.

trait Expr:
def prettyPrint: String

case class Const(i: Int) extends Expr:
def prettyPrint: String = i.toString

case class Add(l: Expr, r: Expr) extends Expr:
def prettyPrint: String = "(" + l.prettyPrint + " + " +

r.prettyPrint + ")"

@main def main: Unit =
val expr: Expr = Add(Const(2),Add(Const(3),Const(4)))
println(expr.prettyPrint)

scala> main
(2 + (3 + 4))

OK, but we can do something with OOP here that we couldn’t do with FP, we can do data
extensions easily.

We can of course always go and add another class, in this case we add a class Neg for
negation, with one operand for which negation is to be computed, and we add an
implementation to the initial system which already has a few expression forms, and which
also has snapshotted the prettyPrint operation in those classes, so because Expr has a
prettyPrint operation, our implementation Neg also has a prettyPrint operation, no surprise.

This is a data extension. It is more than just the data structure, it also defines the case for all
preexisting operations, in our case we only have one operation, prettyPrint.

So this is interesting, right? We can perform data extensions, as you have just seen. We had
this initial program, with some data variants and some operations, in this case pretty printing,
and we can go and add one data extension, perhaps another data extension, and so on.

Ralf Lämmel
@reallynotabba

case class Neg(expr: Expr) extends Expr:
def prettyPrint: String = "-" + expr. prettyPrint

trait Expr:
def prettyPrint: String

case class Const(i: Int) extends Expr:
def prettyPrint: String = i.toString

case class Add(l: Expr, r: Expr) extends Expr:
def prettyPrint: String = "(" + l.prettyPrint + " + " +

r.prettyPrint + ")"

Data extension for
negation

Initial data variants
with pretty printing

➕

@main def main: Unit =
val expr: Expr = Add(Const(2),Add(Const(3),Const(4)))
println(expr.prettyPrint)
println(Neg(expr).prettyPrint)

scala> main
(2 + (3 + 4))
-(2 + (3 + 4))

➕

➕

Some expression forms
with pretty printing

More expression forms
with pretty printing

Some expression forms
with pretty printing and
expression evaluation

Data
extension

Operation
extension ✅

❌
Some expression forms
with pretty printing

More expression forms
with pretty printing

Some expression forms
with pretty printing and
expression evaluation

Data
extension

Operation
extension

✅

❌ OOP FP

Ralf Lämmel
@reallynotabba

This is interesting, also because it means the situation is pretty much the inverse compared to FP.

So we can do data extension. We can go from a program that covers some expression forms to a program that covers more expression forms.
We couldn’t do that with Haskell. However, we can’t do operation extension in OOP, because we are not supposed to add methods to
existing classes without violating separate compilation.

So it seems like FP and OOP are complementary, which is interesting.

There are two subtle things worth pointing out. You should realise that I quite often say basic OOP and basic FP. And you should also realise
that I say ‘(not so) easy to add’. By basic I mean what you learn in a 101 OOP/FP course. If you go nuts and use every weapon available you can
also get operation extensibility in OOP. And then when I say it is not so easy to add operations, this is part of the same story: if you are willing
to engage in sophisticated encodings, well then you can get both dimensions of extensibiity, but the point is that you don’t want to do crazy
things, you want to use relatively straightforward idioms and design patterns, and still like to get both dimensions of extensibility.

It is easy to add operations in basic
functional programming.

It is not so easy to add data variants
(without touching existing code).

It is easy to add data variants in
basic OO programming.

It is not so easy to add operations
(without touching existing code).

Operation
Extension

Data
Extension

OOP ✕ ✓
FP ✓ ✕

Addition of new

Function Type

Polymorphism
Subtype OCP✕ OCP✓

Alternation-based ad-hoc OCP✓ OCP✕

Remember this table from Part 1?

Here is an updated version that uses
the same terminology seen in the
two diagrams on the previous slide.

In the presentation called The Expression Problem, Ralf Lämmel
does not cover the solution to the problem.

The presentation in which he does that is called Advanced
Functional Programming – Type Classes.

Summary

How are we supposed to design a program so that we can achieve
both data extensibility and operation extensibility?

What language concepts help us achieve both dimensions of
extensibility (and separate compilation and static type safety)?

Ralf Lämmel
@reallynotabba

Let’s solve the
expression problem

with open data types and
open functions.

Ralf Lämmel
@reallynotabba

Remember again what it means to solve the expression problem.

It means that we can do data extensions and operation extensions, and we convinced
ourselves that operation extensions are straightforward in Haskell, or any FP language,
because it is easy to define new functions in an FP language.

The hard part is to do data extension in an FP language. Data extensibility is difficult
because the standard algebraic data types of Haskell and other languages in the functional
paradigm are closed.

We need to open up data types.

We need some encoding scheme to get open data types, and this is what type classes will
provide us with.

And then remember, it is not enough just to be able to have new data variants, to have
open data types, no, we also need to open up functions, because the functions, whenever
there is a new data variant, the existing functions also need to pick up this new data variant.

We need open data types and open functions.

Ralf Lämmel
@reallynotabba

Let’s start from the closed situation.

There are two constructors and one
of them, Add, is recursive.

Point of reference:
the closed datatype

data Expr = Const Int
| Add Expr Expr

Point of reference:
the closed function

evaluate :: Expr -> Int
evaluate (Const i) = i
evaluate (Add l r) = evaluate l + evaluate r

This is the function for which we want to achieve data
extensibility, but this is of course, to start with, the closed
version of it.

There is one equation per datatype constructor, and there
are recursive function applications.

So this is the reference implementation, except, it is
not extensible with regard to data variants.

We need to open it up.

Here is how typeclasses help us to come up with open data
types.

This is a certain scheme, so let me explain this scheme in detail.

Ralf Lämmel
@reallynotabba

class Expr x
instance Expr Const
instance (Expr l, Expr r) => Expr (Add l r)

The open datatype

data Const = Const Int
data Add l r = Add l r

What we do here is we start from the closed data type

data Expr = Const Int
| Add Expr Expr

and we take its constructors, and we define one data type for each constructor.

So now you see there are two distinct data types, one for each of the original constructors.

And then the second part of the encoding scheme is to use a typeclass to model the original data type. We had an algebraic data
type (ADT) Expr. Now, to make it open, we replace the ADT Expr with typeclass Expr.

And then we have to say what types are expression types, and there are these types here, Const types and Add types. We have two
instance types, one instance for each original constructor. And then because Add types are recursive again, we need to add the
appropriate constraints here so that we say, if you form an Add type from two other subexpression types l and r, please make sure
that the subexpression types are also Expr types. This is what the constraint says.

This is the scheme to define an open data type. What is remarkable about this definition is that there are no typeclass members
involved and that’s because we only want to model the data type, we don’t yet want to model any operation, we don’t want to
anticipate any operations here. That will be the next step, to define operations on top of this data type. This is only the data type.

data Const = Const Int
data Add l r = Add l r

class Expr x
instance Expr Const
instance (Expr l, Expr r) => Expr (Add l r)

Ralf Lämmel
@reallynotabba

Here is the beginning of the open function for evaluation. It is going to be an open function, so we
can’t expect to see a regular function, rather, we use a function that is a typeclass member, so we
designate a typeclass Evaluate to the evaluate function.

Were we now have x in evaluate :: x -> Int, we previously had Expr, the closed algebraic data
type Expr. Now, we are polymorphic in the type x here, but we constrain the type to be an Expr type.

So this is how we go from the closed function signature to the open function signature.

Ralf Lämmel
@reallynotabba

class Expr x => Evaluate x

where

evaluate :: x -> Int

The open function
(type-class declaration) Point of reference:

the closed function

evaluate :: Expr -> Int
evaluate (Const i) = i
evaluate (Add l r) = evaluate l + evaluate r

Now here is the rest of it. Here are the instances for the Evaluate typeclass. Obviously there are two typeclass
instances because we have two expression forms

These are exactly the definitions as we had them before in the closed model, where we had equations, the
only difference is that these definitions here are not just the plain list of equations, but rather, they are
integrated into this system of instances, and these instances make sure that these definitions apply to the
appropriate expression forms.

Because we recurse on the subexpressions of Add, we have to make sure that the types of the subexpressions
are such that we can perform Evaluation, so again we have a constraint in the instance for Add.

Ralf Lämmel
@reallynotabba

The open function
(type-class instances)

instance Evaluate Const

where

evaluate (Const i) = i

instance (Evaluate l, Evaluate r) => Evaluate (Add l r)

where

evaluate (Add l r) =

evaluate l + evaluate r

Point of reference:
the closed function

evaluate :: Expr -> Int
evaluate (Const i) = i
evaluate (Add l r) = evaluate l + evaluate r

The open function
(typeclass declaration)

class Expr x => Evaluate x

where

evaluate :: x -> Int

We have solved the Expression Problem. We have open data types, we have open functions, and so we can define any number of open
functions, so we have solved the problem.

But let’s just illustrate it, that we can indeed perform data extensions in such a setup.

It is very easy. It is three steps:

1. Declare a designated datatype for the data variant
2. Instantiate the typeclass for the open datatype
3. Instantiate all typeclasses for existing operations

We first need to come up with a new data type, whenever there is a new data variant. We want to have negation, so we define a new data
type with the constructor Neg, and we constrain it so that it is an Expr type.

Then we register this data type with the typeclass for expression forms, we say yes, negation is indeed an expression type.

And then we say well, let’s see what operations are around, well we have an operation Evaluate and so we instantiate Evaluate for
negation, and we just implement the evaluation for negation as we would do in the closed model, there is nothing special.

Ralf Lämmel
@reallynotabba

data Expr x => Neg x = Neg x

instance Expr x => Expr (Neg x)

instance Evaluate x => Evaluate (Neg x)

where

evaluate (Neg x) = 0 - evaluate x

a data extension

1

2

3

1

2

3

Expression Problem Summary

How are we supposed to design a program so that we can achieve
both data extensibility and operation extensibility?

What language concepts help us achieve both dimensions of
extensibility (and separate compilation and static type safety)?

Let’s solve the
expression problem

with open data types and
open functions. Operation

Extension
Data

Extension

OOP ✕ ✓

FP ✓ ✓

By the way, when I tried to compile that code, I got an error that suggested enabling the -XDatatypeContexts feature, but then I got this:

Main.hs:2:14: warning:
-XDatatypeContexts is deprecated: It was widely considered a misfeature, and has been removed from the Haskell language.

|
2 | {-# LANGUAGE DatatypeContexts #-}
| ^^^^^^^^^^^^^^^^

So in the code, I replaced

data Expr x => Neg x = Neg x

with

data Neg x = Neg x

@philip_schwarz

The next slide shows the whole of the Haskell code solving the
expression problem, plus a prettyPrint function.

It also shows how the solution code supports both operation
extension and data extension.

data Const = Const Int
data Add l r = Add l r

class Expr x

class Expr x => Evaluate x
where evaluate :: x -> Int

data Neg x = Neg x

instance Expr x => Expr (Neg x)

instance Evaluate x => Evaluate (Neg x)
where evaluate (Neg x) = 0 - evaluate x

instance Expr Const
instance (Expr l, Expr r) => Expr (Add l r)

instance Evaluate Const
where evaluate (Const i) = i

instance (Evaluate l, Evaluate r) =>
Evaluate (Add l r)

where evaluate (Add l r) =
evaluate l + evaluate r

instance PrettyPrinter Const
where prettyPrint (Const i) = prettyPrint i

instance (PrettyPrinter l, PrettyPrinter r) => PrettyPrinter (Add l r)
where prettyPrint (Add l r) =
"(" ++ (prettyPrint l) ++ "+" ++ (prettyPrint r) ++ ")"

instance PrettyPrinter x => PrettyPrinter (Neg x)
where prettyPrint (Neg x) = "-" ++ (prettyPrint x)

class Expr x => PrettyPrinter x
where prettyPrint :: x -> String

data extension – adding the negation expression

first operation extension: adding the evaluate function

Operation Extension

Adding a new function without
modifying existing code

Data Extension

Adding a new expression form
without modifying existing code

second operation extension: adding the prettyPrint function

🕰

1

2

3

four = Const 4
twoPlusThree = Add (Const 2) (Const 3)
twoPlusThreeNegated = Neg twoPlusThree

main :: IO ()
main = do

putStrLn (show (evaluate four))
putStrLn (show (evaluate twoPlusThree))
putStrLn (show (evaluate twoPlusThreeNegated))

putStrLn (show (prettyPrint four))
putStrLn (show (prettyPrint twoPlusThree))
putStrLn (show (prettyPrint twoPlusThreeNegated))

haskell> main
4
5
-5
"4"
"(2+3)"
"-(2+3)"

Let’s take that Haskell
code for a quick spin.

Michael Marte
informarte

https://users.scala-lang.org/t/translating-haskell-expression-problem-solution-to-scala-3/8303/3

Next, I got started having a go at a Scala translation of the Haskell code,
but I soon got stuck, so I asked for suggestions in the Scala users forum.

I received suggestions from both Alex Boisvert and Michael Marte (Thank you
both very much). The next slide is the Scala equivalent of the previous slide, and
consists of my very minor tweaks and additions to Michael’s translation.

🙌

Btw, in order to fit the code onto the slide, I
called the pretty printer typeclass Show.

@philip_schwarz

https://users.scala-lang.org/t/translating-haskell-expression-problem-solution-to-scala-3/8303/3

case class Const(c: Int)
case class Add[A, B](l: A, r: B)

trait Expr[A]

trait Eval[A]:
def eval(a: A)(using expr: Expr[A]): Int

case class Neg[A](a: A)

given [A](using expr: Expr[A]): Expr[Neg[A]] with { }

given [A](using expr: Expr[A], subEval: Eval[A]): Eval[Neg[A]] with
def eval(a: Neg[A])(using expr: Expr[Neg[A]]) = -subEval.eval(a.a)

given Expr[Const] with { }
given [A, B](using leftExpr: Expr[A], rightExpr: Expr[B]): Expr[Add[A, B]] with { }

given Eval[Const] with
def eval(a: Const)(using expr: Expr[Const]) = a.c

given [A, B](using leftExpr: Expr[A], rightExpr: Expr[B],
leftEval: Eval[A], rightEval: Eval[B]): Eval[Add[A, B]] with

def eval(a: Add[A, B])(using expr: Expr[Add[A, B]]) =
leftEval.eval(a.l) + rightEval.eval(a.r)

trait Show[A]:
def show(a: A)(using expr: Expr[A]): String

given Show[Const] with
def show(a: Const)(using expr: Expr[Const]) = a.c.toString

given [A, B](using leftExpr: Expr[A], rightExpr: Expr[B],
leftShow: Show[A], rightShow: Show[B]): Show[Add[A, B]] with

def show(a: Add[A, B])(using expr: Expr[Add[A, B]]) =
"(" ++ leftShow.show(a.l) ++ "+" ++ rightShow.show(a.r) ++ ")"

given [A](using expr: Expr[A], subShow: Show[A]): Show[Neg[A]] with
def show(a: Neg[A])(using expr: Expr[Neg[A]]) = "-" ++ subShow.show(a.a)

data extension – adding the negation expression

first operation extension: adding the evaluate function

Operation Extension

Adding a new function without
modifying existing code

Data Extension

Adding a new expression form
without modifying existing code

second operation extension: adding the prettyPrint function

🕰

1

2

3

def eval[A:Expr:Eval](a: A) = implicitly[Eval[A]].eval(a)
def show[A:Expr:Show](a: A) = implicitly[Show[A]].show(a)

val four = Const(4)
val twoPlusThree = Add(Const(2), Const(3))
val twoPlusThreeNegated = Neg(twoPlusThree)

@main def main: Unit =

println(eval(four))
println(eval(twoPlusThree))
println(eval(twoPlusThreeNegated))

println(show(four))
println(show(twoPlusThree))
println(show(twoPlusThreeNegated))

Let’s take that Scala
code for a quick spin.

scala> main
4
5
-5
4
(2+3)
-(2+3)

The next slide shows the Haskell and
Scala code side by side.

Again, to save space, the pretty
printer typeclass is now called Show.

data Const = Const Int
data Add l r = Add l r

class Expr x

class Expr x => Evaluate x
where evaluate :: x -> Int

data Neg x = Neg x

instance Expr x => Expr (Neg x)

instance Evaluate x => Evaluate (Neg x)
where evaluate (Neg x) = 0 - evaluate x

instance Expr Const
instance (Expr l, Expr r) => Expr (Add l r)

instance Evaluate Const
where evaluate (Const i) = i

instance (Evaluate l, Evaluate r) =>
Evaluate (Add l r)
where evaluate (Add l r) =

evaluate l + evaluate r

instance Show Const
where show (Const i) = show i

instance (Show l, Show r) => Show (Add l r)
where show (Add l r) =
"(" ++ (show l) ++ "+" ++ (show r) ++ ")"

instance Show x => Show (Neg x)
where show (Neg x) = "-" ++ (show x)

class Expr x => Show x
where show :: x -> String

case class Const(c: Int)
case class Add[A, B](l: A, r: B)

trait Expr[A]

trait Eval[A]:
def eval(a: A)(using expr: Expr[A]): Int

case class Neg[A](a: A)

given [A](using expr: Expr[A]): Expr[Neg[A]] with { }

given [A](using expr: Expr[A], subEval: Eval[A]): Eval[Neg[A]] with
def eval(a: Neg[A])(using expr: Expr[Neg[A]]) = -subEval.eval(a.a)

given Expr[Const] with { }
given [A, B](using leftExpr: Expr[A], rightExpr: Expr[B]): Expr[Add[A, B]] with { }

given Eval[Const] with
def eval(a: Const)(using expr: Expr[Const]) = a.c

given [A, B](using leftExpr: Expr[A], rightExpr: Expr[B],
leftEval: Eval[A], rightEval: Eval[B]): Eval[Add[A, B]] with

def eval(a: Add[A, B])(using expr: Expr[Add[A, B]]) =
leftEval.eval(a.l) + rightEval.eval(a.r)

trait Show[A]:
def show(a: A)(using expr: Expr[A]): String

given Show[Const] with
def show(a: Const)(using expr: Expr[Const]) = a.c.toString

given [A, B](using leftExpr: Expr[A], rightExpr: Expr[B],
leftShow: Show[A], rightShow: Show[B]): Show[Add[A, B]] with

def show(a: Add[A, B])(using expr: Expr[Add[A, B]]) =
"(" ++ leftShow.show(a.l) ++ "+" ++ rightShow.show(a.r) ++ ")"

given [A](using expr: Expr[A], subShow: Show[A]): Show[Neg[A]] with
def show(a: Neg[A])(using expr: Expr[Neg[A]]) = "-" ++ subShow.show(a.a)

That’s all. I hope you found it useful.

@philip_schwarz

